mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 09:21:45 +00:00
update generate prompt format
This commit is contained in:
parent
76004eacb4
commit
35aac86997
2 changed files with 36 additions and 62 deletions
|
@ -35,7 +35,6 @@ from .llama3.template_data import (
|
|||
system_message_builtin_tools_only,
|
||||
system_message_custom_tools_only,
|
||||
)
|
||||
from .llama4.datatypes import LLMInput
|
||||
|
||||
|
||||
class TextCompletionContent(BaseModel):
|
||||
|
@ -74,21 +73,22 @@ class UseCase(BaseModel):
|
|||
text += dialog
|
||||
text += "\n\n"
|
||||
continue
|
||||
|
||||
elif isinstance(dialog, TextCompletionContent):
|
||||
input_tokens, output_tokens = generator.text_completion_raw(
|
||||
dialog.content,
|
||||
temperature=0.1,
|
||||
top_p=0.95,
|
||||
max_gen_len=64,
|
||||
)
|
||||
else:
|
||||
input_tokens, output_tokens = generator.chat_completion_raw(
|
||||
dialog,
|
||||
temperature=0.0,
|
||||
top_p=0.95,
|
||||
max_gen_len=self.max_gen_len,
|
||||
batch = [dialog]
|
||||
method = (
|
||||
generator.completion if isinstance(dialog, TextCompletionContent) else generator.chat_completion
|
||||
)
|
||||
input_tokens = []
|
||||
output_tokens = []
|
||||
for token_results in method(batch, echo=True, temperature=0.1, top_p=0.95):
|
||||
result = token_results[0]
|
||||
if result.source == "input":
|
||||
input_tokens.append(result.token)
|
||||
else:
|
||||
output_tokens.append(result.token)
|
||||
|
||||
if result.finished:
|
||||
break
|
||||
text += "##### Input Prompt Format\n"
|
||||
|
||||
# FIXME: This is added to undo the hack in chat_formatter where
|
||||
|
@ -124,27 +124,27 @@ class Llama4UseCase(UseCase):
|
|||
|
||||
text = ""
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
temperature = 0.0
|
||||
for dialog in self.dialogs:
|
||||
if isinstance(dialog, str):
|
||||
text += dialog
|
||||
text += "\n\n"
|
||||
continue
|
||||
|
||||
elif isinstance(dialog, TextCompletionContent):
|
||||
# TODO pass the raw input and do the encoding in the text completion function
|
||||
input_tokens = tokenizer.encode(dialog.content, bos=True, eos=False)
|
||||
llm_input = LLMInput(tokens=input_tokens)
|
||||
output_tokens, decoded_tokens, token_logprobs = generator.text_completion_raw(
|
||||
llm_input, temperature=temperature, max_gen_len=self.max_gen_len
|
||||
)
|
||||
|
||||
else:
|
||||
input_tokens, output_tokens = generator.chat_completion_raw(
|
||||
dialog,
|
||||
temperature=temperature,
|
||||
max_gen_len=self.max_gen_len,
|
||||
batch = [dialog]
|
||||
method = (
|
||||
generator.completion if isinstance(dialog, TextCompletionContent) else generator.chat_completion
|
||||
)
|
||||
input_tokens = []
|
||||
output_tokens = []
|
||||
for token_results in method(batch, echo=True, temperature=0.0):
|
||||
result = token_results[0]
|
||||
if result.source == "input":
|
||||
input_tokens.append(result.token)
|
||||
else:
|
||||
output_tokens.append(result.token)
|
||||
|
||||
if result.finished:
|
||||
break
|
||||
|
||||
text += "##### Input Prompt Format\n"
|
||||
text += _code_block(tokenizer.decode(input_tokens))
|
||||
|
|
|
@ -5,13 +5,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# top-level folder for each specific model found within the models/ directory at
|
||||
# the top-level of this source tree.
|
||||
|
||||
# Run this script:
|
||||
# torchrun --nproc_per_node=8 scripts/generate_prompt_format.py meta-llama/Llama-4-17B-Omni-Instruct-BF16-16E ~/.llama/checkpoints/Llama-4-17B-Omni-Instruct-BF16-16E/ llama_stack.models.llama.llama4.prompts llama_stack/models/llama/llama4/prompt_format.md
|
||||
|
||||
|
@ -22,16 +15,9 @@ from pathlib import Path
|
|||
|
||||
import fire
|
||||
|
||||
from llama_stack.models.llama.llama3.generation import Llama3
|
||||
from llama_stack.models.llama.llama4.generation import Llama4
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
from llama_stack.providers.inline.inference.meta_reference.config import (
|
||||
MetaReferenceInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.inference.meta_reference.llama3.generation import (
|
||||
Llama3,
|
||||
)
|
||||
from llama_stack.providers.inline.inference.meta_reference.llama4.generation import (
|
||||
Llama4,
|
||||
)
|
||||
|
||||
THIS_DIR = Path(__file__).parent.resolve()
|
||||
|
||||
|
@ -50,24 +36,12 @@ def run_main(
|
|||
if not llama_model:
|
||||
raise ValueError(f"Model {model_id} not found")
|
||||
|
||||
if not llama4:
|
||||
config = MetaReferenceInferenceConfig(
|
||||
model=model_id,
|
||||
max_seq_len=4096,
|
||||
max_batch_size=1,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
)
|
||||
generator = Llama3.build(
|
||||
config=config,
|
||||
model_id=model_id,
|
||||
llama_model=llama_model,
|
||||
)
|
||||
else:
|
||||
generator = Llama4.build(
|
||||
ckpt_dir=checkpoint_dir,
|
||||
max_seq_len=4096,
|
||||
max_batch_size=1,
|
||||
)
|
||||
cls = Llama4 if llama4 else Llama3
|
||||
generator = cls.build(
|
||||
ckpt_dir=checkpoint_dir,
|
||||
max_seq_len=4096,
|
||||
max_batch_size=1,
|
||||
)
|
||||
|
||||
use_cases = module.usecases()
|
||||
text = ""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue