mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-05 20:27:35 +00:00
Merge branch 'main' into content-extension
This commit is contained in:
commit
354ed48598
227 changed files with 21224 additions and 10798 deletions
|
@ -58,11 +58,13 @@ def skip_if_provider_doesnt_support_openai_vector_stores_search(client_with_mode
|
|||
"inline::sqlite-vec",
|
||||
"remote::milvus",
|
||||
"inline::milvus",
|
||||
"remote::pgvector",
|
||||
],
|
||||
"hybrid": [
|
||||
"inline::sqlite-vec",
|
||||
"inline::milvus",
|
||||
"remote::milvus",
|
||||
"remote::pgvector",
|
||||
],
|
||||
}
|
||||
supported_providers = search_mode_support.get(search_mode, [])
|
||||
|
|
|
@ -47,34 +47,45 @@ def client_with_empty_registry(client_with_models):
|
|||
|
||||
|
||||
def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
# Register a memory bank first
|
||||
vector_db_id = "test_vector_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_name = "test_vector_db"
|
||||
register_response = client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_name,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
actual_vector_db_id = register_response.identifier
|
||||
|
||||
# Retrieve the memory bank and validate its properties
|
||||
response = client_with_empty_registry.vector_dbs.retrieve(vector_db_id=vector_db_id)
|
||||
response = client_with_empty_registry.vector_dbs.retrieve(vector_db_id=actual_vector_db_id)
|
||||
assert response is not None
|
||||
assert response.identifier == vector_db_id
|
||||
assert response.identifier == actual_vector_db_id
|
||||
assert response.embedding_model == embedding_model_id
|
||||
assert response.provider_resource_id == vector_db_id
|
||||
assert response.identifier.startswith("vs_")
|
||||
|
||||
|
||||
def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
vector_db_id = "test_vector_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_name = "test_vector_db"
|
||||
response = client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_name,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
vector_dbs_after_register = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
assert vector_dbs_after_register == [vector_db_id]
|
||||
actual_vector_db_id = response.identifier
|
||||
assert actual_vector_db_id.startswith("vs_")
|
||||
assert actual_vector_db_id != vector_db_name
|
||||
|
||||
client_with_empty_registry.vector_dbs.unregister(vector_db_id=vector_db_id)
|
||||
vector_dbs_after_register = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
assert vector_dbs_after_register == [actual_vector_db_id]
|
||||
|
||||
vector_stores = client_with_empty_registry.vector_stores.list()
|
||||
assert len(vector_stores.data) == 1
|
||||
vector_store = vector_stores.data[0]
|
||||
assert vector_store.id == actual_vector_db_id
|
||||
assert vector_store.name == vector_db_name
|
||||
|
||||
client_with_empty_registry.vector_dbs.unregister(vector_db_id=actual_vector_db_id)
|
||||
|
||||
vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
assert len(vector_dbs) == 0
|
||||
|
@ -91,20 +102,22 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe
|
|||
],
|
||||
)
|
||||
def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case):
|
||||
vector_db_id = "test_vector_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_name = "test_vector_db"
|
||||
register_response = client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_name,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
actual_vector_db_id = register_response.identifier
|
||||
|
||||
client_with_empty_registry.vector_io.insert(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunks=sample_chunks,
|
||||
)
|
||||
|
||||
response = client_with_empty_registry.vector_io.query(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
query="What is the capital of France?",
|
||||
)
|
||||
assert response is not None
|
||||
|
@ -113,7 +126,7 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding
|
|||
|
||||
query, expected_doc_id = test_case
|
||||
response = client_with_empty_registry.vector_io.query(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
query=query,
|
||||
)
|
||||
assert response is not None
|
||||
|
@ -128,13 +141,15 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
|
|||
"remote::qdrant": {"score_threshold": -1.0},
|
||||
"inline::qdrant": {"score_threshold": -1.0},
|
||||
}
|
||||
vector_db_id = "test_precomputed_embeddings_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_name = "test_precomputed_embeddings_db"
|
||||
register_response = client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_name,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
actual_vector_db_id = register_response.identifier
|
||||
|
||||
chunks_with_embeddings = [
|
||||
Chunk(
|
||||
content="This is a test chunk with precomputed embedding.",
|
||||
|
@ -144,13 +159,13 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
|
|||
]
|
||||
|
||||
client_with_empty_registry.vector_io.insert(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunks=chunks_with_embeddings,
|
||||
)
|
||||
|
||||
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
|
||||
response = client_with_empty_registry.vector_io.query(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
query="precomputed embedding test",
|
||||
params=vector_io_provider_params_dict.get(provider, None),
|
||||
)
|
||||
|
@ -173,13 +188,15 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
|
|||
"remote::qdrant": {"score_threshold": 0.0},
|
||||
"inline::qdrant": {"score_threshold": 0.0},
|
||||
}
|
||||
vector_db_id = "test_precomputed_embeddings_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_name = "test_precomputed_embeddings_db"
|
||||
register_response = client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_name,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
actual_vector_db_id = register_response.identifier
|
||||
|
||||
chunks_with_embeddings = [
|
||||
Chunk(
|
||||
content="duplicate",
|
||||
|
@ -189,13 +206,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
|
|||
]
|
||||
|
||||
client_with_empty_registry.vector_io.insert(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunks=chunks_with_embeddings,
|
||||
)
|
||||
|
||||
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
|
||||
response = client_with_empty_registry.vector_io.query(
|
||||
vector_db_id=vector_db_id,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
query="duplicate",
|
||||
params=vector_io_provider_params_dict.get(provider, None),
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue