mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
fix(telemetry): remove telemetry tests :(
This commit is contained in:
parent
ce92a44d08
commit
350650d18c
8 changed files with 0 additions and 4752 deletions
|
|
@ -1,19 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""Telemetry collector helpers for integration tests."""
|
||||
|
||||
from .base import BaseTelemetryCollector, SpanStub
|
||||
from .in_memory import InMemoryTelemetryCollector, InMemoryTelemetryManager
|
||||
from .otlp import OtlpHttpTestCollector
|
||||
|
||||
__all__ = [
|
||||
"BaseTelemetryCollector",
|
||||
"SpanStub",
|
||||
"InMemoryTelemetryCollector",
|
||||
"InMemoryTelemetryManager",
|
||||
"OtlpHttpTestCollector",
|
||||
]
|
||||
|
|
@ -1,506 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""Shared helpers for telemetry test collectors."""
|
||||
|
||||
import os
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
|
||||
@dataclass
|
||||
class MetricStub:
|
||||
"""Unified metric interface for both in-memory and OTLP collectors."""
|
||||
|
||||
name: str
|
||||
value: Any
|
||||
attributes: dict[str, Any] | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class SpanStub:
|
||||
"""Unified span interface for both in-memory and OTLP collectors."""
|
||||
|
||||
name: str
|
||||
attributes: dict[str, Any] | None = None
|
||||
resource_attributes: dict[str, Any] | None = None
|
||||
events: list[dict[str, Any]] | None = None
|
||||
trace_id: str | None = None
|
||||
span_id: str | None = None
|
||||
|
||||
@property
|
||||
def context(self):
|
||||
"""Provide context-like interface for trace_id compatibility."""
|
||||
if self.trace_id is None:
|
||||
return None
|
||||
return type("Context", (), {"trace_id": int(self.trace_id, 16)})()
|
||||
|
||||
def get_trace_id(self) -> str | None:
|
||||
"""Get trace ID in hex format.
|
||||
|
||||
Tries context.trace_id first, then falls back to direct trace_id.
|
||||
"""
|
||||
context = getattr(self, "context", None)
|
||||
if context and getattr(context, "trace_id", None) is not None:
|
||||
return f"{context.trace_id:032x}"
|
||||
return getattr(self, "trace_id", None)
|
||||
|
||||
def has_message(self, text: str) -> bool:
|
||||
"""Check if span contains a specific message in its args."""
|
||||
if self.attributes is None:
|
||||
return False
|
||||
args = self.attributes.get("__args__")
|
||||
if not args or not isinstance(args, str):
|
||||
return False
|
||||
return text in args
|
||||
|
||||
def is_root_span(self) -> bool:
|
||||
"""Check if this is a root span."""
|
||||
if self.attributes is None:
|
||||
return False
|
||||
return self.attributes.get("__root__") is True
|
||||
|
||||
def is_autotraced(self) -> bool:
|
||||
"""Check if this span was automatically traced."""
|
||||
if self.attributes is None:
|
||||
return False
|
||||
return self.attributes.get("__autotraced__") is True
|
||||
|
||||
def get_span_type(self) -> str | None:
|
||||
"""Get the span type (async, sync, async_generator)."""
|
||||
if self.attributes is None:
|
||||
return None
|
||||
return self.attributes.get("__type__")
|
||||
|
||||
def get_class_method(self) -> tuple[str | None, str | None]:
|
||||
"""Get the class and method names for autotraced spans."""
|
||||
if self.attributes is None:
|
||||
return None, None
|
||||
return (self.attributes.get("__class__"), self.attributes.get("__method__"))
|
||||
|
||||
def get_location(self) -> str | None:
|
||||
"""Get the location (library_client, server) for root spans."""
|
||||
if self.attributes is None:
|
||||
return None
|
||||
return self.attributes.get("__location__")
|
||||
|
||||
|
||||
def _value_to_python(value: Any) -> Any:
|
||||
kind = value.WhichOneof("value")
|
||||
if kind == "string_value":
|
||||
return value.string_value
|
||||
if kind == "int_value":
|
||||
return value.int_value
|
||||
if kind == "double_value":
|
||||
return value.double_value
|
||||
if kind == "bool_value":
|
||||
return value.bool_value
|
||||
if kind == "bytes_value":
|
||||
return value.bytes_value
|
||||
if kind == "array_value":
|
||||
return [_value_to_python(item) for item in value.array_value.values]
|
||||
if kind == "kvlist_value":
|
||||
return {kv.key: _value_to_python(kv.value) for kv in value.kvlist_value.values}
|
||||
return None
|
||||
|
||||
|
||||
def attributes_to_dict(key_values: Iterable[Any]) -> dict[str, Any]:
|
||||
return {key_value.key: _value_to_python(key_value.value) for key_value in key_values}
|
||||
|
||||
|
||||
def events_to_list(events: Iterable[Any]) -> list[dict[str, Any]]:
|
||||
return [
|
||||
{
|
||||
"name": event.name,
|
||||
"timestamp": event.time_unix_nano,
|
||||
"attributes": attributes_to_dict(event.attributes),
|
||||
}
|
||||
for event in events
|
||||
]
|
||||
|
||||
|
||||
class BaseTelemetryCollector:
|
||||
"""Base class for telemetry collectors that ensures consistent return types.
|
||||
|
||||
All collectors must return SpanStub objects to ensure test compatibility
|
||||
across both library-client and server modes.
|
||||
"""
|
||||
|
||||
# Default delay in seconds if OTEL_METRIC_EXPORT_INTERVAL is not set
|
||||
_DEFAULT_BASELINE_STABILIZATION_DELAY = 0.2
|
||||
|
||||
def __init__(self):
|
||||
self._metric_baseline: dict[tuple[str, str], float] = {}
|
||||
|
||||
@classmethod
|
||||
def _get_baseline_stabilization_delay(cls) -> float:
|
||||
"""Get baseline stabilization delay from OTEL_METRIC_EXPORT_INTERVAL.
|
||||
|
||||
Adds 1.5x buffer for CI environments.
|
||||
"""
|
||||
interval_ms = os.environ.get("OTEL_METRIC_EXPORT_INTERVAL")
|
||||
if interval_ms:
|
||||
try:
|
||||
delay = float(interval_ms) / 1000.0
|
||||
except (ValueError, TypeError):
|
||||
delay = cls._DEFAULT_BASELINE_STABILIZATION_DELAY
|
||||
else:
|
||||
delay = cls._DEFAULT_BASELINE_STABILIZATION_DELAY
|
||||
|
||||
if os.environ.get("CI"):
|
||||
delay *= 1.5
|
||||
|
||||
return delay
|
||||
|
||||
def _get_metric_key(self, metric: MetricStub) -> tuple[str, str]:
|
||||
"""Generate a stable key for a metric based on name and attributes."""
|
||||
attrs = metric.attributes or {}
|
||||
attr_key = ",".join(f"{k}={v}" for k, v in sorted(attrs.items()))
|
||||
return (metric.name, attr_key)
|
||||
|
||||
def _compute_metric_delta(self, metric: MetricStub) -> int | float | None:
|
||||
"""Compute delta value for a metric from baseline.
|
||||
|
||||
Returns:
|
||||
Delta value if metric was in baseline, absolute value if new, None if unchanged.
|
||||
"""
|
||||
metric_key = self._get_metric_key(metric)
|
||||
|
||||
if metric_key in self._metric_baseline:
|
||||
baseline_value = self._metric_baseline[metric_key]
|
||||
delta = metric.value - baseline_value
|
||||
return delta if delta > 0 else None
|
||||
else:
|
||||
return metric.value
|
||||
|
||||
def get_spans(
|
||||
self,
|
||||
expected_count: int | None = None,
|
||||
timeout: float = 5.0,
|
||||
poll_interval: float = 0.05,
|
||||
) -> tuple[SpanStub, ...]:
|
||||
deadline = time.time() + timeout
|
||||
min_count = expected_count if expected_count is not None else 1
|
||||
last_len: int | None = None
|
||||
stable_iterations = 0
|
||||
|
||||
while True:
|
||||
spans = tuple(self._snapshot_spans())
|
||||
|
||||
if len(spans) >= min_count:
|
||||
if expected_count is not None and len(spans) >= expected_count:
|
||||
return spans
|
||||
|
||||
if last_len == len(spans):
|
||||
stable_iterations += 1
|
||||
if stable_iterations >= 2:
|
||||
return spans
|
||||
else:
|
||||
stable_iterations = 1
|
||||
else:
|
||||
stable_iterations = 0
|
||||
|
||||
if time.time() >= deadline:
|
||||
return spans
|
||||
|
||||
last_len = len(spans)
|
||||
time.sleep(poll_interval)
|
||||
|
||||
def get_metrics(
|
||||
self,
|
||||
expected_count: int | None = None,
|
||||
timeout: float = 5.0,
|
||||
poll_interval: float = 0.05,
|
||||
expect_model_id: str | None = None,
|
||||
) -> dict[str, MetricStub]:
|
||||
"""Poll until expected metrics are available or timeout is reached.
|
||||
|
||||
Returns metrics with delta values computed from baseline.
|
||||
"""
|
||||
deadline = time.time() + timeout
|
||||
min_count = expected_count if expected_count is not None else 1
|
||||
accumulated_metrics = {}
|
||||
seen_metric_names_with_model_id = set()
|
||||
|
||||
while time.time() < deadline:
|
||||
current_metrics = self._snapshot_metrics()
|
||||
if current_metrics:
|
||||
for metric in current_metrics:
|
||||
delta_value = self._compute_metric_delta(metric)
|
||||
if delta_value is None:
|
||||
continue
|
||||
|
||||
metric_with_delta = MetricStub(
|
||||
name=metric.name,
|
||||
value=delta_value,
|
||||
attributes=metric.attributes,
|
||||
)
|
||||
|
||||
self._accumulate_metric(
|
||||
accumulated_metrics,
|
||||
metric_with_delta,
|
||||
expect_model_id,
|
||||
seen_metric_names_with_model_id,
|
||||
)
|
||||
|
||||
if self._has_enough_metrics(
|
||||
accumulated_metrics, seen_metric_names_with_model_id, min_count, expect_model_id
|
||||
):
|
||||
return accumulated_metrics
|
||||
|
||||
time.sleep(poll_interval)
|
||||
|
||||
return accumulated_metrics
|
||||
|
||||
def _accumulate_metric(
|
||||
self,
|
||||
accumulated: dict[str, MetricStub],
|
||||
metric: MetricStub,
|
||||
expect_model_id: str | None,
|
||||
seen_with_model_id: set[str],
|
||||
) -> None:
|
||||
"""Accumulate a metric, preferring those matching expected model_id."""
|
||||
metric_name = metric.name
|
||||
matches_model_id = (
|
||||
expect_model_id and metric.attributes and metric.attributes.get("model_id") == expect_model_id
|
||||
)
|
||||
|
||||
if metric_name not in accumulated:
|
||||
accumulated[metric_name] = metric
|
||||
if matches_model_id:
|
||||
seen_with_model_id.add(metric_name)
|
||||
return
|
||||
|
||||
existing = accumulated[metric_name]
|
||||
existing_matches = (
|
||||
expect_model_id and existing.attributes and existing.attributes.get("model_id") == expect_model_id
|
||||
)
|
||||
|
||||
if matches_model_id and not existing_matches:
|
||||
accumulated[metric_name] = metric
|
||||
seen_with_model_id.add(metric_name)
|
||||
elif matches_model_id == existing_matches:
|
||||
if metric.value > existing.value:
|
||||
accumulated[metric_name] = metric
|
||||
if matches_model_id:
|
||||
seen_with_model_id.add(metric_name)
|
||||
|
||||
def _has_enough_metrics(
|
||||
self,
|
||||
accumulated: dict[str, MetricStub],
|
||||
seen_with_model_id: set[str],
|
||||
min_count: int,
|
||||
expect_model_id: str | None,
|
||||
) -> bool:
|
||||
"""Check if we have collected enough metrics."""
|
||||
if len(accumulated) < min_count:
|
||||
return False
|
||||
if not expect_model_id:
|
||||
return True
|
||||
return len(seen_with_model_id) >= min_count
|
||||
|
||||
@staticmethod
|
||||
def _convert_attributes_to_dict(attrs: Any) -> dict[str, Any]:
|
||||
"""Convert various attribute types to a consistent dictionary format.
|
||||
|
||||
Handles mappingproxy, dict, and other attribute types.
|
||||
"""
|
||||
if attrs is None:
|
||||
return {}
|
||||
|
||||
try:
|
||||
return dict(attrs.items()) # type: ignore[attr-defined]
|
||||
except AttributeError:
|
||||
try:
|
||||
return dict(attrs)
|
||||
except TypeError:
|
||||
return dict(attrs) if attrs else {}
|
||||
|
||||
@staticmethod
|
||||
def _extract_trace_span_ids(span: Any) -> tuple[str | None, str | None]:
|
||||
"""Extract trace_id and span_id from OpenTelemetry span object.
|
||||
|
||||
Handles both context-based and direct attribute access.
|
||||
"""
|
||||
trace_id = None
|
||||
span_id = None
|
||||
|
||||
context = getattr(span, "context", None)
|
||||
if context:
|
||||
trace_id = f"{context.trace_id:032x}"
|
||||
span_id = f"{context.span_id:016x}"
|
||||
else:
|
||||
trace_id = getattr(span, "trace_id", None)
|
||||
span_id = getattr(span, "span_id", None)
|
||||
|
||||
return trace_id, span_id
|
||||
|
||||
@staticmethod
|
||||
def _create_span_stub_from_opentelemetry(span: Any) -> SpanStub:
|
||||
"""Create SpanStub from OpenTelemetry span object.
|
||||
|
||||
This helper reduces code duplication between collectors.
|
||||
"""
|
||||
trace_id, span_id = BaseTelemetryCollector._extract_trace_span_ids(span)
|
||||
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes) or {}
|
||||
|
||||
return SpanStub(
|
||||
name=span.name,
|
||||
attributes=attributes,
|
||||
trace_id=trace_id,
|
||||
span_id=span_id,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _create_span_stub_from_protobuf(span: Any, resource_attrs: dict[str, Any] | None = None) -> SpanStub:
|
||||
"""Create SpanStub from protobuf span object.
|
||||
|
||||
This helper handles the different structure of protobuf spans.
|
||||
"""
|
||||
attributes = attributes_to_dict(span.attributes) or {}
|
||||
events = events_to_list(span.events) if span.events else None
|
||||
trace_id = span.trace_id.hex() if span.trace_id else None
|
||||
span_id = span.span_id.hex() if span.span_id else None
|
||||
|
||||
return SpanStub(
|
||||
name=span.name,
|
||||
attributes=attributes,
|
||||
resource_attributes=resource_attrs,
|
||||
events=events,
|
||||
trace_id=trace_id,
|
||||
span_id=span_id,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _extract_metric_from_opentelemetry(metric: Any) -> MetricStub | None:
|
||||
"""Extract MetricStub from OpenTelemetry metric object.
|
||||
|
||||
This helper reduces code duplication between collectors.
|
||||
"""
|
||||
if not (hasattr(metric, "name") and hasattr(metric, "data") and hasattr(metric.data, "data_points")):
|
||||
return None
|
||||
|
||||
if not (metric.data.data_points and len(metric.data.data_points) > 0):
|
||||
return None
|
||||
|
||||
data_point = metric.data.data_points[0]
|
||||
|
||||
if hasattr(data_point, "value"):
|
||||
# Counter or Gauge
|
||||
value = data_point.value
|
||||
elif hasattr(data_point, "sum"):
|
||||
# Histogram - use the sum of all recorded values
|
||||
value = data_point.sum
|
||||
else:
|
||||
return None
|
||||
|
||||
attributes = {}
|
||||
if hasattr(data_point, "attributes"):
|
||||
attrs = data_point.attributes
|
||||
if attrs is not None and hasattr(attrs, "items"):
|
||||
attributes = dict(attrs.items())
|
||||
elif attrs is not None and not isinstance(attrs, dict):
|
||||
attributes = dict(attrs)
|
||||
|
||||
return MetricStub(
|
||||
name=metric.name,
|
||||
value=value,
|
||||
attributes=attributes or {},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _create_metric_stubs_from_protobuf(metric: Any) -> list[MetricStub]:
|
||||
"""Create list of MetricStub objects from protobuf metric object.
|
||||
|
||||
Protobuf metrics can have sum, gauge, or histogram data. Each metric can have
|
||||
multiple data points with different attributes, so we return one MetricStub
|
||||
per data point.
|
||||
|
||||
Returns:
|
||||
List of MetricStub objects, one per data point in the metric.
|
||||
"""
|
||||
if not hasattr(metric, "name"):
|
||||
return []
|
||||
|
||||
metric_stubs = []
|
||||
|
||||
for metric_type in ["sum", "gauge", "histogram"]:
|
||||
if not hasattr(metric, metric_type):
|
||||
continue
|
||||
|
||||
metric_data = getattr(metric, metric_type)
|
||||
if not metric_data or not hasattr(metric_data, "data_points"):
|
||||
continue
|
||||
|
||||
data_points = metric_data.data_points
|
||||
if not data_points:
|
||||
continue
|
||||
|
||||
for data_point in data_points:
|
||||
attributes = attributes_to_dict(data_point.attributes) if hasattr(data_point, "attributes") else {}
|
||||
|
||||
value = BaseTelemetryCollector._extract_data_point_value(data_point, metric_type)
|
||||
if value is None:
|
||||
continue
|
||||
|
||||
metric_stubs.append(
|
||||
MetricStub(
|
||||
name=metric.name,
|
||||
value=value,
|
||||
attributes=attributes,
|
||||
)
|
||||
)
|
||||
|
||||
# Only process one metric type per metric
|
||||
break
|
||||
|
||||
return metric_stubs
|
||||
|
||||
@staticmethod
|
||||
def _extract_data_point_value(data_point: Any, metric_type: str) -> float | int | None:
|
||||
"""Extract value from a protobuf metric data point based on metric type."""
|
||||
if metric_type == "sum":
|
||||
if hasattr(data_point, "as_int"):
|
||||
return data_point.as_int
|
||||
if hasattr(data_point, "as_double"):
|
||||
return data_point.as_double
|
||||
elif metric_type == "gauge":
|
||||
if hasattr(data_point, "as_double"):
|
||||
return data_point.as_double
|
||||
elif metric_type == "histogram":
|
||||
# Histograms use sum field which represents cumulative sum of all recorded values
|
||||
if hasattr(data_point, "sum"):
|
||||
return data_point.sum
|
||||
|
||||
return None
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clear telemetry data and establish baseline for metric delta computation."""
|
||||
self._metric_baseline.clear()
|
||||
|
||||
self._clear_impl()
|
||||
|
||||
delay = self._get_baseline_stabilization_delay()
|
||||
time.sleep(delay)
|
||||
baseline_metrics = self._snapshot_metrics()
|
||||
if baseline_metrics:
|
||||
for metric in baseline_metrics:
|
||||
metric_key = self._get_metric_key(metric)
|
||||
self._metric_baseline[metric_key] = metric.value
|
||||
|
||||
def _snapshot_spans(self) -> tuple[SpanStub, ...]: # pragma: no cover - interface hook
|
||||
raise NotImplementedError
|
||||
|
||||
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None: # pragma: no cover - interface hook
|
||||
raise NotImplementedError
|
||||
|
||||
def _clear_impl(self) -> None: # pragma: no cover - interface hook
|
||||
raise NotImplementedError
|
||||
|
||||
def shutdown(self) -> None:
|
||||
"""Optional hook for subclasses with background workers."""
|
||||
|
|
@ -1,87 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""In-memory telemetry collector for library-client tests."""
|
||||
|
||||
import opentelemetry.metrics as otel_metrics
|
||||
import opentelemetry.trace as otel_trace
|
||||
from opentelemetry import metrics, trace
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.metrics.export import InMemoryMetricReader
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
|
||||
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
|
||||
|
||||
import llama_stack.core.telemetry.telemetry as telemetry_module
|
||||
|
||||
from .base import BaseTelemetryCollector, MetricStub, SpanStub
|
||||
|
||||
|
||||
class InMemoryTelemetryCollector(BaseTelemetryCollector):
|
||||
"""In-memory telemetry collector for library-client tests.
|
||||
|
||||
Converts OpenTelemetry span objects to SpanStub objects to ensure
|
||||
consistent interface with OTLP collector used in server mode.
|
||||
"""
|
||||
|
||||
def __init__(self, span_exporter: InMemorySpanExporter, metric_reader: InMemoryMetricReader) -> None:
|
||||
super().__init__()
|
||||
self._span_exporter = span_exporter
|
||||
self._metric_reader = metric_reader
|
||||
|
||||
def _snapshot_spans(self) -> tuple[SpanStub, ...]:
|
||||
spans = []
|
||||
for span in self._span_exporter.get_finished_spans():
|
||||
spans.append(self._create_span_stub_from_opentelemetry(span))
|
||||
return tuple(spans)
|
||||
|
||||
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None:
|
||||
data = self._metric_reader.get_metrics_data()
|
||||
if not data or not data.resource_metrics:
|
||||
return None
|
||||
|
||||
metric_stubs = []
|
||||
for resource_metric in data.resource_metrics:
|
||||
if resource_metric.scope_metrics:
|
||||
for scope_metric in resource_metric.scope_metrics:
|
||||
for metric in scope_metric.metrics:
|
||||
metric_stub = self._extract_metric_from_opentelemetry(metric)
|
||||
if metric_stub:
|
||||
metric_stubs.append(metric_stub)
|
||||
|
||||
return tuple(metric_stubs) if metric_stubs else None
|
||||
|
||||
def _clear_impl(self) -> None:
|
||||
self._span_exporter.clear()
|
||||
self._metric_reader.get_metrics_data()
|
||||
|
||||
|
||||
class InMemoryTelemetryManager:
|
||||
def __init__(self) -> None:
|
||||
if hasattr(otel_trace, "_TRACER_PROVIDER_SET_ONCE"):
|
||||
otel_trace._TRACER_PROVIDER_SET_ONCE._done = False # type: ignore[attr-defined]
|
||||
if hasattr(otel_metrics, "_METER_PROVIDER_SET_ONCE"):
|
||||
otel_metrics._METER_PROVIDER_SET_ONCE._done = False # type: ignore[attr-defined]
|
||||
|
||||
span_exporter = InMemorySpanExporter()
|
||||
tracer_provider = TracerProvider()
|
||||
tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter))
|
||||
trace.set_tracer_provider(tracer_provider)
|
||||
|
||||
metric_reader = InMemoryMetricReader()
|
||||
meter_provider = MeterProvider(metric_readers=[metric_reader])
|
||||
metrics.set_meter_provider(meter_provider)
|
||||
|
||||
telemetry_module._TRACER_PROVIDER = tracer_provider
|
||||
|
||||
self.collector = InMemoryTelemetryCollector(span_exporter, metric_reader)
|
||||
self._tracer_provider = tracer_provider
|
||||
self._meter_provider = meter_provider
|
||||
|
||||
def shutdown(self) -> None:
|
||||
telemetry_module._TRACER_PROVIDER = None
|
||||
self._tracer_provider.shutdown()
|
||||
self._meter_provider.shutdown()
|
||||
|
|
@ -1,146 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""OTLP HTTP telemetry collector used for server-mode tests."""
|
||||
|
||||
import gzip
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
from http.server import BaseHTTPRequestHandler, HTTPServer
|
||||
from socketserver import ThreadingMixIn
|
||||
|
||||
from opentelemetry.proto.collector.metrics.v1.metrics_service_pb2 import ExportMetricsServiceRequest
|
||||
from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import ExportTraceServiceRequest
|
||||
|
||||
from .base import BaseTelemetryCollector, MetricStub, SpanStub, attributes_to_dict
|
||||
|
||||
|
||||
class OtlpHttpTestCollector(BaseTelemetryCollector):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self._spans: list[SpanStub] = []
|
||||
self._metrics: list[MetricStub] = []
|
||||
self._lock = threading.Lock()
|
||||
|
||||
class _ThreadingHTTPServer(ThreadingMixIn, HTTPServer):
|
||||
daemon_threads = True
|
||||
allow_reuse_address = True
|
||||
|
||||
configured_port = int(os.environ.get("LLAMA_STACK_TEST_COLLECTOR_PORT", "0"))
|
||||
|
||||
self._server = _ThreadingHTTPServer(("127.0.0.1", configured_port), _CollectorHandler)
|
||||
self._server.collector = self # type: ignore[attr-defined]
|
||||
port = self._server.server_address[1]
|
||||
self.endpoint = f"http://127.0.0.1:{port}"
|
||||
|
||||
self._thread = threading.Thread(target=self._server.serve_forever, name="otel-test-collector", daemon=True)
|
||||
self._thread.start()
|
||||
|
||||
def _handle_traces(self, request: ExportTraceServiceRequest) -> None:
|
||||
new_spans: list[SpanStub] = []
|
||||
|
||||
for resource_spans in request.resource_spans:
|
||||
resource_attrs = attributes_to_dict(resource_spans.resource.attributes)
|
||||
|
||||
for scope_spans in resource_spans.scope_spans:
|
||||
for span in scope_spans.spans:
|
||||
new_spans.append(self._create_span_stub_from_protobuf(span, resource_attrs or None))
|
||||
|
||||
if not new_spans:
|
||||
return
|
||||
|
||||
with self._lock:
|
||||
self._spans.extend(new_spans)
|
||||
|
||||
def _handle_metrics(self, request: ExportMetricsServiceRequest) -> None:
|
||||
new_metrics: list[MetricStub] = []
|
||||
for resource_metrics in request.resource_metrics:
|
||||
for scope_metrics in resource_metrics.scope_metrics:
|
||||
for metric in scope_metrics.metrics:
|
||||
# Handle multiple data points per metric (e.g., different attribute sets)
|
||||
metric_stubs = self._create_metric_stubs_from_protobuf(metric)
|
||||
new_metrics.extend(metric_stubs)
|
||||
|
||||
if not new_metrics:
|
||||
return
|
||||
|
||||
with self._lock:
|
||||
self._metrics.extend(new_metrics)
|
||||
|
||||
def _snapshot_spans(self) -> tuple[SpanStub, ...]:
|
||||
with self._lock:
|
||||
return tuple(self._spans)
|
||||
|
||||
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None:
|
||||
with self._lock:
|
||||
return tuple(self._metrics) if self._metrics else None
|
||||
|
||||
def _clear_impl(self) -> None:
|
||||
"""Clear telemetry over a period of time to prevent race conditions between tests."""
|
||||
with self._lock:
|
||||
self._spans.clear()
|
||||
self._metrics.clear()
|
||||
|
||||
# Prevent race conditions where telemetry arrives after clear() but before
|
||||
# the test starts, causing contamination between tests
|
||||
deadline = time.time() + 2.0 # Maximum wait time
|
||||
last_span_count = 0
|
||||
last_metric_count = 0
|
||||
stable_iterations = 0
|
||||
|
||||
while time.time() < deadline:
|
||||
with self._lock:
|
||||
current_span_count = len(self._spans)
|
||||
current_metric_count = len(self._metrics)
|
||||
|
||||
if current_span_count == last_span_count and current_metric_count == last_metric_count:
|
||||
stable_iterations += 1
|
||||
if stable_iterations >= 4: # 4 * 50ms = 200ms of stability
|
||||
break
|
||||
else:
|
||||
stable_iterations = 0
|
||||
last_span_count = current_span_count
|
||||
last_metric_count = current_metric_count
|
||||
|
||||
time.sleep(0.05)
|
||||
|
||||
# Final clear to remove any telemetry that arrived during stabilization
|
||||
with self._lock:
|
||||
self._spans.clear()
|
||||
self._metrics.clear()
|
||||
|
||||
def shutdown(self) -> None:
|
||||
self._server.shutdown()
|
||||
self._server.server_close()
|
||||
self._thread.join(timeout=1)
|
||||
|
||||
|
||||
class _CollectorHandler(BaseHTTPRequestHandler):
|
||||
def do_POST(self) -> None: # noqa: N802 Function name `do_POST` should be lowercase
|
||||
collector: OtlpHttpTestCollector = self.server.collector # type: ignore[attr-defined]
|
||||
length = int(self.headers.get("content-length", "0"))
|
||||
body = self.rfile.read(length)
|
||||
if self.headers.get("content-encoding") == "gzip":
|
||||
body = gzip.decompress(body)
|
||||
|
||||
if self.path == "/v1/traces":
|
||||
request = ExportTraceServiceRequest()
|
||||
request.ParseFromString(body)
|
||||
collector._handle_traces(request)
|
||||
self._respond_ok()
|
||||
elif self.path == "/v1/metrics":
|
||||
request = ExportMetricsServiceRequest()
|
||||
request.ParseFromString(body)
|
||||
collector._handle_metrics(request)
|
||||
self._respond_ok()
|
||||
else:
|
||||
self.send_response(404)
|
||||
self.end_headers()
|
||||
|
||||
def _respond_ok(self) -> None:
|
||||
self.send_response(200)
|
||||
self.end_headers()
|
||||
|
|
@ -1,66 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""Telemetry test configuration supporting both library and server test modes."""
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.testing.api_recorder import patch_httpx_for_test_id
|
||||
from tests.integration.fixtures.common import instantiate_llama_stack_client
|
||||
from tests.integration.telemetry.collectors import InMemoryTelemetryManager, OtlpHttpTestCollector
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def telemetry_test_collector():
|
||||
stack_mode = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
|
||||
|
||||
if stack_mode == "server":
|
||||
# In server mode, the collector must be started and the server is already running.
|
||||
# The integration test script (scripts/integration-tests.sh) should have set
|
||||
# LLAMA_STACK_TEST_COLLECTOR_PORT and OTEL_EXPORTER_OTLP_ENDPOINT before starting the server.
|
||||
try:
|
||||
collector = OtlpHttpTestCollector()
|
||||
except RuntimeError as exc:
|
||||
pytest.skip(str(exc))
|
||||
|
||||
# Verify the collector is listening on the expected endpoint
|
||||
expected_endpoint = os.environ.get("OTEL_EXPORTER_OTLP_ENDPOINT")
|
||||
if expected_endpoint and collector.endpoint != expected_endpoint:
|
||||
pytest.skip(
|
||||
f"Collector endpoint mismatch: expected {expected_endpoint}, got {collector.endpoint}. "
|
||||
"Server was likely started before collector."
|
||||
)
|
||||
|
||||
try:
|
||||
yield collector
|
||||
finally:
|
||||
collector.shutdown()
|
||||
else:
|
||||
manager = InMemoryTelemetryManager()
|
||||
try:
|
||||
yield manager.collector
|
||||
finally:
|
||||
manager.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def llama_stack_client(telemetry_test_collector, request):
|
||||
"""Ensure telemetry collector is ready before initializing the stack client."""
|
||||
patch_httpx_for_test_id()
|
||||
client = instantiate_llama_stack_client(request.session)
|
||||
return client
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_otlp_collector(telemetry_test_collector):
|
||||
"""Provides access to telemetry data and clears between tests."""
|
||||
telemetry_test_collector.clear()
|
||||
try:
|
||||
yield telemetry_test_collector
|
||||
finally:
|
||||
telemetry_test_collector.clear()
|
||||
|
|
@ -1,60 +0,0 @@
|
|||
{
|
||||
"test_id": "tests/integration/telemetry/test_completions.py::test_telemetry_format_completeness[txt=ollama/llama3.2:3b-instruct-fp16]",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"url": "http://0.0.0.0:11434/v1/v1/chat/completions",
|
||||
"headers": {},
|
||||
"body": {
|
||||
"model": "llama3.2:3b-instruct-fp16",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Test trace openai with temperature 0.7"
|
||||
}
|
||||
],
|
||||
"max_tokens": 100,
|
||||
"stream": false,
|
||||
"temperature": 0.7
|
||||
},
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"model": "llama3.2:3b-instruct-fp16"
|
||||
},
|
||||
"response": {
|
||||
"body": {
|
||||
"__type__": "openai.types.chat.chat_completion.ChatCompletion",
|
||||
"__data__": {
|
||||
"id": "rec-1fcfd86d8111",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "length",
|
||||
"index": 0,
|
||||
"logprobs": null,
|
||||
"message": {
|
||||
"content": "I can guide you through the process, but please note that testing OpenAI's models requires a bit of setup and potential API limits.\n\nOpenAI's API is designed to be used in a controlled environment for research purposes. You need an account on their platform and access to the API key.\n\nHere's how you can test a model with temperature 0.7 using Python:\n\n```python\nimport numpy as np\n\n# Replace 'YOUR_API_KEY' with your actual OpenAI API key.\nAPI_KEY",
|
||||
"refusal": null,
|
||||
"role": "assistant",
|
||||
"annotations": null,
|
||||
"audio": null,
|
||||
"function_call": null,
|
||||
"tool_calls": null
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 0,
|
||||
"model": "llama3.2:3b-instruct-fp16",
|
||||
"object": "chat.completion",
|
||||
"service_tier": null,
|
||||
"system_fingerprint": "fp_ollama",
|
||||
"usage": {
|
||||
"completion_tokens": 100,
|
||||
"prompt_tokens": 35,
|
||||
"total_tokens": 135,
|
||||
"completion_tokens_details": null,
|
||||
"prompt_tokens_details": null
|
||||
}
|
||||
}
|
||||
},
|
||||
"is_streaming": false
|
||||
},
|
||||
"id_normalization_mapping": {}
|
||||
}
|
||||
File diff suppressed because it is too large
Load diff
|
|
@ -1,150 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""Telemetry tests verifying @trace_protocol decorator format across stack modes.
|
||||
|
||||
Note: The mock_otlp_collector fixture automatically clears telemetry data
|
||||
before and after each test, ensuring test isolation.
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
|
||||
"""Verify streaming adds chunk_count and __type__=async_generator."""
|
||||
|
||||
pytest.skip("Disabled: See https://github.com/llamastack/llama-stack/issues/4089")
|
||||
stream = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Test trace openai 1"}],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
chunks = list(stream)
|
||||
assert len(chunks) > 0
|
||||
|
||||
spans = mock_otlp_collector.get_spans(expected_count=5)
|
||||
assert len(spans) > 0
|
||||
|
||||
async_generator_span = next(
|
||||
(
|
||||
span
|
||||
for span in reversed(spans)
|
||||
if span.get_span_type() == "async_generator"
|
||||
and span.attributes.get("chunk_count")
|
||||
and span.has_message("Test trace openai 1")
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
assert async_generator_span is not None
|
||||
|
||||
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
|
||||
assert raw_chunk_count is not None
|
||||
chunk_count = int(raw_chunk_count)
|
||||
|
||||
assert chunk_count == len(chunks)
|
||||
|
||||
|
||||
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
|
||||
"""Comprehensive validation of telemetry data format including spans and metrics."""
|
||||
|
||||
pytest.skip("Disabled: See https://github.com/llamastack/llama-stack/issues/4089")
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}],
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Handle both dict and Pydantic model for usage
|
||||
# This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model
|
||||
# TODO: Fix this by making the replay system return a Pydantic model for usage
|
||||
usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump()
|
||||
assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0
|
||||
assert usage.get("completion_tokens") and usage["completion_tokens"] > 0
|
||||
assert usage.get("total_tokens") and usage["total_tokens"] > 0
|
||||
|
||||
# Verify spans
|
||||
spans = mock_otlp_collector.get_spans(expected_count=7)
|
||||
target_span = next(
|
||||
(span for span in reversed(spans) if span.has_message("Test trace openai with temperature 0.7")),
|
||||
None,
|
||||
)
|
||||
assert target_span is not None
|
||||
|
||||
trace_id = target_span.get_trace_id()
|
||||
assert trace_id is not None
|
||||
|
||||
spans = [span for span in spans if span.get_trace_id() == trace_id]
|
||||
spans = [span for span in spans if span.is_root_span() or span.is_autotraced()]
|
||||
assert len(spans) >= 4
|
||||
|
||||
# Collect all model_ids found in spans
|
||||
logged_model_ids = []
|
||||
|
||||
for span in spans:
|
||||
attrs = span.attributes
|
||||
assert attrs is not None
|
||||
|
||||
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
|
||||
if span.is_root_span():
|
||||
assert span.get_location() in ["library_client", "server"]
|
||||
continue
|
||||
|
||||
assert span.is_autotraced()
|
||||
class_name, method_name = span.get_class_method()
|
||||
assert class_name and method_name
|
||||
assert span.get_span_type() in ["async", "sync", "async_generator"]
|
||||
|
||||
args_field = span.attributes.get("__args__")
|
||||
if args_field:
|
||||
args = json.loads(args_field)
|
||||
if "model_id" in args:
|
||||
logged_model_ids.append(args["model_id"])
|
||||
|
||||
# At least one span should capture the fully qualified model ID
|
||||
assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}"
|
||||
|
||||
# Verify token usage metrics in response using polling
|
||||
expected_metrics = ["completion_tokens", "total_tokens", "prompt_tokens"]
|
||||
metrics = mock_otlp_collector.get_metrics(expected_count=len(expected_metrics), expect_model_id=text_model_id)
|
||||
assert len(metrics) > 0, "No metrics found within timeout"
|
||||
|
||||
# Filter metrics to only those from the specific model used in the request
|
||||
# Multiple metrics with the same name can exist (e.g., from safety models)
|
||||
inference_model_metrics = {}
|
||||
all_model_ids = set()
|
||||
|
||||
for name, metric in metrics.items():
|
||||
if name in expected_metrics:
|
||||
model_id = metric.attributes.get("model_id")
|
||||
all_model_ids.add(model_id)
|
||||
# Only include metrics from the specific model used in the test request
|
||||
if model_id == text_model_id:
|
||||
inference_model_metrics[name] = metric
|
||||
|
||||
# Verify expected metrics are present for our specific model
|
||||
for metric_name in expected_metrics:
|
||||
assert metric_name in inference_model_metrics, (
|
||||
f"Expected metric {metric_name} for model {text_model_id} not found. "
|
||||
f"Available models: {sorted(all_model_ids)}, "
|
||||
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
|
||||
)
|
||||
|
||||
# Verify metric values match usage data
|
||||
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
|
||||
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
|
||||
)
|
||||
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
|
||||
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
|
||||
)
|
||||
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
|
||||
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue