From 35c2817d0ae94ab8eda837a1f1b4eef0f9a6ae60 Mon Sep 17 00:00:00 2001 From: Ibrahim Haroon <99413953+Ibrahim-Haroon@users.noreply.github.com> Date: Thu, 12 Jun 2025 11:23:59 -0400 Subject: [PATCH] fix(weaviate): handle case where distance is 0 by setting score to infinity (#2415) # What does this PR do? Fixes provider weaviate `query_vector` function for when the distance between the query embedding and an embedding within the vector db is 0 (identical vectors). Catches `ZeroDivisionError` and then sets `score` to infinity, which represent maximum similarity. Closes [#2381] ## Test Plan Checkout this PR Execute this code and there will no longer be a `ZeroDivisionError` exception ``` from llama_stack_client import LlamaStackClient base_url = "http://localhost:8321" client = LlamaStackClient(base_url=base_url) models = client.models.list() embedding_model = ( em := next(m for m in models if m.model_type == "embedding") ).identifier embedding_dimension = 384 _ = client.vector_dbs.register( vector_db_id="foo_db", embedding_model=embedding_model, embedding_dimension=embedding_dimension, provider_id="weaviate", ) chunk = { "content": "foo", "mime_type": "text/plain", "metadata": { "document_id": "foo-id" } } client.vector_io.insert(vector_db_id="foo_db", chunks=[chunk]) client.vector_io.query(vector_db_id="foo_db", query="foo") ``` --- .../remote/vector_io/weaviate/weaviate.py | 2 +- tests/integration/vector_io/test_vector_io.py | 33 +++++++++++++++++++ 2 files changed, 34 insertions(+), 1 deletion(-) diff --git a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py index e6fe8ccd3..6f2027dad 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py +++ b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py @@ -76,7 +76,7 @@ class WeaviateIndex(EmbeddingIndex): continue chunks.append(chunk) - scores.append(1.0 / doc.metadata.distance) + scores.append(1.0 / doc.metadata.distance if doc.metadata.distance != 0 else float("inf")) return QueryChunksResponse(chunks=chunks, scores=scores) diff --git a/tests/integration/vector_io/test_vector_io.py b/tests/integration/vector_io/test_vector_io.py index f1cac9701..f550cf666 100644 --- a/tests/integration/vector_io/test_vector_io.py +++ b/tests/integration/vector_io/test_vector_io.py @@ -154,3 +154,36 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e assert len(response.chunks) > 0 assert response.chunks[0].metadata["document_id"] == "doc1" assert response.chunks[0].metadata["source"] == "precomputed" + + +def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(client_with_empty_registry, embedding_model_id): + vector_db_id = "test_precomputed_embeddings_db" + client_with_empty_registry.vector_dbs.register( + vector_db_id=vector_db_id, + embedding_model=embedding_model_id, + embedding_dimension=384, + ) + + chunks_with_embeddings = [ + Chunk( + content="duplicate", + metadata={"document_id": "doc1", "source": "precomputed"}, + embedding=[0.1] * 384, + ), + ] + + client_with_empty_registry.vector_io.insert( + vector_db_id=vector_db_id, + chunks=chunks_with_embeddings, + ) + + response = client_with_empty_registry.vector_io.query( + vector_db_id=vector_db_id, + query="duplicate", + ) + + # Verify the top result is the expected document + assert response is not None + assert len(response.chunks) > 0 + assert response.chunks[0].metadata["document_id"] == "doc1" + assert response.chunks[0].metadata["source"] == "precomputed"