update generate prompt format

This commit is contained in:
Ashwin Bharambe 2025-04-07 14:54:43 -07:00
parent 76004eacb4
commit 35aac86997
2 changed files with 36 additions and 62 deletions

View file

@ -35,7 +35,6 @@ from .llama3.template_data import (
system_message_builtin_tools_only,
system_message_custom_tools_only,
)
from .llama4.datatypes import LLMInput
class TextCompletionContent(BaseModel):
@ -74,21 +73,22 @@ class UseCase(BaseModel):
text += dialog
text += "\n\n"
continue
elif isinstance(dialog, TextCompletionContent):
input_tokens, output_tokens = generator.text_completion_raw(
dialog.content,
temperature=0.1,
top_p=0.95,
max_gen_len=64,
)
else:
input_tokens, output_tokens = generator.chat_completion_raw(
dialog,
temperature=0.0,
top_p=0.95,
max_gen_len=self.max_gen_len,
batch = [dialog]
method = (
generator.completion if isinstance(dialog, TextCompletionContent) else generator.chat_completion
)
input_tokens = []
output_tokens = []
for token_results in method(batch, echo=True, temperature=0.1, top_p=0.95):
result = token_results[0]
if result.source == "input":
input_tokens.append(result.token)
else:
output_tokens.append(result.token)
if result.finished:
break
text += "##### Input Prompt Format\n"
# FIXME: This is added to undo the hack in chat_formatter where
@ -124,27 +124,27 @@ class Llama4UseCase(UseCase):
text = ""
tokenizer = Tokenizer.get_instance()
temperature = 0.0
for dialog in self.dialogs:
if isinstance(dialog, str):
text += dialog
text += "\n\n"
continue
elif isinstance(dialog, TextCompletionContent):
# TODO pass the raw input and do the encoding in the text completion function
input_tokens = tokenizer.encode(dialog.content, bos=True, eos=False)
llm_input = LLMInput(tokens=input_tokens)
output_tokens, decoded_tokens, token_logprobs = generator.text_completion_raw(
llm_input, temperature=temperature, max_gen_len=self.max_gen_len
)
else:
input_tokens, output_tokens = generator.chat_completion_raw(
dialog,
temperature=temperature,
max_gen_len=self.max_gen_len,
batch = [dialog]
method = (
generator.completion if isinstance(dialog, TextCompletionContent) else generator.chat_completion
)
input_tokens = []
output_tokens = []
for token_results in method(batch, echo=True, temperature=0.0):
result = token_results[0]
if result.source == "input":
input_tokens.append(result.token)
else:
output_tokens.append(result.token)
if result.finished:
break
text += "##### Input Prompt Format\n"
text += _code_block(tokenizer.decode(input_tokens))

View file

@ -5,13 +5,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
# Run this script:
# torchrun --nproc_per_node=8 scripts/generate_prompt_format.py meta-llama/Llama-4-17B-Omni-Instruct-BF16-16E ~/.llama/checkpoints/Llama-4-17B-Omni-Instruct-BF16-16E/ llama_stack.models.llama.llama4.prompts llama_stack/models/llama/llama4/prompt_format.md
@ -22,16 +15,9 @@ from pathlib import Path
import fire
from llama_stack.models.llama.llama3.generation import Llama3
from llama_stack.models.llama.llama4.generation import Llama4
from llama_stack.models.llama.sku_list import resolve_model
from llama_stack.providers.inline.inference.meta_reference.config import (
MetaReferenceInferenceConfig,
)
from llama_stack.providers.inline.inference.meta_reference.llama3.generation import (
Llama3,
)
from llama_stack.providers.inline.inference.meta_reference.llama4.generation import (
Llama4,
)
THIS_DIR = Path(__file__).parent.resolve()
@ -50,24 +36,12 @@ def run_main(
if not llama_model:
raise ValueError(f"Model {model_id} not found")
if not llama4:
config = MetaReferenceInferenceConfig(
model=model_id,
max_seq_len=4096,
max_batch_size=1,
checkpoint_dir=checkpoint_dir,
)
generator = Llama3.build(
config=config,
model_id=model_id,
llama_model=llama_model,
)
else:
generator = Llama4.build(
ckpt_dir=checkpoint_dir,
max_seq_len=4096,
max_batch_size=1,
)
cls = Llama4 if llama4 else Llama3
generator = cls.build(
ckpt_dir=checkpoint_dir,
max_seq_len=4096,
max_batch_size=1,
)
use_cases = module.usecases()
text = ""