Merge branch 'main' into snowflake-llama-stack

This commit is contained in:
Alejandro Herrera 2025-01-24 09:37:57 -05:00 committed by GitHub
commit 35cbed4b6a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
737 changed files with 68180 additions and 21520 deletions

2
.github/CODEOWNERS vendored
View file

@ -2,4 +2,4 @@
# These owners will be the default owners for everything in
# the repo. Unless a later match takes precedence,
* @ashwinb @yanxi0830 @hardikjshah @dltn @raghotham
* @ashwinb @yanxi0830 @hardikjshah @dltn @raghotham @dineshyv @vladimirivic @sixianyi0721

View file

@ -1,31 +1,28 @@
name: 🚀 Feature request
description: Submit a proposal/request for a new llama-stack feature
description: Request a new llama-stack feature
body:
- type: textarea
id: feature-pitch
attributes:
label: 🚀 The feature, motivation and pitch
label: 🚀 Describe the new functionality needed
description: >
A clear and concise description of the feature proposal. Please outline the motivation for the proposal. Is your feature request related to a specific problem? e.g., *"I'm working on X and would like Y to be possible"*. If this is related to another GitHub issue, please link here too.
A clear and concise description of _what_ needs to be built.
validations:
required: true
- type: textarea
id: alternatives
id: feature-motivation
attributes:
label: Alternatives
label: 💡 Why is this needed? What if we don't build it?
description: >
A description of any alternative solutions or features you've considered, if any.
A clear and concise description of _why_ this functionality is needed.
validations:
required: true
- type: textarea
id: additional-context
id: other-thoughts
attributes:
label: Additional context
label: Other thoughts
description: >
Add any other context or screenshots about the feature request.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
Any thoughts about how this may result in complexity in the codebase, or other trade-offs.

View file

@ -1,17 +1,15 @@
# What does this PR do?
Closes # (issue)
In short, provide a summary of what this PR does and why. Usually, the relevant context should be present in a linked issue.
## Feature/Issue validation/testing/test plan
- [ ] Addresses issue (#issue)
Please describe the tests that you ran to verify your changes and relevant result summary. Provide instructions so it can be reproduced.
Please also list any relevant details for your test configuration or test plan.
- [ ] Test A
Logs for Test A
## Test Plan
- [ ] Test B
Logs for Test B
Please describe:
- tests you ran to verify your changes with result summaries.
- provide instructions so it can be reproduced.
## Sources
@ -20,12 +18,10 @@ Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
- [ ] Did you write any new necessary tests?
Thanks for contributing 🎉!
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

View file

@ -0,0 +1,355 @@
name: "Run Llama-stack Tests"
on:
#### Temporarily disable PR runs until tests run as intended within mainline.
#TODO Add this back.
#pull_request_target:
# types: ["opened"]
# branches:
# - 'main'
# paths:
# - 'llama_stack/**/*.py'
# - 'tests/**/*.py'
workflow_dispatch:
inputs:
runner:
description: 'GHA Runner Scale Set label to run workflow on.'
required: true
default: "llama-stack-gha-runner-gpu"
checkout_reference:
description: "The branch, tag, or SHA to checkout"
required: true
default: "main"
debug:
description: 'Run debugging steps?'
required: false
default: "true"
sleep_time:
description: '[DEBUG] sleep time for debugging'
required: true
default: "0"
provider_id:
description: 'ID of your provider'
required: true
default: "meta_reference"
model_id:
description: 'Shorthand name for target model ID (llama_3b or llama_8b)'
required: true
default: "llama_3b"
model_override_3b:
description: 'Specify shorthand model for <llama_3b> '
required: false
default: "Llama3.2-3B-Instruct"
model_override_8b:
description: 'Specify shorthand model for <llama_8b> '
required: false
default: "Llama3.1-8B-Instruct"
env:
# ID used for each test's provider config
PROVIDER_ID: "${{ inputs.provider_id || 'meta_reference' }}"
# Path to model checkpoints within EFS volume
MODEL_CHECKPOINT_DIR: "/data/llama"
# Path to directory to run tests from
TESTS_PATH: "${{ github.workspace }}/llama_stack/providers/tests"
# Keep track of a list of model IDs that are valid to use within pytest fixture marks
AVAILABLE_MODEL_IDs: "llama_3b llama_8b"
# Shorthand name for model ID, used in pytest fixture marks
MODEL_ID: "${{ inputs.model_id || 'llama_3b' }}"
# Override the `llama_3b` / `llama_8b' models, else use the default.
LLAMA_3B_OVERRIDE: "${{ inputs.model_override_3b || 'Llama3.2-3B-Instruct' }}"
LLAMA_8B_OVERRIDE: "${{ inputs.model_override_8b || 'Llama3.1-8B-Instruct' }}"
# Defines which directories in TESTS_PATH to exclude from the test loop
EXCLUDED_DIRS: "__pycache__"
# Defines the output xml reports generated after a test is run
REPORTS_GEN: ""
jobs:
execute_workflow:
name: Execute workload on Self-Hosted GPU k8s runner
permissions:
pull-requests: write
defaults:
run:
shell: bash
runs-on: ${{ inputs.runner != '' && inputs.runner || 'llama-stack-gha-runner-gpu' }}
if: always()
steps:
##############################
#### INITIAL DEBUG CHECKS ####
##############################
- name: "[DEBUG] Check content of the EFS mount"
id: debug_efs_volume
continue-on-error: true
if: inputs.debug == 'true'
run: |
echo "========= Content of the EFS mount ============="
ls -la ${{ env.MODEL_CHECKPOINT_DIR }}
- name: "[DEBUG] Get runner container OS information"
id: debug_os_info
if: ${{ inputs.debug == 'true' }}
run: |
cat /etc/os-release
- name: "[DEBUG] Print environment variables"
id: debug_env_vars
if: ${{ inputs.debug == 'true' }}
run: |
echo "PROVIDER_ID = ${PROVIDER_ID}"
echo "MODEL_CHECKPOINT_DIR = ${MODEL_CHECKPOINT_DIR}"
echo "AVAILABLE_MODEL_IDs = ${AVAILABLE_MODEL_IDs}"
echo "MODEL_ID = ${MODEL_ID}"
echo "LLAMA_3B_OVERRIDE = ${LLAMA_3B_OVERRIDE}"
echo "LLAMA_8B_OVERRIDE = ${LLAMA_8B_OVERRIDE}"
echo "EXCLUDED_DIRS = ${EXCLUDED_DIRS}"
echo "REPORTS_GEN = ${REPORTS_GEN}"
############################
#### MODEL INPUT CHECKS ####
############################
- name: "Check if env.model_id is valid"
id: check_model_id
run: |
if [[ " ${AVAILABLE_MODEL_IDs[@]} " =~ " ${MODEL_ID} " ]]; then
echo "Model ID '${MODEL_ID}' is valid."
else
echo "Model ID '${MODEL_ID}' is invalid. Terminating workflow."
exit 1
fi
#######################
#### CODE CHECKOUT ####
#######################
- name: "Checkout 'meta-llama/llama-stack' repository"
id: checkout_repo
uses: actions/checkout@v4
with:
ref: ${{ inputs.branch }}
- name: "[DEBUG] Content of the repository after checkout"
id: debug_content_after_checkout
if: ${{ inputs.debug == 'true' }}
run: |
ls -la ${GITHUB_WORKSPACE}
##########################################################
#### OPTIONAL SLEEP DEBUG ####
# #
# Use to "exec" into the test k8s POD and run tests #
# manually to identify what dependencies are being used. #
# #
##########################################################
- name: "[DEBUG] sleep"
id: debug_sleep
if: ${{ inputs.debug == 'true' && inputs.sleep_time != '' }}
run: |
sleep ${{ inputs.sleep_time }}
############################
#### UPDATE SYSTEM PATH ####
############################
- name: "Update path: execute"
id: path_update_exec
run: |
# .local/bin is needed for certain libraries installed below to be recognized
# when calling their executable to install sub-dependencies
mkdir -p ${HOME}/.local/bin
echo "${HOME}/.local/bin" >> "$GITHUB_PATH"
#####################################
#### UPDATE CHECKPOINT DIRECTORY ####
#####################################
- name: "Update checkpoint directory"
id: checkpoint_update
run: |
echo "Checkpoint directory: ${MODEL_CHECKPOINT_DIR}/$LLAMA_3B_OVERRIDE"
if [ "${MODEL_ID}" = "llama_3b" ] && [ -d "${MODEL_CHECKPOINT_DIR}/${LLAMA_3B_OVERRIDE}" ]; then
echo "MODEL_CHECKPOINT_DIR=${MODEL_CHECKPOINT_DIR}/${LLAMA_3B_OVERRIDE}" >> "$GITHUB_ENV"
elif [ "${MODEL_ID}" = "llama_8b" ] && [ -d "${MODEL_CHECKPOINT_DIR}/${LLAMA_8B_OVERRIDE}" ]; then
echo "MODEL_CHECKPOINT_DIR=${MODEL_CHECKPOINT_DIR}/${LLAMA_8B_OVERRIDE}" >> "$GITHUB_ENV"
else
echo "MODEL_ID & LLAMA_*B_OVERRIDE are not a valid pairing. Terminating workflow."
exit 1
fi
- name: "[DEBUG] Checkpoint update check"
id: debug_checkpoint_update
if: ${{ inputs.debug == 'true' }}
run: |
echo "MODEL_CHECKPOINT_DIR (after update) = ${MODEL_CHECKPOINT_DIR}"
##################################
#### DEPENDENCY INSTALLATIONS ####
##################################
- name: "Installing 'apt' required packages"
id: install_apt
run: |
echo "[STEP] Installing 'apt' required packages"
sudo apt update -y
sudo apt install -y python3 python3-pip npm wget
- name: "Installing packages with 'curl'"
id: install_curl
run: |
curl -fsSL https://ollama.com/install.sh | sh
- name: "Installing packages with 'wget'"
id: install_wget
run: |
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh -b install -c pytorch -c nvidia faiss-gpu=1.9.0
# Add miniconda3 bin to system path
echo "${HOME}/miniconda3/bin" >> "$GITHUB_PATH"
- name: "Installing packages with 'npm'"
id: install_npm_generic
run: |
sudo npm install -g junit-merge
- name: "Installing pip dependencies"
id: install_pip_generic
run: |
echo "[STEP] Installing 'llama-stack' models"
pip install -U pip setuptools
pip install -r requirements.txt
pip install -e .
pip install -U \
torch torchvision \
pytest pytest_asyncio \
fairscale lm-format-enforcer \
zmq chardet pypdf \
pandas sentence_transformers together \
aiosqlite
- name: "Installing packages with conda"
id: install_conda_generic
run: |
conda install -q -c pytorch -c nvidia faiss-gpu=1.9.0
#############################################################
#### TESTING TO BE DONE FOR BOTH PRS AND MANUAL DISPATCH ####
#############################################################
- name: "Run Tests: Loop"
id: run_tests_loop
working-directory: "${{ github.workspace }}"
run: |
pattern=""
for dir in llama_stack/providers/tests/*; do
if [ -d "$dir" ]; then
dir_name=$(basename "$dir")
if [[ ! " $EXCLUDED_DIRS " =~ " $dir_name " ]]; then
for file in "$dir"/test_*.py; do
test_name=$(basename "$file")
new_file="result-${dir_name}-${test_name}.xml"
if torchrun $(which pytest) -s -v ${TESTS_PATH}/${dir_name}/${test_name} -m "${PROVIDER_ID} and ${MODEL_ID}" \
--junitxml="${{ github.workspace }}/${new_file}"; then
echo "Ran test: ${test_name}"
else
echo "Did NOT run test: ${test_name}"
fi
pattern+="${new_file} "
done
fi
fi
done
echo "REPORTS_GEN=$pattern" >> "$GITHUB_ENV"
- name: "Test Summary: Merge"
id: test_summary_merge
working-directory: "${{ github.workspace }}"
run: |
echo "Merging the following test result files: ${REPORTS_GEN}"
# Defaults to merging them into 'merged-test-results.xml'
junit-merge ${{ env.REPORTS_GEN }}
############################################
#### AUTOMATIC TESTING ON PULL REQUESTS ####
############################################
#### Run tests ####
- name: "PR - Run Tests"
id: pr_run_tests
working-directory: "${{ github.workspace }}"
if: github.event_name == 'pull_request_target'
run: |
echo "[STEP] Running PyTest tests at 'GITHUB_WORKSPACE' path: ${GITHUB_WORKSPACE} | path: ${{ github.workspace }}"
# (Optional) Add more tests here.
# Merge test results with 'merged-test-results.xml' from above.
# junit-merge <new-test-results> merged-test-results.xml
#### Create test summary ####
- name: "PR - Test Summary"
id: pr_test_summary_create
if: github.event_name == 'pull_request_target'
uses: test-summary/action@v2
with:
paths: "${{ github.workspace }}/merged-test-results.xml"
output: test-summary.md
- name: "PR - Upload Test Summary"
id: pr_test_summary_upload
if: github.event_name == 'pull_request_target'
uses: actions/upload-artifact@v3
with:
name: test-summary
path: test-summary.md
#### Update PR request ####
- name: "PR - Update comment"
id: pr_update_comment
if: github.event_name == 'pull_request_target'
uses: thollander/actions-comment-pull-request@v2
with:
filePath: test-summary.md
########################
#### MANUAL TESTING ####
########################
#### Run tests ####
- name: "Manual - Run Tests: Prep"
id: manual_run_tests
working-directory: "${{ github.workspace }}"
if: github.event_name == 'workflow_dispatch'
run: |
echo "[STEP] Running PyTest tests at 'GITHUB_WORKSPACE' path: ${{ github.workspace }}"
#TODO Use this when collection errors are resolved
# pytest -s -v -m "${PROVIDER_ID} and ${MODEL_ID}" --junitxml="${{ github.workspace }}/merged-test-results.xml"
# (Optional) Add more tests here.
# Merge test results with 'merged-test-results.xml' from above.
# junit-merge <new-test-results> merged-test-results.xml
#### Create test summary ####
- name: "Manual - Test Summary"
id: manual_test_summary
if: always() && github.event_name == 'workflow_dispatch'
uses: test-summary/action@v2
with:
paths: "${{ github.workspace }}/merged-test-results.xml"

138
.github/workflows/publish-to-docker.yml vendored Normal file
View file

@ -0,0 +1,138 @@
name: Docker Build and Publish
on:
workflow_dispatch:
inputs:
version:
description: 'TestPyPI or PyPI version to build (e.g., 0.0.63.dev20250114)'
required: true
type: string
jobs:
build-and-push:
runs-on: ubuntu-latest
env:
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
TAVILY_SEARCH_API_KEY: ${{ secrets.TAVILY_SEARCH_API_KEY }}
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Set version
id: version
run: |
if [ "${{ github.event_name }}" = "push" ]; then
echo "VERSION=0.0.63.dev51206766" >> $GITHUB_OUTPUT
else
echo "VERSION=${{ inputs.version }}" >> $GITHUB_OUTPUT
fi
- name: Check package version availability
run: |
# Function to check if version exists in a repository
check_version() {
local repo=$1
local status_code=$(curl -s -o /dev/null -w "%{http_code}" "https://$repo.org/project/llama-stack/${{ steps.version.outputs.version }}")
return $([ "$status_code" -eq 200 ])
}
# Check TestPyPI first, then PyPI
if check_version "test.pypi"; then
echo "Version ${{ steps.version.outputs.version }} found in TestPyPI"
echo "PYPI_SOURCE=testpypi" >> $GITHUB_ENV
elif check_version "pypi"; then
echo "Version ${{ steps.version.outputs.version }} found in PyPI"
echo "PYPI_SOURCE=pypi" >> $GITHUB_ENV
else
echo "Error: Version ${{ steps.version.outputs.version }} not found in either TestPyPI or PyPI"
exit 1
fi
- name: Install llama-stack
run: |
if [ "${{ github.event_name }}" = "push" ]; then
pip install -e .
else
if [ "$PYPI_SOURCE" = "testpypi" ]; then
pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple llama-stack==${{ steps.version.outputs.version }}
else
pip install llama-stack==${{ steps.version.outputs.version }}
fi
fi
- name: Build docker image
run: |
TEMPLATES=("ollama" "bedrock" "remote-vllm" "fireworks" "together" "tgi" "meta-reference-gpu")
for template in "${TEMPLATES[@]}"; do
if [ "$PYPI_SOURCE" = "testpypi" ]; then
TEST_PYPI_VERSION=${{ steps.version.outputs.version }} llama stack build --template $template --image-type container
else
PYPI_VERSION=${{ steps.version.outputs.version }} llama stack build --template $template --image-type container
fi
done
- name: List docker images
run: |
docker images
# TODO (xiyan): make the following 2 steps into a matrix and test all templates other than fireworks
- name: Start up built docker image
run: |
cd distributions/fireworks
if [ "$PYPI_SOURCE" = "testpypi" ]; then
sed -i 's|image: llamastack/distribution-fireworks|image: distribution-fireworks:test-${{ steps.version.outputs.version }}|' ./compose.yaml
else
sed -i 's|image: llamastack/distribution-fireworks|image: distribution-fireworks:${{ steps.version.outputs.version }}|' ./compose.yaml
fi
docker compose up -d
cd ..
# Wait for the container to start
timeout=300
while ! curl -s -f http://localhost:8321/v1/version > /dev/null && [ $timeout -gt 0 ]; do
echo "Waiting for endpoint to be available..."
sleep 5
timeout=$((timeout - 5))
done
if [ $timeout -le 0 ]; then
echo "Timeout waiting for endpoint to become available"
exit 1
fi
- name: Run simple models list test on docker server
run: |
curl http://localhost:8321/v1/models
# TODO (xiyan): figure out why client cannot find server but curl works
# - name: Run pytest on docker server
# run: |
# pip install pytest pytest-md-report
# export LLAMA_STACK_BASE_URL="http://localhost:8321"
# LLAMA_STACK_BASE_URL="http://localhost:8321" pytest -v tests/client-sdk/inference/test_inference.py --md-report --md-report-verbose=1
- name: Push to dockerhub
run: |
TEMPLATES=("ollama" "bedrock" "remote-vllm" "fireworks" "together" "tgi" "meta-reference-gpu")
for template in "${TEMPLATES[@]}"; do
if [ "$PYPI_SOURCE" = "testpypi" ]; then
docker tag distribution-$template:test-${{ steps.version.outputs.version }} llamastack/distribution-$template:test-${{ steps.version.outputs.version }}
docker push llamastack/distribution-$template:test-${{ steps.version.outputs.version }}
else
docker tag distribution-$template:${{ steps.version.outputs.version }} llamastack/distribution-$template:${{ steps.version.outputs.version }}
docker push llamastack/distribution-$template:${{ steps.version.outputs.version }}
fi
done

View file

@ -0,0 +1,244 @@
name: Publish Python 🐍 distribution 📦 to TestPyPI
on:
workflow_dispatch: # Keep manual trigger
inputs:
version:
description: 'Version number (e.g. 0.0.63.dev20250111)'
required: true
type: string
schedule:
- cron: "0 0 * * *" # Run every day at midnight
jobs:
trigger-client-and-models-build:
name: Trigger llama-stack-client and llama-models build
runs-on: ubuntu-latest
outputs:
version: ${{ steps.version.outputs.version }}
client_run_id: ${{ steps.trigger-client.outputs.workflow_id }}
model_run_id: ${{ steps.trigger-models.outputs.workflow_id }}
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Get date
id: date
run: echo "date=$(date +'%Y%m%d')" >> $GITHUB_OUTPUT
- name: Compute version based on dispatch event
id: version
run: |
# Read base version from pyproject.toml
version=$(sed -n 's/.*version="\([^"]*\)".*/\1/p' setup.py)
if [ "${{ github.event_name }}" = "schedule" ]; then
echo "version=${version}.dev${{ steps.date.outputs.date }}" >> $GITHUB_OUTPUT
elif [ "${{ github.event_name }}" = "workflow_dispatch" ]; then
echo "version=${{ inputs.version }}" >> $GITHUB_OUTPUT
else
echo "version=${version}.dev$(shuf -i 10000000-99999999 -n 1)" >> $GITHUB_OUTPUT
fi
- name: Trigger llama-stack-client workflow
id: trigger-client
run: |
response=$(curl -X POST https://api.github.com/repos/meta-llama/llama-stack-client-python/dispatches \
-H 'Accept: application/vnd.github.everest-preview+json' \
-H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
--data "{\"event_type\": \"build-client-package\", \"client_payload\": {\"source\": \"llama-stack-nightly\", \"version\": \"${{ steps.version.outputs.version }}\"}}" \
-w "\n%{http_code}")
http_code=$(echo "$response" | tail -n1)
if [ "$http_code" != "204" ]; then
echo "Failed to trigger client workflow"
exit 1
fi
# Get the run ID of the triggered workflow
sleep 5 # Wait for workflow to be created
run_id=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
"https://api.github.com/repos/meta-llama/llama-stack-client-python/actions/runs?event=repository_dispatch" \
| jq '.workflow_runs[0].id')
echo "workflow_id=$run_id" >> $GITHUB_OUTPUT
- name: Trigger llama-models workflow
id: trigger-models
run: |
response=$(curl -X POST https://api.github.com/repos/meta-llama/llama-models/dispatches \
-H 'Accept: application/vnd.github.everest-preview+json' \
-H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
--data "{\"event_type\": \"build-models-package\", \"client_payload\": {\"source\": \"llama-stack-nightly\", \"version\": \"${{ steps.version.outputs.version }}\"}}" \
-w "\n%{http_code}")
http_code=$(echo "$response" | tail -n1)
if [ "$http_code" != "204" ]; then
echo "Failed to trigger models workflow"
exit 1
fi
# Get the run ID of the triggered workflow
sleep 5 # Wait for workflow to be created
run_id=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
"https://api.github.com/repos/meta-llama/llama-models/actions/runs?event=repository_dispatch" \
| jq '.workflow_runs[0].id')
echo "workflow_id=$run_id" >> $GITHUB_OUTPUT
wait-for-workflows:
name: Wait for triggered workflows
needs: trigger-client-and-models-build
runs-on: ubuntu-latest
steps:
- name: Wait for client workflow
run: |
while true; do
status=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
"https://api.github.com/repos/meta-llama/llama-stack-client-python/actions/runs/${{ needs.trigger-client-and-models-build.outputs.client_run_id }}" \
| jq -r '.status')
conclusion=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
"https://api.github.com/repos/meta-llama/llama-stack-client-python/actions/runs/${{ needs.trigger-client-and-models-build.outputs.client_run_id }}" \
| jq -r '.conclusion')
echo "llama-stack-client-python workflow status: $status, conclusion: $conclusion"
if [ "$status" = "completed" ]; then
if [ "$conclusion" != "success" ]; then
echo "llama-stack-client-python workflow failed"
exit 1
fi
break
fi
sleep 10
done
- name: Wait for models workflow
run: |
while true; do
status=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
"https://api.github.com/repos/meta-llama/llama-models/actions/runs/${{ needs.trigger-client-and-models-build.outputs.model_run_id }}" \
| jq -r '.status')
conclusion=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \
"https://api.github.com/repos/meta-llama/llama-models/actions/runs/${{ needs.trigger-client-and-models-build.outputs.model_run_id }}" \
| jq -r '.conclusion')
echo "llama-models workflow status: $status, conclusion: $conclusion"
if [ "$status" = "completed" ]; then
if [ "$conclusion" != "success" ]; then
echo "llama-models workflow failed"
exit 1
fi
break
fi
sleep 10
done
build:
name: Build distribution 📦
needs:
- wait-for-workflows
- trigger-client-and-models-build
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Get date
id: date
run: echo "date=$(date +'%Y%m%d')" >> $GITHUB_OUTPUT
- name: Update version for nightly
run: |
sed -i 's/version="\([^"]*\)"/version="${{ needs.trigger-client-and-models-build.outputs.version }}"/' setup.py
sed -i 's/llama-stack-client>=\([^"]*\)/llama-stack-client==${{ needs.trigger-client-and-models-build.outputs.version }}/' requirements.txt
sed -i 's/llama-models>=\([^"]*\)/llama-models==${{ needs.trigger-client-and-models-build.outputs.version }}/' requirements.txt
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install pypa/build
run: >-
python3 -m
pip install
build
--user
- name: Build a binary wheel and a source tarball
run: python3 -m build
- name: Store the distribution packages
uses: actions/upload-artifact@v4
with:
name: python-package-distributions
path: dist/
publish-to-testpypi:
name: Publish Python 🐍 distribution 📦 to TestPyPI
needs:
- build
runs-on: ubuntu-latest
environment:
name: testrelease
url: https://test.pypi.org/p/llama-stack
permissions:
id-token: write # IMPORTANT: mandatory for trusted publishing
steps:
- name: Download all the dists
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Publish distribution 📦 to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
test-published-package:
name: Test published package
needs:
- publish-to-testpypi
- trigger-client-and-models-build
runs-on: ubuntu-latest
env:
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
TAVILY_SEARCH_API_KEY: ${{ secrets.TAVILY_SEARCH_API_KEY }}
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Install the package
run: |
max_attempts=6
attempt=1
while [ $attempt -le $max_attempts ]; do
echo "Attempt $attempt of $max_attempts to install package..."
if pip install --no-cache --index-url https://pypi.org/simple/ --extra-index-url https://test.pypi.org/simple/ llama-stack==${{ needs.trigger-client-and-models-build.outputs.version }}; then
echo "Package installed successfully"
break
fi
if [ $attempt -ge $max_attempts ]; then
echo "Failed to install package after $max_attempts attempts"
exit 1
fi
attempt=$((attempt + 1))
sleep 10
done
- name: Test the package versions
run: |
pip list | grep llama_
- name: Test CLI commands
run: |
llama model list
llama stack build --list-templates
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama stack list-apis
llama stack list-providers inference
llama stack list-providers telemetry
- name: Test Notebook
run: |
pip install pytest nbval
llama stack build --template together --image-type venv
pytest -v -s --nbval-lax ./docs/getting_started.ipynb
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
# TODO: add trigger for integration test workflow & docker builds

4
.gitignore vendored
View file

@ -15,5 +15,7 @@ Package.resolved
*.ipynb_checkpoints*
.idea
.venv/
.idea
.vscode
_build
docs/src
pyrightconfig.json

2
.gitmodules vendored
View file

@ -1,3 +1,3 @@
[submodule "llama_stack/providers/impls/ios/inference/executorch"]
path = llama_stack/providers/impls/ios/inference/executorch
path = llama_stack/providers/inline/ios/inference/executorch
url = https://github.com/pytorch/executorch

View file

@ -57,3 +57,17 @@ repos:
# hooks:
# - id: markdown-link-check
# args: ['--quiet']
# - repo: local
# hooks:
# - id: distro-codegen
# name: Distribution Template Codegen
# additional_dependencies:
# - rich
# - pydantic
# entry: python -m llama_stack.scripts.distro_codegen
# language: python
# pass_filenames: false
# require_serial: true
# files: ^llama_stack/templates/.*$
# stages: [manual]

35
CHANGELOG.md Normal file
View file

@ -0,0 +1,35 @@
# Changelog
## 0.0.53
### Added
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
- Persistence for registered objects with distribution
- Ability to persist memory banks created for FAISS
- PostgreSQL KVStore implementation
- Environment variable placeholder support in run.yaml files
- Comprehensive Zero-to-Hero notebooks and quickstart guides
- Support for quantized models in Ollama
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
- Bedrock distribution with safety shields support
- Evals API with task registration and scoring functions
- MMLU and SimpleQA benchmark scoring functions
- Huggingface dataset provider integration for benchmarks
- Support for custom dataset registration from local paths
- Benchmark evaluation CLI tools with visualization tables
- RAG evaluation scoring functions and metrics
- Local persistence for datasets and eval tasks
### Changed
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
- Changed provider naming convention (`impls``inline`, `adapters``remote`)
- Updated API signatures for dataset and eval task registration
- Restructured folder organization for providers
- Enhanced Docker build configuration
- Added version prefixing for REST API routes
- Enhanced evaluation task registration workflow
- Improved benchmark evaluation output formatting
- Restructured evals folder organization for better modularity
### Removed
- `llama stack configure` command

View file

@ -26,13 +26,62 @@ Meta has a [bounty program](http://facebook.com/whitehat/info) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
## Pre-commit Hooks
We use [pre-commit](https://pre-commit.com/) to run linting and formatting checks on your code. You can install the pre-commit hooks by running:
```bash
$ cd llama-stack
$ conda activate <your-environment>
$ pip install pre-commit
$ pre-commit install
```
After that, pre-commit hooks will run automatically before each commit.
## Coding Style
* 2 spaces for indentation rather than tabs
* 80 character line length
* ...
## Tips
* If you are developing with a llama-stack repository checked out and need your distribution to reflect changes from there, set `LLAMA_STACK_DIR` to that dir when running any of the `llama` CLI commands.
## Common Tasks
Some tips about common tasks you work on while contributing to Llama Stack:
### Using `llama stack build`
Building a stack image (conda / docker) will use the production version of the `llama-stack`, `llama-models` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_MODELS_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
Example:
```bash
$ cd work/
$ git clone https://github.com/meta-llama/llama-stack.git
$ git clone https://github.com/meta-llama/llama-models.git
$ cd llama-stack
$ LLAMA_STACK_DIR=$(pwd) LLAMA_MODELS_DIR=../llama-models llama stack build --template <...>
```
### Updating Provider Configurations
If you have made changes to a provider's configuration in any form (introducing a new config key, or changing models, etc.), you should run `python llama_stack/scripts/distro_codegen.py` to re-generate various YAML files as well as the documentation. You should not change `docs/source/.../distributions/` files manually as they are auto-generated.
### Building the Documentation
If you are making changes to the documentation at [https://llama-stack.readthedocs.io/en/latest/](https://llama-stack.readthedocs.io/en/latest/), you can use the following command to build the documentation and preview your changes. You will need [Sphinx](https://www.sphinx-doc.org/en/master/) and the readthedocs theme.
```bash
cd llama-stack/docs
pip install -r requirements.txt
pip install sphinx-autobuild
# This will start a local server (usually at http://127.0.0.1:8000) that automatically rebuilds and refreshes when you make changes to the documentation.
make html
sphinx-autobuild source build/html
```
## License
By contributing to Llama, you agree that your contributions will be licensed

View file

@ -1,4 +1,5 @@
include requirements.txt
include distributions/dependencies.json
include llama_stack/distribution/*.sh
include llama_stack/cli/scripts/*.sh
include llama_stack/templates/*/build.yaml
include llama_stack/templates/*/*.yaml

127
README.md
View file

@ -1,73 +1,71 @@
<img src="https://github.com/user-attachments/assets/2fedfe0f-6df7-4441-98b2-87a1fd95ee1c" width="300" title="Llama Stack Logo" alt="Llama Stack Logo"/>
# Llama Stack
[![PyPI version](https://img.shields.io/pypi/v/llama_stack.svg)](https://pypi.org/project/llama_stack/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-stack)](https://pypi.org/project/llama-stack/)
[![Discord](https://img.shields.io/discord/1257833999603335178)](https://discord.gg/llama-stack)
This repository contains the Llama Stack API specifications as well as API Providers and Llama Stack Distributions.
[**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Colab Notebook**](./docs/getting_started.ipynb)
The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to building and running AI agents in production. Beyond definition, we are building providers for the Llama Stack APIs. These were developing open-source versions and partnering with providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.
Llama Stack defines and standardizes the core building blocks that simplify AI application development. It codified best practices across the Llama ecosystem. More specifically, it provides
The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.
- **Unified API layer** for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- **Plugin architecture** to support the rich ecosystem of implementations of the different APIs in different environments like local development, on-premises, cloud, and mobile.
- **Prepackaged verified distributions** which offer a one-stop solution for developers to get started quickly and reliably in any environment
- **Multiple developer interfaces** like CLI and SDKs for Python, Node, iOS, and Android
- **Standalone applications** as examples for how to build production-grade AI applications with Llama Stack
<div style="text-align: center;">
<img
src="https://github.com/user-attachments/assets/33d9576d-95ea-468d-95e2-8fa233205a50"
width="480"
title="Llama Stack"
alt="Llama Stack"
/>
</div>
## APIs
### Llama Stack Benefits
- **Flexible Options**: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choice.
- **Consistent Experience**: With its unified APIs Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- **Robust Ecosystem**: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
The Llama Stack consists of the following set of APIs:
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
- Inference
- Safety
- Memory
- Agentic System
- Evaluation
- Post Training
- Synthetic Data Generation
- Reward Scoring
Each of the APIs themselves is a collection of REST endpoints.
## API Providers
A Provider is what makes the API real -- they provide the actual implementation backing the API.
As an example, for Inference, we could have the implementation be backed by open source libraries like `[ torch | vLLM | TensorRT ]` as possible options.
A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.
## Llama Stack Distribution
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
## Supported Llama Stack Implementations
### API Providers
Here is a list of the various API providers and available distributions to developers started easily,
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** |
| :----: | :----: | :----: | :----: | :----: | :----: | :----: |
| Meta Reference | Single Node | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Fireworks | Hosted | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| AWS Bedrock | Hosted | | :heavy_check_mark: | | :heavy_check_mark: | |
| Snowflake | Hosted | | :heavy_check_mark: | | |
| Together | Hosted | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | |
| Ollama | Single Node | | :heavy_check_mark: | | |
| TGI | Hosted and Single Node | | :heavy_check_mark: | | |
| Chroma | Single Node | | | :heavy_check_mark: | | |
| PG Vector | Single Node | | | :heavy_check_mark: | | |
| PyTorch ExecuTorch | On-device iOS | :heavy_check_mark: | :heavy_check_mark: | | |
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|:------------------------------------------------------------------------------------------:|:----------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|
| Meta Reference | Single Node | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Cerebras | Hosted | | :heavy_check_mark: | | | |
| Fireworks | Hosted | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| AWS Bedrock | Hosted | | :heavy_check_mark: | | :heavy_check_mark: | |
| Snowflake | Hosted | | :heavy_check_mark: | | | |
| Together | Hosted | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | |
| Groq | Hosted | | :heavy_check_mark: | | | |
| Ollama | Single Node | | :heavy_check_mark: | | | |
| TGI | Hosted and Single Node | | :heavy_check_mark: | | | |
| NVIDIA NIM | Hosted and Single Node | | :heavy_check_mark: | | | |
| Chroma | Single Node | | | :heavy_check_mark: | | |
| PG Vector | Single Node | | | :heavy_check_mark: | | |
| PyTorch ExecuTorch | On-device iOS | :heavy_check_mark: | :heavy_check_mark: | | | |
| vLLM | Hosted and Single Node | | :heavy_check_mark: | | | |
### Distributions
| **Distribution Provider** | **Docker** | **Inference** | **Memory** | **Safety** | **Telemetry** |
| :----: | :----: | :----: | :----: | :----: | :----: |
| Meta Reference | [Local GPU](https://hub.docker.com/repository/docker/llamastack/llamastack-local-gpu/general), [Local CPU](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Dell-TGI | [Local TGI + Chroma](https://hub.docker.com/repository/docker/llamastack/llamastack-local-tgi-chroma/general) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
| **Distribution** | **Llama Stack Docker** | Start This Distribution |
|:---------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------:|
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/meta-reference-gpu.html) |
| Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/meta-reference-quantized-gpu.html) |
| Cerebras | [llamastack/distribution-cerebras](https://hub.docker.com/repository/docker/llamastack/distribution-cerebras/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/cerebras.html) |
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/ollama.html) |
| TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/tgi.html) |
| Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/together.html) |
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/fireworks.html) |
| vLLM | [llamastack/distribution-remote-vllm](https://hub.docker.com/repository/docker/llamastack/distribution-remote-vllm/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/remote-vllm.html) |
## Installation
### Installation
You have two ways to install this repository:
@ -78,7 +76,8 @@ You have two ways to install this repository:
```
2. **Install from source**:
If you prefer to install from the source code, follow these steps:
If you prefer to install from the source code, make sure you have [conda installed](https://docs.conda.io/projects/conda/en/stable).
Then, follow these steps:
```bash
mkdir -p ~/local
cd ~/local
@ -88,35 +87,31 @@ You have two ways to install this repository:
conda activate stack
cd llama-stack
$CONDA_PREFIX/bin/pip install -e .
pip install -e .
```
## Documentations
### Documentation
The `llama` CLI makes it easy to work with the Llama Stack set of tools. Please find the following docs for details.
Please checkout our [Documentation](https://llama-stack.readthedocs.io/en/latest/index.html) page for more details.
* [CLI reference](docs/cli_reference.md)
* [CLI reference](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/index.html)
* Guide using `llama` CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution.
* [Getting Started](docs/getting_started.md)
* [Getting Started](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html)
* Quick guide to start a Llama Stack server.
* [Jupyter notebook](./docs/getting_started.ipynb) to walk-through how to use simple text and vision inference llama_stack_client APIs
* [Building a Llama Stack Distribution](docs/building_distro.md)
* Guide to build a Llama Stack distribution
* [Distributions](./distributions/)
* References to start Llama Stack distributions backed with different API providers.
* [Developer Cookbook](./docs/developer_cookbook.md)
* References to guides to help you get started based on your developer needs.
* The complete Llama Stack lesson [Colab notebook](https://colab.research.google.com/drive/1dtVmxotBsI4cGZQNsJRYPrLiDeT0Wnwt) of the new [Llama 3.2 course on Deeplearning.ai](https://learn.deeplearning.ai/courses/introducing-multimodal-llama-3-2/lesson/8/llama-stack).
* A [Zero-to-Hero Guide](https://github.com/meta-llama/llama-stack/tree/main/docs/zero_to_hero_guide) that guide you through all the key components of llama stack with code samples.
* [Contributing](CONTRIBUTING.md)
* [Adding a new API Provider](./docs/new_api_provider.md) to walk-through how to add a new API provider.
* [Adding a new API Provider](https://llama-stack.readthedocs.io/en/latest/contributing/new_api_provider.html) to walk-through how to add a new API provider.
## Llama Stack Client SDK
### Llama Stack Client SDKs
| **Language** | **Client SDK** | **Package** |
| :----: | :----: | :----: |
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [![PyPI version](https://img.shields.io/pypi/v/llama_stack_client.svg)](https://pypi.org/project/llama_stack_client/)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [![NPM version](https://img.shields.io/npm/v/llama-stack-client.svg)](https://npmjs.org/package/llama-stack-client)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) |
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.

View file

@ -1,14 +0,0 @@
# Llama Stack Distribution
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
## Quick Start Llama Stack Distributions Guide
| **Distribution** | **Llama Stack Docker** | Start This Distribution | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|:----------------: |:------------------------------------------: |:-----------------------: |:------------------: |:------------------: |:------------------: |:------------------: |:------------------: |
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](./meta-reference-gpu/) | meta-reference | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
| Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](./meta-reference-quantized-gpu/) | meta-reference-quantized | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](./ollama/) | remote::ollama | meta-reference | remote::pgvector; remote::chromadb | remote::ollama | meta-reference |
| TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](./tgi/) | remote::tgi | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
| Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](./together/) | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](./fireworks/) | remote::fireworks | meta-reference | remote::weaviate | meta-reference | meta-reference |

View file

@ -0,0 +1,15 @@
services:
llamastack:
image: distribution-bedrock
volumes:
- ~/.llama:/root/.llama
- ./run.yaml:/root/llamastack-run-bedrock.yaml
ports:
- "8321:8321"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-bedrock.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s

View file

@ -0,0 +1 @@
../../llama_stack/templates/bedrock/run.yaml

View file

@ -0,0 +1 @@
../../llama_stack/templates/cerebras/build.yaml

View file

@ -0,0 +1,16 @@
services:
llamastack:
image: llamastack/distribution-cerebras
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
- ./run.yaml:/root/llamastack-run-cerebras.yaml
ports:
- "8321:8321"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-cerebras.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s

View file

@ -0,0 +1 @@
../../llama_stack/templates/cerebras/run.yaml

View file

@ -1 +0,0 @@
../../llama_stack/templates/databricks/build.yaml

View file

@ -40,7 +40,7 @@ services:
# Link to TGI run.yaml file
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
- "8321:8321"
# Hack: wait for TGI server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
restart_policy:

View file

@ -1,7 +1,6 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
container_image: null
conda_env: local
apis:
- shields
@ -19,22 +18,21 @@ providers:
url: http://127.0.0.1:80
safety:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::llama-guard
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
model: Llama-Guard-3-1B
excluded_categories: []
- provider_id: meta1
provider_type: inline::prompt-guard
config:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::faiss
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
namespace: null
@ -42,5 +40,5 @@ providers:
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::meta-reference
config: {}

View file

@ -0,0 +1,457 @@
{
"hf-serverless": [
"aiohttp",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"together": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"together",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"vllm-gpu": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"vllm",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"remote-vllm": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"fireworks": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"fireworks-ai",
"httpx",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"tgi": [
"aiohttp",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"bedrock": [
"aiosqlite",
"autoevals",
"blobfile",
"boto3",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"meta-reference-gpu": [
"accelerate",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"fairscale",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"lm-format-enforcer",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentence-transformers",
"sentencepiece",
"torch",
"torchvision",
"tqdm",
"transformers",
"uvicorn",
"zmq",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"nvidia": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"meta-reference-quantized-gpu": [
"accelerate",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"fairscale",
"faiss-cpu",
"fastapi",
"fbgemm-gpu",
"fire",
"httpx",
"lm-format-enforcer",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentence-transformers",
"sentencepiece",
"torch",
"torchao==0.5.0",
"torchvision",
"tqdm",
"transformers",
"uvicorn",
"zmq",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"cerebras": [
"aiosqlite",
"autoevals",
"blobfile",
"cerebras_cloud_sdk",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"ollama": [
"aiohttp",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"nltk",
"numpy",
"ollama",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"hf-endpoint": [
"aiohttp",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
]
}

View file

@ -1,79 +0,0 @@
# Fireworks Distribution
The `llamastack/distribution-` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
| **Provider(s)** | remote::fireworks | meta-reference | meta-reference | meta-reference | meta-reference |
### Start the Distribution (Single Node CPU)
> [!NOTE]
> This assumes you have an hosted endpoint at Fireworks with API Key.
```
$ cd distributions/fireworks
$ ls
compose.yaml run.yaml
$ docker compose up
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Fireworks URL server endpoint. E.g.
```
inference:
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inferenc
api_key: <optional api key>
```
### (Alternative) llama stack run (Single Node CPU)
```
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-fireworks --yaml_config /root/my-run.yaml
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Fireworks URL server endpoint. E.g.
```
inference:
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference
api_key: <enter your api key>
```
**Via Conda**
```bash
llama stack build --template fireworks --image-type conda
# -- modify run.yaml to a valid Fireworks server endpoint
llama stack run ./run.yaml
```
### Model Serving
Use `llama-stack-client models list` to chekc the available models served by Fireworks.
```
$ llama-stack-client models list
+------------------------------+------------------------------+---------------+------------+
| identifier | llama_model | provider_id | metadata |
+==============================+==============================+===============+============+
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
| Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
| Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
| Llama3.2-1B-Instruct | Llama3.2-1B-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
| Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
| Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
| Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | fireworks0 | {} |
+------------------------------+------------------------------+---------------+------------+
```

View file

@ -1,13 +1,11 @@
services:
llamastack:
image: llamastack/distribution-fireworks
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
- ./run.yaml:/root/llamastack-run-fireworks.yaml
ports:
- "5000:5000"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-fireworks.yaml"
- "8321:8321"
environment:
- FIREWORKS_API_KEY=${FIREWORKS_API_KEY}
entrypoint: bash -c "python -m llama_stack.distribution.server.server --template fireworks"
deploy:
restart_policy:
condition: on-failure

View file

@ -1,51 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: fireworks0
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference
# api_key: <ENTER_YOUR_API_KEY>
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
config: {}
# Uncomment to use weaviate memory provider
# - provider_id: weaviate0
# provider_type: remote::weaviate
# config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -0,0 +1 @@
../../llama_stack/templates/fireworks/run.yaml

View file

@ -1 +0,0 @@
../../llama_stack/templates/hf-endpoint/build.yaml

View file

@ -1 +0,0 @@
../../llama_stack/templates/hf-serverless/build.yaml

View file

@ -1,102 +0,0 @@
# Meta Reference Distribution
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
| **Provider(s)** | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
### Start the Distribution (Single Node GPU)
```
$ cd distributions/meta-reference-gpu
$ ls
build.yaml compose.yaml README.md run.yaml
$ docker compose up
```
> [!NOTE]
> This assumes you have access to GPU to start a local server with access to your GPU.
> [!NOTE]
> `~/.llama` should be the path containing downloaded weights of Llama models.
This will download and start running a pre-built docker container. Alternatively, you may use the following commands:
```
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
```
### Alternative (Build and start distribution locally via conda)
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on building locally via conda and starting up a meta-reference distribution.
### Start Distribution With pgvector/chromadb Memory Provider
##### pgvector
1. Start running the pgvector server:
```
docker run --network host --name mypostgres -it -p 5432:5432 -e POSTGRES_PASSWORD=mysecretpassword -e POSTGRES_USER=postgres -e POSTGRES_DB=postgres pgvector/pgvector:pg16
```
2. Edit the `run.yaml` file to point to the pgvector server.
```
memory:
- provider_id: pgvector
provider_type: remote::pgvector
config:
host: 127.0.0.1
port: 5432
db: postgres
user: postgres
password: mysecretpassword
```
> [!NOTE]
> If you get a `RuntimeError: Vector extension is not installed.`. You will need to run `CREATE EXTENSION IF NOT EXISTS vector;` to include the vector extension. E.g.
```
docker exec -it mypostgres ./bin/psql -U postgres
postgres=# CREATE EXTENSION IF NOT EXISTS vector;
postgres=# SELECT extname from pg_extension;
extname
```
3. Run `docker compose up` with the updated `run.yaml` file.
##### chromadb
1. Start running chromadb server
```
docker run -it --network host --name chromadb -p 6000:6000 -v ./chroma_vdb:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest
```
2. Edit the `run.yaml` file to point to the chromadb server.
```
memory:
- provider_id: remote::chromadb
provider_type: remote::chromadb
config:
host: localhost
port: 6000
```
3. Run `docker compose up` with the updated `run.yaml` file.
### Serving a new model
You may change the `config.model` in `run.yaml` to update the model currently being served by the distribution. Make sure you have the model checkpoint downloaded in your `~/.llama`.
```
inference:
- provider_id: meta0
provider_type: meta-reference
config:
model: Llama3.2-11B-Vision-Instruct
quantization: null
torch_seed: null
max_seq_len: 4096
max_batch_size: 1
```
Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.

View file

@ -6,7 +6,7 @@ services:
- ~/.llama:/root/.llama
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
- "8321:8321"
devices:
- nvidia.com/gpu=all
environment:
@ -25,11 +25,10 @@ services:
# satisfy all the requested capabilities for a successful
# reservation.
capabilities: [gpu]
runtime: nvidia
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
runtime: nvidia
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"

View file

@ -0,0 +1 @@
../../llama_stack/templates/meta-reference-gpu/run-with-safety.yaml

View file

@ -1,59 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: meta0
provider_type: meta-reference
config:
model: Llama3.1-8B-Instruct
quantization: null
torch_seed: null
max_seq_len: 4096
max_batch_size: 1
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
config: {}
# Uncomment to use pgvector
# - provider_id: pgvector
# provider_type: remote::pgvector
# config:
# host: 127.0.0.1
# port: 5432
# db: postgres
# user: postgres
# password: mysecretpassword
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -0,0 +1 @@
../../llama_stack/templates/meta-reference-gpu/run.yaml

View file

@ -1,34 +0,0 @@
# Meta Reference Quantized Distribution
The `llamastack/distribution-meta-reference-quantized-gpu` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |------------------------ |---------------- |-------------------------------------------------- |---------------- |---------------- |
| **Provider(s)** | meta-reference-quantized | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.
### Start the Distribution (Single Node GPU)
> [!NOTE]
> This assumes you have access to GPU to start a local server with access to your GPU.
> [!NOTE]
> `~/.llama` should be the path containing downloaded weights of Llama models.
To download and start running a pre-built docker container, you may use the following commands:
```
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama \
-v ./run.yaml:/root/my-run.yaml \
--gpus=all \
distribution-meta-reference-quantized-gpu \
--yaml_config /root/my-run.yaml
```
### Alternative (Build and start distribution locally via conda)
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on building locally via conda and starting up the distribution.

View file

@ -6,7 +6,7 @@ services:
- ~/.llama:/root/.llama
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
- "8321:8321"
devices:
- nvidia.com/gpu=all
environment:

View file

@ -1,7 +1,6 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
container_image: null
conda_env: local
apis:
- shields
@ -14,7 +13,7 @@ apis:
providers:
inference:
- provider_id: meta0
provider_type: meta-reference-quantized
provider_type: inline::meta-reference-quantized
config:
model: Llama3.2-3B-Instruct:int4-qlora-eo8
quantization:
@ -22,24 +21,32 @@ providers:
torch_seed: null
max_seq_len: 2048
max_batch_size: 1
- provider_id: meta1
provider_type: inline::meta-reference-quantized
config:
# not a quantized model !
model: Llama-Guard-3-1B
quantization: null
torch_seed: null
max_seq_len: 2048
max_batch_size: 1
safety:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::llama-guard
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
model: Llama-Guard-3-1B
excluded_categories: []
- provider_id: meta1
provider_type: inline::prompt-guard
config:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::meta-reference
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
namespace: null
@ -47,5 +54,5 @@ providers:
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
provider_type: inline::meta-reference
config: {}

View file

@ -1,116 +0,0 @@
# Ollama Distribution
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |---------------- |---------------- |---------------------------------- |---------------- |---------------- |
| **Provider(s)** | remote::ollama | meta-reference | remote::pgvector, remote::chroma | remote::ollama | meta-reference |
### Start a Distribution (Single Node GPU)
> [!NOTE]
> This assumes you have access to GPU to start a Ollama server with access to your GPU.
```
$ cd distributions/ollama/gpu
$ ls
compose.yaml run.yaml
$ docker compose up
```
You will see outputs similar to following ---
```
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
[llamastack] | Resolved 12 providers
[llamastack] | inner-inference => ollama0
[llamastack] | models => __routing_table__
[llamastack] | inference => __autorouted__
```
To kill the server
```
docker compose down
```
### Start the Distribution (Single Node CPU)
> [!NOTE]
> This will start an ollama server with CPU only, please see [Ollama Documentations](https://github.com/ollama/ollama) for serving models on CPU only.
```
$ cd distributions/ollama/cpu
$ ls
compose.yaml run.yaml
$ docker compose up
```
### (Alternative) ollama run + llama stack run
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you may use the following commands.
#### Start Ollama server.
- Please check the [Ollama Documentations](https://github.com/ollama/ollama) for more details.
**Via Docker**
```
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
**Via CLI**
```
ollama run <model_id>
```
#### Start Llama Stack server pointing to Ollama server
**Via Docker**
```
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./gpu/run.yaml:/root/llamastack-run-ollama.yaml --gpus=all llamastack/distribution-ollama --yaml_config /root/llamastack-run-ollama.yaml
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
```
inference:
- provider_id: ollama0
provider_type: remote::ollama
config:
url: http://127.0.0.1:14343
```
**Via Conda**
```
llama stack build --template ollama --image-type conda
llama stack run ./gpu/run.yaml
```
### Model Serving
To serve a new model with `ollama`
```
ollama run <model_name>
```
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
```
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
```
To verify that the model served by ollama is correctly connected to Llama Stack server
```
$ llama-stack-client models list
+----------------------+----------------------+---------------+-----------------------------------------------+
| identifier | llama_model | provider_id | metadata |
+======================+======================+===============+===============================================+
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
+----------------------+----------------------+---------------+-----------------------------------------------+
```

View file

@ -0,0 +1,71 @@
services:
ollama:
image: ollama/ollama:latest
network_mode: ${NETWORK_MODE:-bridge}
volumes:
- ~/.ollama:/root/.ollama
ports:
- "11434:11434"
environment:
OLLAMA_DEBUG: 1
command: []
deploy:
resources:
limits:
memory: 8G # Set maximum memory
reservations:
memory: 8G # Set minimum memory reservation
# healthcheck:
# # ugh, no CURL in ollama image
# test: ["CMD", "curl", "-f", "http://ollama:11434"]
# interval: 10s
# timeout: 5s
# retries: 5
ollama-init:
image: ollama/ollama:latest
depends_on:
- ollama
# condition: service_healthy
network_mode: ${NETWORK_MODE:-bridge}
environment:
- OLLAMA_HOST=ollama
- INFERENCE_MODEL=${INFERENCE_MODEL}
- SAFETY_MODEL=${SAFETY_MODEL:-}
volumes:
- ~/.ollama:/root/.ollama
- ./pull-models.sh:/pull-models.sh
entrypoint: ["/pull-models.sh"]
llamastack:
depends_on:
ollama:
condition: service_started
ollama-init:
condition: service_started
image: ${LLAMA_STACK_IMAGE:-llamastack/distribution-ollama}
network_mode: ${NETWORK_MODE:-bridge}
volumes:
- ~/.llama:/root/.llama
# Link to ollama run.yaml file
- ~/local/llama-stack/:/app/llama-stack-source
- ./run${SAFETY_MODEL:+-with-safety}.yaml:/root/my-run.yaml
ports:
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
environment:
- INFERENCE_MODEL=${INFERENCE_MODEL}
- SAFETY_MODEL=${SAFETY_MODEL:-}
- OLLAMA_URL=http://ollama:11434
entrypoint: >
python -m llama_stack.distribution.server.server /root/my-run.yaml \
--port ${LLAMA_STACK_PORT:-5001}
deploy:
restart_policy:
condition: on-failure
delay: 10s
max_attempts: 3
window: 60s
volumes:
ollama:
ollama-init:
llamastack:

View file

@ -1,30 +0,0 @@
services:
ollama:
image: ollama/ollama:latest
network_mode: "host"
volumes:
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
ports:
- "11434:11434"
command: []
llamastack:
depends_on:
- ollama
image: llamastack/distribution-ollama
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
# Link to ollama run.yaml file
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
# Hack: wait for ollama server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
volumes:
ollama:

View file

@ -1,46 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: ollama0
provider_type: remote::ollama
config:
url: http://127.0.0.1:14343
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -1,46 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: ollama0
provider_type: remote::ollama
config:
url: http://127.0.0.1:14343
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -0,0 +1,18 @@
#!/bin/sh
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
echo "Preloading (${INFERENCE_MODEL}, ${SAFETY_MODEL})..."
for model in ${INFERENCE_MODEL} ${SAFETY_MODEL}; do
echo "Preloading $model..."
if ! ollama run "$model"; then
echo "Failed to pull and run $model"
exit 1
fi
done
echo "All models pulled successfully"

View file

@ -0,0 +1 @@
../../llama_stack/templates/ollama/run-with-safety.yaml

View file

@ -0,0 +1 @@
../../llama_stack/templates/ollama/run.yaml

View file

@ -0,0 +1 @@
../../llama_stack/templates/nvidia/build.yaml

View file

@ -0,0 +1,19 @@
services:
llamastack:
image: distribution-nvidia:dev
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
- ./run.yaml:/root/llamastack-run-nvidia.yaml
ports:
- "8321:8321"
environment:
- INFERENCE_MODEL=${INFERENCE_MODEL:-Llama3.1-8B-Instruct}
- NVIDIA_API_KEY=${NVIDIA_API_KEY:-}
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml-config /root/llamastack-run-nvidia.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s

View file

@ -0,0 +1 @@
../../llama_stack/templates/nvidia/run.yaml

View file

@ -0,0 +1 @@
../../llama_stack/templates/remote-vllm/build.yaml

View file

@ -0,0 +1,100 @@
services:
vllm-inference:
image: vllm/vllm-openai:latest
volumes:
- $HOME/.cache/huggingface:/root/.cache/huggingface
network_mode: ${NETWORK_MODE:-bridged}
ports:
- "${VLLM_INFERENCE_PORT:-5100}:${VLLM_INFERENCE_PORT:-5100}"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${VLLM_INFERENCE_GPU:-0}
- HUGGING_FACE_HUB_TOKEN=$HF_TOKEN
command: >
--gpu-memory-utilization 0.75
--model ${VLLM_INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
--enforce-eager
--max-model-len 8192
--max-num-seqs 16
--port ${VLLM_INFERENCE_PORT:-5100}
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:${VLLM_INFERENCE_PORT:-5100}/v1/health"]
interval: 30s
timeout: 10s
retries: 5
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
# A little trick:
# if VLLM_SAFETY_MODEL is set, we will create a service for the safety model
# otherwise, the entry will end in a hyphen which gets ignored by docker compose
vllm-${VLLM_SAFETY_MODEL:+safety}:
image: vllm/vllm-openai:latest
volumes:
- $HOME/.cache/huggingface:/root/.cache/huggingface
network_mode: ${NETWORK_MODE:-bridged}
ports:
- "${VLLM_SAFETY_PORT:-5101}:${VLLM_SAFETY_PORT:-5101}"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${VLLM_SAFETY_GPU:-1}
- HUGGING_FACE_HUB_TOKEN=$HF_TOKEN
command: >
--gpu-memory-utilization 0.75
--model ${VLLM_SAFETY_MODEL}
--enforce-eager
--max-model-len 8192
--max-num-seqs 16
--port ${VLLM_SAFETY_PORT:-5101}
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:${VLLM_SAFETY_PORT:-5101}/v1/health"]
interval: 30s
timeout: 10s
retries: 5
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
llamastack:
depends_on:
- vllm-inference:
condition: service_healthy
- vllm-${VLLM_SAFETY_MODEL:+safety}:
condition: service_healthy
# image: llamastack/distribution-remote-vllm
image: llamastack/distribution-remote-vllm:test-0.0.52rc3
volumes:
- ~/.llama:/root/.llama
- ./run${VLLM_SAFETY_MODEL:+-with-safety}.yaml:/root/llamastack-run-remote-vllm.yaml
network_mode: ${NETWORK_MODE:-bridged}
environment:
- VLLM_URL=http://vllm-inference:${VLLM_INFERENCE_PORT:-5100}/v1
- VLLM_SAFETY_URL=http://vllm-safety:${VLLM_SAFETY_PORT:-5101}/v1
- INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
- MAX_TOKENS=${MAX_TOKENS:-4096}
- SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm}
- SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
ports:
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
# Hack: wait for vLLM server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-remote-vllm.yaml --port 5001"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
volumes:
vllm-inference:
vllm-safety:
llamastack:

View file

@ -0,0 +1 @@
../../llama_stack/templates/remote-vllm/run-with-safety.yaml

View file

@ -0,0 +1 @@
../../llama_stack/templates/remote-vllm/run.yaml

View file

@ -1,8 +1,8 @@
name: vllm
name: runpod
distribution_spec:
description: Like local, but use vLLM for running LLM inference
description: Use Runpod for running LLM inference
providers:
inference: vllm
inference: remote::runpod
memory: meta-reference
safety: meta-reference
agents: meta-reference

View file

@ -0,0 +1,19 @@
version: '2'
name: sambanova
distribution_spec:
description: Use SambaNova.AI for running LLM inference
docker_image: null
providers:
inference:
- remote::sambanova
memory:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
image_type: conda

View file

@ -0,0 +1,16 @@
services:
llamastack:
image: llamastack/distribution-sambanova
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
- ./run.yaml:/root/llamastack-run-sambanova.yaml
ports:
- "5000:5000"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-sambanova.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s

View file

@ -0,0 +1,83 @@
version: '2'
image_name: sambanova
docker_image: null
conda_env: sambanova
apis:
- agents
- inference
- memory
- safety
- telemetry
providers:
inference:
- provider_id: sambanova
provider_type: remote::sambanova
config:
url: https://api.sambanova.ai/v1/
api_key: ${env.SAMBANOVA_API_KEY}
memory:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/registry.db
models:
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: null
provider_model_id: Meta-Llama-3.1-8B-Instruct
- metadata: {}
model_id: meta-llama/Llama-3.1-70B-Instruct
provider_id: null
provider_model_id: Meta-Llama-3.1-70B-Instruct
- metadata: {}
model_id: meta-llama/Llama-3.1-405B-Instruct
provider_id: null
provider_model_id: Meta-Llama-3.1-405B-Instruct
- metadata: {}
model_id: meta-llama/Llama-3.2-1B-Instruct
provider_id: null
provider_model_id: Meta-Llama-3.2-1B-Instruct
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
provider_id: null
provider_model_id: Meta-Llama-3.2-3B-Instruct
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
provider_id: null
provider_model_id: Llama-3.2-11B-Vision-Instruct
- metadata: {}
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
provider_id: null
provider_model_id: Llama-3.2-90B-Vision-Instruct
shields:
- params: null
shield_id: meta-llama/Llama-Guard-3-8B
provider_id: null
provider_shield_id: null
memory_banks: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -1,117 +0,0 @@
# TGI Distribution
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
### Start the Distribution (Single Node GPU)
> [!NOTE]
> This assumes you have access to GPU to start a TGI server with access to your GPU.
```
$ cd distributions/tgi/gpu
$ ls
compose.yaml tgi-run.yaml
$ docker compose up
```
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
```
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
```
To kill the server
```
docker compose down
```
### Start the Distribution (Single Node CPU)
> [!NOTE]
> This assumes you have an hosted endpoint compatible with TGI server.
```
$ cd distributions/tgi/cpu
$ ls
compose.yaml run.yaml
$ docker compose up
```
Replace <ENTER_YOUR_TGI_HOSTED_ENDPOINT> in `run.yaml` file with your TGI endpoint.
```
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
```
### (Alternative) TGI server + llama stack run (Single Node GPU)
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
#### (optional) Start TGI server locally
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
```
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
```
#### Start Llama Stack server pointing to TGI server
```
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
```
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
```
**Via Conda**
```bash
llama stack build --template tgi --image-type conda
# -- start a TGI server endpoint
llama stack run ./gpu/run.yaml
```
### Model Serving
To serve a new model with `tgi`, change the docker command flag `--model-id <model-to-serve>`.
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
```
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.2-1B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
```
or by changing the docker run command's `--model-id` flag
```
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.2-1B-Instruct --port 5009
```
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
```
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
```

View file

@ -0,0 +1,103 @@
services:
tgi-inference:
image: ghcr.io/huggingface/text-generation-inference:latest
volumes:
- $HOME/.cache/huggingface:/data
network_mode: ${NETWORK_MODE:-bridged}
ports:
- "${TGI_INFERENCE_PORT:-8080}:${TGI_INFERENCE_PORT:-8080}"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${TGI_INFERENCE_GPU:-0}
- HF_TOKEN=$HF_TOKEN
- HF_HOME=/data
- HF_DATASETS_CACHE=/data
- HF_MODULES_CACHE=/data
- HF_HUB_CACHE=/data
command: >
--dtype bfloat16
--usage-stats off
--sharded false
--model-id ${TGI_INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
--port ${TGI_INFERENCE_PORT:-8080}
--cuda-memory-fraction 0.75
healthcheck:
test: ["CMD", "curl", "-f", "http://tgi-inference:${TGI_INFERENCE_PORT:-8080}/health"]
interval: 5s
timeout: 5s
retries: 30
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
tgi-${TGI_SAFETY_MODEL:+safety}:
image: ghcr.io/huggingface/text-generation-inference:latest
volumes:
- $HOME/.cache/huggingface:/data
network_mode: ${NETWORK_MODE:-bridged}
ports:
- "${TGI_SAFETY_PORT:-8081}:${TGI_SAFETY_PORT:-8081}"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${TGI_SAFETY_GPU:-1}
- HF_TOKEN=$HF_TOKEN
- HF_HOME=/data
- HF_DATASETS_CACHE=/data
- HF_MODULES_CACHE=/data
- HF_HUB_CACHE=/data
command: >
--dtype bfloat16
--usage-stats off
--sharded false
--model-id ${TGI_SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
--port ${TGI_SAFETY_PORT:-8081}
--cuda-memory-fraction 0.75
healthcheck:
test: ["CMD", "curl", "-f", "http://tgi-safety:${TGI_SAFETY_PORT:-8081}/health"]
interval: 5s
timeout: 5s
retries: 30
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
llamastack:
depends_on:
tgi-inference:
condition: service_healthy
tgi-${TGI_SAFETY_MODEL:+safety}:
condition: service_healthy
image: llamastack/distribution-tgi:test-0.0.52rc3
network_mode: ${NETWORK_MODE:-bridged}
volumes:
- ~/.llama:/root/.llama
- ./run${TGI_SAFETY_MODEL:+-with-safety}.yaml:/root/my-run.yaml
ports:
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
# Hack: wait for TGI server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
environment:
- TGI_URL=http://tgi-inference:${TGI_INFERENCE_PORT:-8080}
- SAFETY_TGI_URL=http://tgi-safety:${TGI_SAFETY_PORT:-8081}
- INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
- SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
volumes:
tgi-inference:
tgi-safety:
llamastack:

View file

@ -1,33 +0,0 @@
services:
text-generation-inference:
image: ghcr.io/huggingface/text-generation-inference:latest
network_mode: "host"
volumes:
- $HOME/.cache/huggingface:/data
ports:
- "5009:5009"
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
runtime: nvidia
healthcheck:
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
interval: 5s
timeout: 5s
retries: 30
llamastack:
depends_on:
text-generation-inference:
condition: service_healthy
image: llamastack/llamastack-local-cpu
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
# Link to run.yaml file
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s

View file

@ -1,46 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -1,55 +0,0 @@
services:
text-generation-inference:
image: ghcr.io/huggingface/text-generation-inference:latest
network_mode: "host"
volumes:
- $HOME/.cache/huggingface:/data
ports:
- "5009:5009"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=0
- HF_HOME=/data
- HF_DATASETS_CACHE=/data
- HF_MODULES_CACHE=/data
- HF_HUB_CACHE=/data
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
deploy:
resources:
reservations:
devices:
- driver: nvidia
# that's the closest analogue to --gpus; provide
# an integer amount of devices or 'all'
count: 1
# Devices are reserved using a list of capabilities, making
# capabilities the only required field. A device MUST
# satisfy all the requested capabilities for a successful
# reservation.
capabilities: [gpu]
runtime: nvidia
healthcheck:
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
interval: 5s
timeout: 5s
retries: 30
llamastack:
depends_on:
text-generation-inference:
condition: service_healthy
image: llamastack/distribution-tgi
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
# Link to TGI run.yaml file
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
# Hack: wait for TGI server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s

View file

@ -1,46 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: meta-reference
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -0,0 +1 @@
../../llama_stack/templates/tgi/run-with-safety.yaml

1
distributions/tgi/run.yaml Symbolic link
View file

@ -0,0 +1 @@
../../llama_stack/templates/tgi/run.yaml

View file

@ -11,7 +11,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
| **Provider(s)** | remote::together | meta-reference | meta-reference, remote::weaviate | meta-reference | meta-reference |
### Start the Distribution (Single Node CPU)
### Docker: Start the Distribution (Single Node CPU)
> [!NOTE]
> This assumes you have an hosted endpoint at Together with API Key.
@ -33,23 +33,7 @@ inference:
api_key: <optional api key>
```
### (Alternative) llama stack run (Single Node CPU)
```
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-together --yaml_config /root/my-run.yaml
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Together URL server endpoint. E.g.
```
inference:
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: <optional api key>
```
**Via Conda**
### Conda llama stack run (Single Node CPU)
```bash
llama stack build --template together --image-type conda
@ -57,7 +41,7 @@ llama stack build --template together --image-type conda
llama stack run ./run.yaml
```
### Model Serving
### (Optional) Update Model Serving Configuration
Use `llama-stack-client models list` to check the available models served by together.

View file

@ -1,13 +1,11 @@
services:
llamastack:
image: llamastack/distribution-together
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
- ./run.yaml:/root/llamastack-run-together.yaml
ports:
- "5000:5000"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-together.yaml"
- "8321:8321"
environment:
- TOGETHER_API_KEY=${TOGETHER_API_KEY}
entrypoint: bash -c "python -m llama_stack.distribution.server.server --template together"
deploy:
restart_policy:
condition: on-failure

View file

@ -1,47 +0,0 @@
version: '2'
built_at: '2024-10-08T17:40:45.325529'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: together0
provider_type: remote::together
config:
url: https://api.together.xyz/v1
# api_key: <ENTER_YOUR_API_KEY>
safety:
- provider_id: meta0
provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield:
model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: remote::weaviate
config: {}
agents:
- provider_id: meta0
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: meta-reference
config: {}

View file

@ -0,0 +1 @@
../../llama_stack/templates/together/run.yaml

View file

@ -0,0 +1 @@
../../llama_stack/templates/inline-vllm/build.yaml

View file

@ -1,11 +1,12 @@
services:
ollama:
image: ollama/ollama:latest
llamastack:
image: llamastack/distribution-inline-vllm
network_mode: "host"
volumes:
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
- ~/.llama:/root/.llama
- ./run.yaml:/root/my-run.yaml
ports:
- "11434:11434"
- "8321:8321"
devices:
- nvidia.com/gpu=all
environment:
@ -25,24 +26,10 @@ services:
# reservation.
capabilities: [gpu]
runtime: nvidia
llamastack:
depends_on:
- ollama
image: llamastack/distribution-ollama
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
# Link to ollama run.yaml file
- ./run.yaml:/root/llamastack-run-ollama.yaml
ports:
- "5000:5000"
# Hack: wait for ollama server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-ollama.yaml"
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
volumes:
ollama:

View file

@ -0,0 +1,66 @@
version: '2'
image_name: local
container_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: vllm-inference
provider_type: inline::vllm
config:
model: Llama3.2-3B-Instruct
tensor_parallel_size: 1
gpu_memory_utilization: 0.4
enforce_eager: true
max_tokens: 4096
- provider_id: vllm-inference-safety
provider_type: inline::vllm
config:
model: Llama-Guard-3-1B
tensor_parallel_size: 1
gpu_memory_utilization: 0.2
enforce_eager: true
max_tokens: 4096
safety:
- provider_id: meta0
provider_type: inline::llama-guard
config:
model: Llama-Guard-3-1B
excluded_categories: []
# Uncomment to use prompt guard
# - provider_id: meta1
# provider_type: inline::prompt-guard
# config:
# model: Prompt-Guard-86M
memory:
- provider_id: meta0
provider_type: inline::meta-reference
config: {}
# Uncomment to use pgvector
# - provider_id: pgvector
# provider_type: remote::pgvector
# config:
# host: 127.0.0.1
# port: 5432
# db: postgres
# user: postgres
# password: mysecretpassword
agents:
- provider_id: meta0
provider_type: inline::meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/agents_store.db
telemetry:
- provider_id: meta0
provider_type: inline::meta-reference
config: {}

View file

@ -1 +0,0 @@
../../llama_stack/templates/vllm/build.yaml

14
docs/_static/css/my_theme.css vendored Normal file
View file

@ -0,0 +1,14 @@
@import url("theme.css");
.wy-nav-content {
max-width: 90%;
}
.wy-nav-side {
/* background: linear-gradient(45deg, #2980B9, #16A085); */
background: linear-gradient(90deg, #332735, #1b263c);
}
.wy-side-nav-search {
background-color: transparent !important;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

After

Width:  |  Height:  |  Size: 196 KiB

Before After
Before After

BIN
docs/_static/remote_or_local.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 204 KiB

BIN
docs/_static/safety_system.webp vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

View file

@ -1,270 +0,0 @@
# Building a Llama Stack Distribution
This guide will walk you through the steps to get started with building a Llama Stack distributiom from scratch with your choice of API providers. Please see the [Getting Started Guide](./getting_started.md) if you just want the basic steps to start a Llama Stack distribution.
## Step 1. Build
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
- `name`: the name for our distribution (e.g. `8b-instruct`)
- `image_type`: our build image type (`conda | docker`)
- `distribution_spec`: our distribution specs for specifying API providers
- `description`: a short description of the configurations for the distribution
- `providers`: specifies the underlying implementation for serving each API endpoint
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
#### Building from scratch
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
```
llama stack build
```
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
```
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
> Enter the image type you want your distribution to be built with (docker or conda): conda
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
> (Optional) Enter a short description for your Llama Stack distribution:
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
```
**Ollama (optional)**
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
#### Building from templates
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
The following command will allow you to see the available templates and their corresponding providers.
```
llama stack build --list-templates
```
![alt text](resources/list-templates.png)
You may then pick a template to build your distribution with providers fitted to your liking.
```
llama stack build --template tgi
```
```
$ llama stack build --template tgi
...
...
Build spec configuration saved at ~/.conda/envs/llamastack-tgi/tgi-build.yaml
You may now run `llama stack configure tgi` or `llama stack configure ~/.conda/envs/llamastack-tgi/tgi-build.yaml`
```
#### Building from config file
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
```
$ cat llama_stack/templates/ollama/build.yaml
name: ollama
distribution_spec:
description: Like local, but use ollama for running LLM inference
providers:
inference: remote::ollama
memory: meta-reference
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda
```
```
llama stack build --config llama_stack/templates/ollama/build.yaml
```
#### How to build distribution with Docker image
> [!TIP]
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
```
llama stack build --template local --image-type docker
```
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
```
name: local-docker-example
distribution_spec:
description: Use code from `llama_stack` itself to serve all llama stack APIs
docker_image: null
providers:
inference: meta-reference
memory: meta-reference-faiss
safety: meta-reference
agentic_system: meta-reference
telemetry: console
image_type: docker
```
The following command allows you to build a Docker image with the name `<name>`
```
llama stack build --config <name>-build.yaml
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
WORKDIR /app
...
...
You can run it with: podman run -p 8000:8000 llamastack-docker-local
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
```
## Step 2. Configure
After our distribution is built (either in form of docker or conda environment), we will run the following command to
```
llama stack configure [ <docker-image-name> | <path/to/name.build.yaml>]
```
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
- Run `docker images` to check list of available images on your machine.
```
$ llama stack configure tgi
Configuring API: inference (meta-reference)
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
Enter value for quantization (optional):
Enter value for torch_seed (optional):
Enter value for max_seq_len (existing: 4096) (required):
Enter value for max_batch_size (existing: 1) (required):
Configuring API: memory (meta-reference-faiss)
Configuring API: safety (meta-reference)
Do you want to configure llama_guard_shield? (y/n): y
Entering sub-configuration for llama_guard_shield:
Enter value for model (default: Llama-Guard-3-1B) (required):
Enter value for excluded_categories (default: []) (required):
Enter value for disable_input_check (default: False) (required):
Enter value for disable_output_check (default: False) (required):
Do you want to configure prompt_guard_shield? (y/n): y
Entering sub-configuration for prompt_guard_shield:
Enter value for model (default: Prompt-Guard-86M) (required):
Configuring API: agentic_system (meta-reference)
Enter value for brave_search_api_key (optional):
Enter value for bing_search_api_key (optional):
Enter value for wolfram_api_key (optional):
Configuring API: telemetry (console)
YAML configuration has been written to ~/.llama/builds/conda/tgi-run.yaml
```
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/tgi-run.yaml` with the following contents. You may edit this file to change the settings.
As you can see, we did basic configuration above and configured:
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
- Llama Guard safety shield with model `Llama-Guard-3-1B`
- Prompt Guard safety shield with model `Prompt-Guard-86M`
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
Note that all configurations as well as models are stored in `~/.llama`
## Step 3. Run
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
```
llama stack run 8b-instruct
```
You should see the Llama Stack server start and print the APIs that it is supporting
```
$ llama stack run 8b-instruct
> initializing model parallel with size 1
> initializing ddp with size 1
> initializing pipeline with size 1
Loaded in 19.28 seconds
NCCL version 2.20.5+cuda12.4
Finished model load YES READY
Serving POST /inference/batch_chat_completion
Serving POST /inference/batch_completion
Serving POST /inference/chat_completion
Serving POST /inference/completion
Serving POST /safety/run_shield
Serving POST /agentic_system/memory_bank/attach
Serving POST /agentic_system/create
Serving POST /agentic_system/session/create
Serving POST /agentic_system/turn/create
Serving POST /agentic_system/delete
Serving POST /agentic_system/session/delete
Serving POST /agentic_system/memory_bank/detach
Serving POST /agentic_system/session/get
Serving POST /agentic_system/step/get
Serving POST /agentic_system/turn/get
Listening on :::5000
INFO: Started server process [453333]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
```
> [!NOTE]
> Configuration is in `~/.llama/builds/local/conda/tgi-run.yaml`. Feel free to increase `max_seq_len`.
> [!IMPORTANT]
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
> [!TIP]
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
This server is running a Llama model locally.
## Step 4. Test with Client
Once the server is setup, we can test it with a client to see the example outputs.
```
cd /path/to/llama-stack
conda activate <env> # any environment containing the llama-stack pip package will work
python -m llama_stack.apis.inference.client localhost 5000
```
This will run the chat completion client and query the distributions /inference/chat_completion API.
Here is an example output:
```
User>hello world, write me a 2 sentence poem about the moon
Assistant> Here's a 2-sentence poem about the moon:
The moon glows softly in the midnight sky,
A beacon of wonder, as it passes by.
```
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
```
python -m llama_stack.apis.safety.client localhost 5000
```
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.

View file

@ -1,485 +0,0 @@
# Llama CLI Reference
The `llama` CLI tool helps you setup and use the Llama Stack & agentic systems. It should be available on your path after installing the `llama-stack` package.
### Subcommands
1. `download`: `llama` cli tools supports downloading the model from Meta or Hugging Face.
2. `model`: Lists available models and their properties.
3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](cli_reference.md#step-3-building-and-configuring-llama-stack-distributions).
### Sample Usage
```
llama --help
```
<pre style="font-family: monospace;">
usage: llama [-h] {download,model,stack} ...
Welcome to the Llama CLI
options:
-h, --help show this help message and exit
subcommands:
{download,model,stack}
</pre>
## Step 1. Get the models
You first need to have models downloaded locally.
To download any model you need the **Model Descriptor**.
This can be obtained by running the command
```
llama model list
```
You should see a table like this:
<pre style="font-family: monospace;">
+----------------------------------+------------------------------------------+----------------+
| Model Descriptor | Hugging Face Repo | Context Length |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K |
+----------------------------------+------------------------------------------+----------------+
</pre>
To download models, you can use the llama download command.
#### Downloading from [Meta](https://llama.meta.com/llama-downloads/)
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/)
Download the required checkpoints using the following commands:
```bash
# download the 8B model, this can be run on a single GPU
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
# you can also get the 70B model, this will require 8 GPUs however
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
# llama-agents have safety enabled by default. For this, you will need
# safety models -- Llama-Guard and Prompt-Guard
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
```
#### Downloading from [Hugging Face](https://huggingface.co/meta-llama)
Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`.
```bash
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
```
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
#### Downloading via Ollama
If you're already using ollama, we also have a supported Llama Stack distribution `local-ollama` and you can continue to use ollama for managing model downloads.
```
ollama pull llama3.1:8b-instruct-fp16
ollama pull llama3.1:70b-instruct-fp16
```
> [!NOTE]
> Only the above two models are currently supported by Ollama.
## Step 2: Understand the models
The `llama model` command helps you explore the models interface.
### 2.1 Subcommands
1. `download`: Download the model from different sources. (meta, huggingface)
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
3. `prompt-format`: Show llama model message formats.
4. `describe`: Describes all the properties of the model.
### 2.2 Sample Usage
`llama model <subcommand> <options>`
```
llama model --help
```
<pre style="font-family: monospace;">
usage: llama model [-h] {download,list,prompt-format,describe} ...
Work with llama models
options:
-h, --help show this help message and exit
model_subcommands:
{download,list,prompt-format,describe}
</pre>
You can use the describe command to know more about a model:
```
llama model describe -m Llama3.2-3B-Instruct
```
### 2.3 Describe
<pre style="font-family: monospace;">
+-----------------------------+----------------------------------+
| Model | Llama3.2-3B-Instruct |
+-----------------------------+----------------------------------+
| Hugging Face ID | meta-llama/Llama-3.2-3B-Instruct |
+-----------------------------+----------------------------------+
| Description | Llama 3.2 3b instruct model |
+-----------------------------+----------------------------------+
| Context Length | 128K tokens |
+-----------------------------+----------------------------------+
| Weights format | bf16 |
+-----------------------------+----------------------------------+
| Model params.json | { |
| | "dim": 3072, |
| | "n_layers": 28, |
| | "n_heads": 24, |
| | "n_kv_heads": 8, |
| | "vocab_size": 128256, |
| | "ffn_dim_multiplier": 1.0, |
| | "multiple_of": 256, |
| | "norm_eps": 1e-05, |
| | "rope_theta": 500000.0, |
| | "use_scaled_rope": true |
| | } |
+-----------------------------+----------------------------------+
| Recommended sampling params | { |
| | "strategy": "top_p", |
| | "temperature": 1.0, |
| | "top_p": 0.9, |
| | "top_k": 0 |
| | } |
+-----------------------------+----------------------------------+
</pre>
### 2.4 Prompt Format
You can even run `llama model prompt-format` see all of the templates and their tokens:
```
llama model prompt-format -m Llama3.2-3B-Instruct
```
![alt text](resources/prompt-format.png)
You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios.
**NOTE**: Outputs in terminal are color printed to show special tokens.
## Step 3: Building, and Configuring Llama Stack Distributions
- Please see our [Getting Started](getting_started.md) guide for more details on how to build and start a Llama Stack distribution.
### Step 3.1 Build
In the following steps, imagine we'll be working with a `Llama3.1-8B-Instruct` model. We will name our build `tgi` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
- `name`: the name for our distribution (e.g. `tgi`)
- `image_type`: our build image type (`conda | docker`)
- `distribution_spec`: our distribution specs for specifying API providers
- `description`: a short description of the configurations for the distribution
- `providers`: specifies the underlying implementation for serving each API endpoint
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
#### Building from scratch
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
```
llama stack build
```
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
```
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-llama-stack
> Enter the image type you want your distribution to be built with (docker or conda): conda
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
> (Optional) Enter a short description for your Llama Stack distribution:
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/my-local-llama-stack-build.yaml
```
#### Building from templates
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
The following command will allow you to see the available templates and their corresponding providers.
```
llama stack build --list-templates
```
![alt text](resources/list-templates.png)
You may then pick a template to build your distribution with providers fitted to your liking.
```
llama stack build --template tgi --image-type conda
```
```
$ llama stack build --template tgi --image-type conda
...
...
Build spec configuration saved at ~/.conda/envs/llamastack-tgi/tgi-build.yaml
You may now run `llama stack configure tgi` or `llama stack configure ~/.conda/envs/llamastack-tgi/tgi-build.yaml`
```
#### Building from config file
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/templates/`.
```
$ cat build.yaml
name: ollama
distribution_spec:
description: Like local, but use ollama for running LLM inference
providers:
inference: remote::ollama
memory: meta-reference
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda
```
```
llama stack build --config build.yaml
```
#### How to build distribution with Docker image
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
```
llama stack build --template tgi --image-type docker
```
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
```
name: local-docker-example
distribution_spec:
description: Use code from `llama_stack` itself to serve all llama stack APIs
docker_image: null
providers:
inference: meta-reference
memory: meta-reference-faiss
safety: meta-reference
agentic_system: meta-reference
telemetry: console
image_type: docker
```
The following command allows you to build a Docker image with the name `<name>`
```
llama stack build --config <name>-build.yaml
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
WORKDIR /app
...
...
You can run it with: podman run -p 8000:8000 llamastack-docker-local
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
```
### Step 3.2 Configure
After our distribution is built (either in form of docker or conda environment), we will run the following command to
```
llama stack configure [ <docker-image-name> | <path/to/name-build.yaml>]
```
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
- Run `docker images` to check list of available images on your machine.
```
$ llama stack configure ~/.llama/distributions/conda/tgi-build.yaml
Configuring API: inference (meta-reference)
Enter value for model (existing: Llama3.1-8B-Instruct) (required):
Enter value for quantization (optional):
Enter value for torch_seed (optional):
Enter value for max_seq_len (existing: 4096) (required):
Enter value for max_batch_size (existing: 1) (required):
Configuring API: memory (meta-reference-faiss)
Configuring API: safety (meta-reference)
Do you want to configure llama_guard_shield? (y/n): y
Entering sub-configuration for llama_guard_shield:
Enter value for model (default: Llama-Guard-3-1B) (required):
Enter value for excluded_categories (default: []) (required):
Enter value for disable_input_check (default: False) (required):
Enter value for disable_output_check (default: False) (required):
Do you want to configure prompt_guard_shield? (y/n): y
Entering sub-configuration for prompt_guard_shield:
Enter value for model (default: Prompt-Guard-86M) (required):
Configuring API: agentic_system (meta-reference)
Enter value for brave_search_api_key (optional):
Enter value for bing_search_api_key (optional):
Enter value for wolfram_api_key (optional):
Configuring API: telemetry (console)
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
```
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
As you can see, we did basic configuration above and configured:
- inference to run on model `Llama3.1-8B-Instruct` (obtained from `llama model list`)
- Llama Guard safety shield with model `Llama-Guard-3-1B`
- Prompt Guard safety shield with model `Prompt-Guard-86M`
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
Note that all configurations as well as models are stored in `~/.llama`
### Step 3.3 Run
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
```
llama stack run ~/.llama/builds/conda/tgi-run.yaml
```
You should see the Llama Stack server start and print the APIs that it is supporting
```
$ llama stack run ~/.llama/builds/local/conda/tgi-run.yaml
> initializing model parallel with size 1
> initializing ddp with size 1
> initializing pipeline with size 1
Loaded in 19.28 seconds
NCCL version 2.20.5+cuda12.4
Finished model load YES READY
Serving POST /inference/batch_chat_completion
Serving POST /inference/batch_completion
Serving POST /inference/chat_completion
Serving POST /inference/completion
Serving POST /safety/run_shield
Serving POST /agentic_system/memory_bank/attach
Serving POST /agentic_system/create
Serving POST /agentic_system/session/create
Serving POST /agentic_system/turn/create
Serving POST /agentic_system/delete
Serving POST /agentic_system/session/delete
Serving POST /agentic_system/memory_bank/detach
Serving POST /agentic_system/session/get
Serving POST /agentic_system/step/get
Serving POST /agentic_system/turn/get
Listening on :::5000
INFO: Started server process [453333]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
```
> [!NOTE]
> Configuration is in `~/.llama/builds/local/conda/tgi-run.yaml`. Feel free to increase `max_seq_len`.
> [!IMPORTANT]
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
> [!TIP]
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
This server is running a Llama model locally.
### Step 3.4 Test with Client
Once the server is setup, we can test it with a client to see the example outputs.
```
cd /path/to/llama-stack
conda activate <env> # any environment containing the llama-stack pip package will work
python -m llama_stack.apis.inference.client localhost 5000
```
This will run the chat completion client and query the distributions /inference/chat_completion API.
Here is an example output:
```
User>hello world, write me a 2 sentence poem about the moon
Assistant> Here's a 2-sentence poem about the moon:
The moon glows softly in the midnight sky,
A beacon of wonder, as it passes by.
```
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
```
python -m llama_stack.apis.safety.client localhost 5000
```
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.

7
docs/contbuild.sh Normal file
View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
sphinx-autobuild --write-all source build/html --watch source/

View file

@ -1,41 +0,0 @@
# Llama Stack Developer Cookbook
Based on your developer needs, below are references to guides to help you get started.
### Hosted Llama Stack Endpoint
* Developer Need: I want to connect to a Llama Stack endpoint to build my applications.
* Effort: 1min
* Guide:
- Checkout our [DeepLearning course](https://www.deeplearning.ai/short-courses/introducing-multimodal-llama-3-2) on building with Llama Stack apps on pre-hosted Llama Stack endpoint.
### Local meta-reference Llama Stack Server
* Developer Need: I want to start a local Llama Stack server with my GPU using meta-reference implementations.
* Effort: 5min
* Guide:
- Please see our [Getting Started Guide](./getting_started.md) on starting up a meta-reference Llama Stack server.
### Llama Stack Server with Remote Providers
* Developer need: I want a Llama Stack distribution with a remote provider.
* Effort: 10min
* Guide
- Please see our [Distributions Guide](../distributions/) on starting up distributions with remote providers.
### On-Device (iOS) Llama Stack
* Developer Need: I want to use Llama Stack on-Device
* Effort: 1.5hr
* Guide:
- Please see our [iOS Llama Stack SDK](../llama_stack/providers/impls/ios/inference) implementations
### Assemble your own Llama Stack Distribution
* Developer Need: I want to assemble my own distribution with API providers to my likings
* Effort: 30min
* Guide
- Please see our [Building Distribution](./building_distro.md) guide for assembling your own Llama Stack distribution with your choice of API providers.
### Adding a New API Provider
* Developer Need: I want to add a new API provider to Llama Stack.
* Effort: 3hr
* Guide
- Please see our [Adding a New API Provider](./new_api_provider.md) guide for adding a new API provider.

File diff suppressed because one or more lines are too long

View file

@ -1,230 +0,0 @@
# Getting Started with Llama Stack
This guide will walk you though the steps to get started on end-to-end flow for LlamaStack. This guide mainly focuses on getting started with building a LlamaStack distribution, and starting up a LlamaStack server. Please see our [documentations](../README.md) on what you can do with Llama Stack, and [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) on examples apps built with Llama Stack.
## Installation
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
You have two ways to install this repository:
1. **Install as a package**:
You can install the repository directly from [PyPI](https://pypi.org/project/llama-stack/) by running the following command:
```bash
pip install llama-stack
```
2. **Install from source**:
If you prefer to install from the source code, follow these steps:
```bash
mkdir -p ~/local
cd ~/local
git clone git@github.com:meta-llama/llama-stack.git
conda create -n stack python=3.10
conda activate stack
cd llama-stack
$CONDA_PREFIX/bin/pip install -e .
```
For what you can do with the Llama CLI, please refer to [CLI Reference](./cli_reference.md).
## Starting Up Llama Stack Server
You have two ways to start up Llama stack server:
1. **Starting up server via docker**:
We provide pre-built Docker image of Llama Stack distribution, which can be found in the following links in the [distributions](../distributions/) folder.
> [!NOTE]
> For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.
```
export LLAMA_CHECKPOINT_DIR=~/.llama
```
> [!NOTE]
> `~/.llama` should be the path containing downloaded weights of Llama models.
To download llama models, use
```
llama download --model-id Llama3.1-8B-Instruct
```
To download and start running a pre-built docker container, you may use the following commands:
```
cd llama-stack/distributions/meta-reference-gpu
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
```
> [!TIP]
> Pro Tip: We may use `docker compose up` for starting up a distribution with remote providers (e.g. TGI) using [llamastack-local-cpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general). You can checkout [these scripts](../distributions/) to help you get started.
2. **Build->Configure->Run Llama Stack server via conda**:
You may also build a LlamaStack distribution from scratch, configure it, and start running the distribution. This is useful for developing on LlamaStack.
**`llama stack build`**
- You'll be prompted to enter build information interactively.
```
llama stack build
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-stack
> Enter the image type you want your distribution to be built with (docker or conda): conda
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
> (Optional) Enter a short description for your Llama Stack distribution:
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-stack/my-local-stack-build.yaml
You can now run `llama stack configure my-local-stack`
```
**`llama stack configure`**
- Run `llama stack configure <name>` with the name you have previously defined in `build` step.
```
llama stack configure <name>
```
- You will be prompted to enter configurations for your Llama Stack
```
$ llama stack configure my-local-stack
Configuring API `inference`...
=== Configuring provider `meta-reference` for API inference...
Enter value for model (default: Llama3.1-8B-Instruct) (required):
Do you want to configure quantization? (y/n): n
Enter value for torch_seed (optional):
Enter value for max_seq_len (default: 4096) (required):
Enter value for max_batch_size (default: 1) (required):
Configuring API `safety`...
=== Configuring provider `meta-reference` for API safety...
Do you want to configure llama_guard_shield? (y/n): n
Do you want to configure prompt_guard_shield? (y/n): n
Configuring API `agents`...
=== Configuring provider `meta-reference` for API agents...
Enter `type` for persistence_store (options: redis, sqlite, postgres) (default: sqlite):
Configuring SqliteKVStoreConfig:
Enter value for namespace (optional):
Enter value for db_path (default: /home/xiyan/.llama/runtime/kvstore.db) (required):
Configuring API `memory`...
=== Configuring provider `meta-reference` for API memory...
> Please enter the supported memory bank type your provider has for memory: vector
Configuring API `telemetry`...
=== Configuring provider `meta-reference` for API telemetry...
> YAML configuration has been written to ~/.llama/builds/conda/my-local-stack-run.yaml.
You can now run `llama stack run my-local-stack --port PORT`
```
**`llama stack run`**
- Run `llama stack run <name>` with the name you have previously defined.
```
llama stack run my-local-stack
...
> initializing model parallel with size 1
> initializing ddp with size 1
> initializing pipeline with size 1
...
Finished model load YES READY
Serving POST /inference/chat_completion
Serving POST /inference/completion
Serving POST /inference/embeddings
Serving POST /memory_banks/create
Serving DELETE /memory_bank/documents/delete
Serving DELETE /memory_banks/drop
Serving GET /memory_bank/documents/get
Serving GET /memory_banks/get
Serving POST /memory_bank/insert
Serving GET /memory_banks/list
Serving POST /memory_bank/query
Serving POST /memory_bank/update
Serving POST /safety/run_shield
Serving POST /agentic_system/create
Serving POST /agentic_system/session/create
Serving POST /agentic_system/turn/create
Serving POST /agentic_system/delete
Serving POST /agentic_system/session/delete
Serving POST /agentic_system/session/get
Serving POST /agentic_system/step/get
Serving POST /agentic_system/turn/get
Serving GET /telemetry/get_trace
Serving POST /telemetry/log_event
Listening on :::5000
INFO: Started server process [587053]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
```
## Testing with client
Once the server is setup, we can test it with a client to see the example outputs.
```
cd /path/to/llama-stack
conda activate <env> # any environment containing the llama-stack pip package will work
python -m llama_stack.apis.inference.client localhost 5000
```
This will run the chat completion client and query the distributions `/inference/chat_completion` API.
Here is an example output:
```
User>hello world, write me a 2 sentence poem about the moon
Assistant> Here's a 2-sentence poem about the moon:
The moon glows softly in the midnight sky,
A beacon of wonder, as it passes by.
```
You may also send a POST request to the server:
```
curl http://localhost:5000/inference/chat_completion \
-H "Content-Type: application/json" \
-d '{
"model": "Llama3.1-8B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Write me a 2 sentence poem about the moon"}
],
"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
}'
Output:
{'completion_message': {'role': 'assistant',
'content': 'The moon glows softly in the midnight sky, \nA beacon of wonder, as it catches the eye.',
'stop_reason': 'out_of_tokens',
'tool_calls': []},
'logprobs': null}
```
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
```
python -m llama_stack.apis.safety.client localhost 5000
```
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
## Advanced Guides
Please see our [Building a LLama Stack Distribution](./building_distro.md) guide for more details on how to assemble your own Llama Stack Distribution.

View file

@ -1,26 +0,0 @@
# Developer Guide: Adding a New API Provider
This guide contains references to walk you through adding a new API provider.
### Adding a new API provider
1. First, decide which API your provider falls into (e.g. Inference, Safety, Agents, Memory).
2. Decide whether your provider is a remote provider, or inline implmentation. A remote provider is a provider that makes a remote request to an service. An inline provider is a provider where implementation is executed locally. Checkout the examples, and follow the structure to add your own API provider. Please find the following code pointers:
- [Inference Remote Adapter](../llama_stack/providers/adapters/inference/)
- [Inference Inline Provider](../llama_stack/providers/impls/)
3. [Build a Llama Stack distribution](./building_distro.md) with your API provider.
4. Test your code!
### Testing your newly added API providers
1. Start with an _integration test_ for your provider. That means we will instantiate the real provider, pass it real configuration and if it is a remote service, we will actually hit the remote service. We **strongly** discourage mocking for these tests at the provider level. Llama Stack is first and foremost about integration so we need to make sure stuff works end-to-end. See [llama_stack/providers/tests/inference/test_inference.py](../llama_stack/providers/tests/inference/test_inference.py) for an example.
2. In addition, if you want to unit test functionality within your provider, feel free to do so. You can find some tests in `tests/` but they aren't well supported so far.
3. Test with a client-server Llama Stack setup. (a) Start a Llama Stack server with your own distribution which includes the new provider. (b) Send a client request to the server. See `llama_stack/apis/<api>/client.py` for how this is done. These client scripts can serve as lightweight tests.
You can find more complex client scripts [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) repo. Note down which scripts works and do not work with your distribution.
### Submit your PR
After you have fully tested your newly added API provider, submit a PR with the attached test plan. You must have a Test Plan in the summary section of your PR.

File diff suppressed because it is too large Load diff

View file

@ -18,73 +18,22 @@ import yaml
from llama_models import schema_utils
from .pyopenapi.options import Options
from .pyopenapi.specification import Info, Server
from .pyopenapi.utility import Specification
# We do some monkey-patching to ensure our definitions only use the minimal
# (json_schema_type, webmethod) definitions from the llama_models package. For
# generation though, we need the full definitions and implementations from the
# (json-strong-typing) package.
from .strong_typing.schema import json_schema_type
from .strong_typing.schema import json_schema_type, register_schema
schema_utils.json_schema_type = json_schema_type
schema_utils.register_schema = register_schema
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.agents import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.scoring import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.eval import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.batch_inference import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.apis.telemetry import * # noqa: F403
from llama_stack.apis.post_training import * # noqa: F403
from llama_stack.apis.synthetic_data_generation import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.apis.models import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
from llama_stack.apis.inspect import * # noqa: F403
from llama_stack.apis.version import LLAMA_STACK_API_VERSION # noqa: E402
from llama_stack.distribution.stack import LlamaStack # noqa: E402
class LlamaStack(
MemoryBanks,
Inference,
BatchInference,
Agents,
Safety,
SyntheticDataGeneration,
Datasets,
Telemetry,
PostTraining,
Memory,
Eval,
Scoring,
ScoringFunctions,
DatasetIO,
Models,
Shields,
Inspect,
):
pass
# TODO: this should be fixed in the generator itself so it reads appropriate annotations
STREAMING_ENDPOINTS = [
"/agents/turn/create",
"/inference/chat_completion",
]
def patch_sse_stream_responses(spec: Specification):
for path, path_item in spec.document.paths.items():
if path in STREAMING_ENDPOINTS:
content = path_item.post.responses["200"].content.pop("application/json")
path_item.post.responses["200"].content["text/event-stream"] = content
from .pyopenapi.options import Options # noqa: E402
from .pyopenapi.specification import Info, Server # noqa: E402
from .pyopenapi.utility import Specification # noqa: E402
def main(output_dir: str):
@ -102,19 +51,15 @@ def main(output_dir: str):
Options(
server=Server(url="http://any-hosted-llama-stack.com"),
info=Info(
title="[DRAFT] Llama Stack Specification",
version="0.0.1",
description="""This is the specification of the llama stack that provides
title="Llama Stack Specification",
version=LLAMA_STACK_API_VERSION,
description="""This is the specification of the Llama Stack that provides
a set of endpoints and their corresponding interfaces that are tailored to
best leverage Llama Models. The specification is still in draft and subject to change.
Generated at """
+ now,
best leverage Llama Models.""",
),
),
)
patch_sse_stream_responses(spec)
with open(output_dir / "llama-stack-spec.yaml", "w", encoding="utf-8") as fp:
yaml.dump(spec.get_json(), fp, allow_unicode=True)

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import collections
import hashlib
import ipaddress
import typing
@ -176,9 +177,20 @@ class ContentBuilder:
) -> Dict[str, MediaType]:
"Creates the content subtree for a request or response."
def has_iterator_type(t):
if typing.get_origin(t) is typing.Union:
return any(has_iterator_type(a) for a in typing.get_args(t))
else:
# TODO: needs a proper fix where we let all types correctly flow upwards
# and then test against AsyncIterator
return "StreamChunk" in str(t)
if is_generic_list(payload_type):
media_type = "application/jsonl"
item_type = unwrap_generic_list(payload_type)
elif has_iterator_type(payload_type):
item_type = payload_type
media_type = "text/event-stream"
else:
media_type = "application/json"
item_type = payload_type
@ -190,7 +202,9 @@ class ContentBuilder:
) -> MediaType:
schema = self.schema_builder.classdef_to_ref(item_type)
if self.schema_transformer:
schema_transformer: Callable[[SchemaOrRef], SchemaOrRef] = self.schema_transformer # type: ignore
schema_transformer: Callable[[SchemaOrRef], SchemaOrRef] = (
self.schema_transformer
)
schema = schema_transformer(schema)
if not examples:
@ -424,6 +438,14 @@ class Generator:
return extra_tags
def _build_operation(self, op: EndpointOperation) -> Operation:
if op.defining_class.__name__ in [
"SyntheticDataGeneration",
"PostTraining",
"BatchInference",
]:
op.defining_class.__name__ = f"{op.defining_class.__name__} (Coming Soon)"
print(op.defining_class.__name__)
doc_string = parse_type(op.func_ref)
doc_params = dict(
(param.name, param.description) for param in doc_string.params.values()
@ -464,13 +486,22 @@ class Generator:
parameters = path_parameters + query_parameters
parameters += [
Parameter(
name="X-LlamaStack-ProviderData",
name="X-LlamaStack-Provider-Data",
in_=ParameterLocation.Header,
description="JSON-encoded provider data which will be made available to the adapter servicing the API",
required=False,
schema=self.schema_builder.classdef_to_ref(str),
)
]
parameters += [
Parameter(
name="X-LlamaStack-Client-Version",
in_=ParameterLocation.Header,
description="Version of the client making the request. This is used to ensure that the client and server are compatible.",
required=False,
schema=self.schema_builder.classdef_to_ref(str),
)
]
# data passed in payload
if op.request_params:
@ -506,7 +537,6 @@ class Generator:
success_type_descriptions = {
item: doc_string.short_description
for item, doc_string in success_type_docstring.items()
if doc_string.short_description
}
else:
# use return type as a single response type
@ -565,6 +595,7 @@ class Generator:
)
responses.update(response_builder.build_response(response_options))
assert len(responses.keys()) > 0, f"No responses found for {op.name}"
if op.event_type is not None:
builder = ContentBuilder(self.schema_builder)
callbacks = {
@ -618,6 +649,7 @@ class Generator:
raise NotImplementedError(f"unknown HTTP method: {op.http_method}")
route = op.get_route()
print(f"route: {route}")
if route in paths:
paths[route].update(pathItem)
else:
@ -671,6 +703,8 @@ class Generator:
for extra_tag_group in extra_tag_groups.values():
tags.extend(extra_tag_group)
tags = sorted(tags, key=lambda t: t.name)
tag_groups = []
if operation_tags:
tag_groups.append(

View file

@ -8,18 +8,14 @@ import collections.abc
import enum
import inspect
import typing
import uuid
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union
from llama_stack.apis.version import LLAMA_STACK_API_VERSION
from termcolor import colored
from ..strong_typing.inspection import (
get_signature,
is_type_enum,
is_type_optional,
unwrap_optional_type,
)
from ..strong_typing.inspection import get_signature
def split_prefix(
@ -111,9 +107,9 @@ class EndpointOperation:
def get_route(self) -> str:
if self.route is not None:
return self.route
return "/".join(["", LLAMA_STACK_API_VERSION, self.route.lstrip("/")])
route_parts = ["", self.name]
route_parts = ["", LLAMA_STACK_API_VERSION, self.name]
for param_name, _ in self.path_params:
route_parts.append("{" + param_name + "}")
return "/".join(route_parts)
@ -176,10 +172,16 @@ def _get_endpoint_functions(
def _get_defining_class(member_fn: str, derived_cls: type) -> type:
"Find the class in which a member function is first defined in a class inheritance hierarchy."
# This import must be dynamic here
from llama_stack.apis.tools import RAGToolRuntime, ToolRuntime
# iterate in reverse member resolution order to find most specific class first
for cls in reversed(inspect.getmro(derived_cls)):
for name, _ in inspect.getmembers(cls, inspect.isfunction):
if name == member_fn:
# HACK ALERT
if cls == RAGToolRuntime:
return ToolRuntime
return cls
raise ValidationError(
@ -260,42 +262,16 @@ def get_endpoint_operations(
f"parameter '{param_name}' in function '{func_name}' has no type annotation"
)
if is_type_optional(param_type):
inner_type: type = unwrap_optional_type(param_type)
else:
inner_type = param_type
if prefix == "get" and (
inner_type is bool
or inner_type is int
or inner_type is float
or inner_type is str
or inner_type is uuid.UUID
or is_type_enum(inner_type)
):
if parameter.kind == inspect.Parameter.POSITIONAL_ONLY:
if route_params is not None and param_name not in route_params:
raise ValidationError(
f"positional parameter '{param_name}' absent from user-defined route '{route}' for function '{func_name}'"
)
# simple type maps to route path element, e.g. /study/{uuid}/{version}
if prefix in ["get", "delete"]:
if route_params is not None and param_name in route_params:
path_params.append((param_name, param_type))
else:
if route_params is not None and param_name in route_params:
raise ValidationError(
f"query parameter '{param_name}' found in user-defined route '{route}' for function '{func_name}'"
)
# simple type maps to key=value pair in query string
query_params.append((param_name, param_type))
else:
if route_params is not None and param_name in route_params:
raise ValidationError(
f"user-defined route '{route}' for function '{func_name}' has parameter '{param_name}' of composite type: {param_type}"
)
request_params.append((param_name, param_type))
path_params.append((param_name, param_type))
else:
request_params.append((param_name, param_type))
# check if function has explicit return type
if signature.return_annotation is inspect.Signature.empty:
@ -315,21 +291,33 @@ def get_endpoint_operations(
)
else:
event_type = None
response_type = return_type
# set HTTP request method based on type of request and presence of payload
if not request_params:
def process_type(t):
if typing.get_origin(t) is collections.abc.AsyncIterator:
# NOTE(ashwin): this is SSE and there is no way to represent it. either we make it a List
# or the item type. I am choosing it to be the latter
args = typing.get_args(t)
return args[0]
elif typing.get_origin(t) is typing.Union:
types = [process_type(a) for a in typing.get_args(t)]
return typing._UnionGenericAlias(typing.Union, tuple(types))
else:
return t
response_type = process_type(return_type)
if prefix in ["delete", "remove"]:
http_method = HTTPMethod.DELETE
else:
elif prefix == "post":
http_method = HTTPMethod.POST
elif prefix == "get":
http_method = HTTPMethod.GET
else:
if prefix == "set":
elif prefix == "set":
http_method = HTTPMethod.PUT
elif prefix == "update":
http_method = HTTPMethod.PATCH
else:
http_method = HTTPMethod.POST
raise ValidationError(f"unknown prefix {prefix}")
result.append(
EndpointOperation(

View file

@ -125,6 +125,7 @@ class JsonSchemaAnyOf(JsonSchemaNode):
@dataclass
class JsonSchemaOneOf(JsonSchemaNode):
oneOf: List["JsonSchemaAny"]
discriminator: Optional[str]
JsonSchemaAny = Union[

View file

@ -342,7 +342,6 @@ def is_type_union(typ: object) -> bool:
"True if the type annotation corresponds to a union type (e.g. `Union[T1,T2,T3]`)."
typ = unwrap_annotated_type(typ)
if _is_union_like(typ):
args = typing.get_args(typ)
return len(args) > 2 or type(None) not in args
@ -358,6 +357,7 @@ def unwrap_union_types(typ: object) -> Tuple[object, ...]:
:returns: The inner types `T1`, `T2`, etc.
"""
typ = unwrap_annotated_type(typ)
return _unwrap_union_types(typ)

View file

@ -36,6 +36,7 @@ from typing import (
)
import jsonschema
from typing_extensions import Annotated
from . import docstring
from .auxiliary import (
@ -329,7 +330,6 @@ class JsonSchemaGenerator:
if metadata is not None:
# type is Annotated[T, ...]
typ = typing.get_args(data_type)[0]
schema = self._simple_type_to_schema(typ)
if schema is not None:
# recognize well-known auxiliary types
@ -446,12 +446,20 @@ class JsonSchemaGenerator:
],
}
elif origin_type is Union:
return {
discriminator = None
if typing.get_origin(data_type) is Annotated:
discriminator = typing.get_args(data_type)[1].discriminator
ret = {
"oneOf": [
self.type_to_schema(union_type)
for union_type in typing.get_args(typ)
]
}
if discriminator:
ret["discriminator"] = {
"propertyName": discriminator,
}
return ret
elif origin_type is Literal:
(literal_value,) = typing.get_args(typ) # unpack value of literal type
schema = self.type_to_schema(type(literal_value))

View file

@ -1,3 +1,13 @@
sphinx
myst-parser
linkify
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
sphinx-rtd-theme>=1.0.0
sphinx-pdj-theme
sphinx-copybutton
sphinx-tabs
sphinx-design
sphinxcontrib-openapi
sphinxcontrib-redoc
sphinxcontrib-mermaid
sphinxcontrib-video

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,133 @@
## Agent Execution Loop
Agents are the heart of complex AI applications. They combine inference, memory, safety, and tool usage into coherent workflows. At its core, an agent follows a sophisticated execution loop that enables multi-step reasoning, tool usage, and safety checks.
Each agent turn follows these key steps:
1. **Initial Safety Check**: The user's input is first screened through configured safety shields
2. **Context Retrieval**:
- If RAG is enabled, the agent queries relevant documents from memory banks
- For new documents, they are first inserted into the memory bank
- Retrieved context is augmented to the user's prompt
3. **Inference Loop**: The agent enters its main execution loop:
- The LLM receives the augmented prompt (with context and/or previous tool outputs)
- The LLM generates a response, potentially with tool calls
- If tool calls are present:
- Tool inputs are safety-checked
- Tools are executed (e.g., web search, code execution)
- Tool responses are fed back to the LLM for synthesis
- The loop continues until:
- The LLM provides a final response without tool calls
- Maximum iterations are reached
- Token limit is exceeded
4. **Final Safety Check**: The agent's final response is screened through safety shields
```{mermaid}
sequenceDiagram
participant U as User
participant E as Executor
participant M as Memory Bank
participant L as LLM
participant T as Tools
participant S as Safety Shield
Note over U,S: Agent Turn Start
U->>S: 1. Submit Prompt
activate S
S->>E: Input Safety Check
deactivate S
E->>M: 2.1 Query Context
M-->>E: 2.2 Retrieved Documents
loop Inference Loop
E->>L: 3.1 Augment with Context
L-->>E: 3.2 Response (with/without tool calls)
alt Has Tool Calls
E->>S: Check Tool Input
S->>T: 4.1 Execute Tool
T-->>E: 4.2 Tool Response
E->>L: 5.1 Tool Response
L-->>E: 5.2 Synthesized Response
end
opt Stop Conditions
Note over E: Break if:
Note over E: - No tool calls
Note over E: - Max iterations reached
Note over E: - Token limit exceeded
end
end
E->>S: Output Safety Check
S->>U: 6. Final Response
```
Each step in this process can be monitored and controlled through configurations. Here's an example that demonstrates monitoring the agent's execution:
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
agent_config = AgentConfig(
model="Llama3.2-3B-Instruct",
instructions="You are a helpful assistant",
# Enable both RAG and tool usage
tools=[
{
"type": "memory",
"memory_bank_configs": [{
"type": "vector",
"bank_id": "my_docs"
}],
"max_tokens_in_context": 4096
},
{
"type": "code_interpreter",
"enable_inline_code_execution": True
}
],
# Configure safety
input_shields=["content_safety"],
output_shields=["content_safety"],
# Control the inference loop
max_infer_iters=5,
sampling_params={
"strategy": {
"type": "top_p",
"temperature": 0.7,
"top_p": 0.95
},
"max_tokens": 2048
}
)
agent = Agent(client, agent_config)
session_id = agent.create_session("monitored_session")
# Stream the agent's execution steps
response = agent.create_turn(
messages=[{"role": "user", "content": "Analyze this code and run it"}],
attachments=[{
"content": "https://raw.githubusercontent.com/example/code.py",
"mime_type": "text/plain"
}],
session_id=session_id
)
# Monitor each step of execution
for log in EventLogger().log(response):
if log.event.step_type == "memory_retrieval":
print("Retrieved context:", log.event.retrieved_context)
elif log.event.step_type == "inference":
print("LLM output:", log.event.model_response)
elif log.event.step_type == "tool_execution":
print("Tool call:", log.event.tool_call)
print("Tool response:", log.event.tool_response)
elif log.event.step_type == "shield_call":
if log.event.violation:
print("Safety violation:", log.event.violation)
```

View file

@ -0,0 +1,169 @@
# Evals
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing)
Llama Stack provides the building blocks needed to run benchmark and application evaluations. This guide will walk you through how to use these components to run open benchmark evaluations. Visit our [Evaluation Concepts](../concepts/evaluation_concepts.md) guide for more details on how evaluations work in Llama Stack, and our [Evaluation Reference](../references/evals_reference/index.md) guide for a comprehensive reference on the APIs.
### 1. Open Benchmark Model Evaluation
This first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:
- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI): Benchmark designed to evaluate multimodal models.
- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions.
#### 1.1 Running MMMU
- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API.
```python
import datasets
ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev")
ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"])
eval_rows = ds.to_pandas().to_dict(orient="records")
```
- Next, we will run evaluation on an model candidate, we will need to:
- Define a system prompt
- Define an EvalCandidate
- Run evaluate on the dataset
```python
SYSTEM_PROMPT_TEMPLATE = """
You are an expert in Agriculture whose job is to answer questions from the user using images.
First, reason about the correct answer.
Then write the answer in the following format where X is exactly one of A,B,C,D:
Answer: X
Make sure X is one of A,B,C,D.
If you are uncertain of the correct answer, guess the most likely one.
"""
system_message = {
"role": "system",
"content": SYSTEM_PROMPT_TEMPLATE,
}
client.eval_tasks.register(
eval_task_id="meta-reference::mmmu",
dataset_id=f"mmmu-{subset}-{split}",
scoring_functions=["basic::regex_parser_multiple_choice_answer"]
)
response = client.eval.evaluate_rows(
task_id="meta-reference::mmmu",
input_rows=eval_rows,
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
},
"system_message": system_message
}
}
)
```
#### 1.2. Running SimpleQA
- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.
- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API.
```python
simpleqa_dataset_id = "huggingface::simpleqa"
_ = client.datasets.register(
dataset_id=simpleqa_dataset_id,
provider_id="huggingface",
url={"uri": "https://huggingface.co/datasets/llamastack/evals"},
metadata={
"path": "llamastack/evals",
"name": "evals__simpleqa",
"split": "train",
},
dataset_schema={
"input_query": {"type": "string"},
"expected_answer": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
}
)
eval_rows = client.datasetio.get_rows_paginated(
dataset_id=simpleqa_dataset_id,
rows_in_page=5,
)
```
```python
client.eval_tasks.register(
eval_task_id="meta-reference::simpleqa",
dataset_id=simpleqa_dataset_id,
scoring_functions=["llm-as-judge::405b-simpleqa"]
)
response = client.eval.evaluate_rows(
task_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
},
}
}
)
```
### 2. Agentic Evaluation
- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.
- We will continue to use the SimpleQA dataset we used in previous example.
- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.
```python
agent_config = {
"model": "meta-llama/Llama-3.1-405B-Instruct",
"instructions": "You are a helpful assistant",
"sampling_params": {
"strategy": {
"type": "greedy",
},
},
"tools": [
{
"type": "brave_search",
"engine": "tavily",
"api_key": userdata.get("TAVILY_SEARCH_API_KEY")
}
],
"tool_choice": "auto",
"tool_prompt_format": "json",
"input_shields": [],
"output_shields": [],
"enable_session_persistence": False
}
response = client.eval.evaluate_rows(
task_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "agent",
"config": agent_config,
}
}
)
```

View file

@ -0,0 +1,36 @@
## Testing & Evaluation
Llama Stack provides built-in tools for evaluating your applications:
1. **Benchmarking**: Test against standard datasets
2. **Application Evaluation**: Score your application's outputs
3. **Custom Metrics**: Define your own evaluation criteria
Here's how to set up basic evaluation:
```python
# Create an evaluation task
response = client.eval_tasks.register(
eval_task_id="my_eval",
dataset_id="my_dataset",
scoring_functions=["accuracy", "relevance"]
)
# Run evaluation
job = client.eval.run_eval(
task_id="my_eval",
task_config={
"type": "app",
"eval_candidate": {
"type": "agent",
"config": agent_config
}
}
)
# Get results
result = client.eval.job_result(
task_id="my_eval",
job_id=job.job_id
)
```

View file

@ -0,0 +1,29 @@
# Building AI Applications
Llama Stack provides all the building blocks needed to create sophisticated AI applications.
The best way to get started is to look at this notebook which walks through the various APIs (from basic inference, to RAG agents) and how to use them.
**Notebook**: [Building AI Applications](docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb)
Here are some key topics that will help you build effective agents:
- **[Agent Execution Loop](agent_execution_loop)**
- **[RAG](rag)**
- **[Safety](safety)**
- **[Tools](tools)**
- **[Telemetry](telemetry)**
- **[Evals](evals)**
```{toctree}
:hidden:
:maxdepth: 1
agent_execution_loop
rag
safety
tools
telemetry
evals
```

View file

@ -0,0 +1,92 @@
## Memory & RAG
Memory enables your applications to reference and recall information from previous interactions or external documents. Llama Stack's memory system is built around the concept of Memory Banks:
1. **Vector Memory Banks**: For semantic search and retrieval
2. **Key-Value Memory Banks**: For structured data storage
3. **Keyword Memory Banks**: For basic text search
4. **Graph Memory Banks**: For relationship-based retrieval
Here's how to set up a vector memory bank for RAG:
```python
# Register a memory bank
bank_id = "my_documents"
response = client.memory_banks.register(
memory_bank_id=bank_id,
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512
}
)
# Insert documents
documents = [
{
"document_id": "doc1",
"content": "Your document text here",
"mime_type": "text/plain"
}
]
client.memory.insert(bank_id, documents)
# Query documents
results = client.memory.query(
bank_id=bank_id,
query="What do you know about...",
)
```
### Building RAG-Enhanced Agents
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
```python
from llama_stack_client.types import Attachment
# Create attachments from documents
attachments = [
Attachment(
content="https://raw.githubusercontent.com/example/doc.rst",
mime_type="text/plain"
)
]
# Configure agent with memory
agent_config = AgentConfig(
model="Llama3.2-3B-Instruct",
instructions="You are a helpful assistant",
tools=[{
"type": "memory",
"memory_bank_configs": [],
"query_generator_config": {"type": "default", "sep": " "},
"max_tokens_in_context": 4096,
"max_chunks": 10
}],
enable_session_persistence=True
)
agent = Agent(client, agent_config)
session_id = agent.create_session("rag_session")
# Initial document ingestion
response = agent.create_turn(
messages=[{
"role": "user",
"content": "I am providing some documents for reference."
}],
attachments=attachments,
session_id=session_id
)
# Query with RAG
response = agent.create_turn(
messages=[{
"role": "user",
"content": "What are the key topics in the documents?"
}],
session_id=session_id
)
```

View file

@ -0,0 +1,21 @@
## Safety Guardrails
Safety is a critical component of any AI application. Llama Stack provides a Shield system that can be applied at multiple touchpoints:
```python
# Register a safety shield
shield_id = "content_safety"
client.shields.register(
shield_id=shield_id,
provider_shield_id="llama-guard-basic"
)
# Run content through shield
response = client.safety.run_shield(
shield_id=shield_id,
messages=[{"role": "user", "content": "User message here"}]
)
if response.violation:
print(f"Safety violation detected: {response.violation.user_message}")
```

View file

@ -0,0 +1,77 @@
## Telemetry
The Llama Stack telemetry system provides comprehensive tracing, metrics, and logging capabilities. It supports multiple sink types including OpenTelemetry, SQLite, and Console output.
### Events
The telemetry system supports three main types of events:
- **Unstructured Log Events**: Free-form log messages with severity levels
```python
unstructured_log_event = UnstructuredLogEvent(
message="This is a log message",
severity=LogSeverity.INFO
)
```
- **Metric Events**: Numerical measurements with units
```python
metric_event = MetricEvent(
metric="my_metric",
value=10,
unit="count"
)
```
- **Structured Log Events**: System events like span start/end. Extensible to add more structured log types.
```python
structured_log_event = SpanStartPayload(
name="my_span",
parent_span_id="parent_span_id"
)
```
### Spans and Traces
- **Spans**: Represent operations with timing and hierarchical relationships
- **Traces**: Collection of related spans forming a complete request flow
### Sinks
- **OpenTelemetry**: Send events to an OpenTelemetry Collector. This is useful for visualizing traces in a tool like Jaeger.
- **SQLite**: Store events in a local SQLite database. This is needed if you want to query the events later through the Llama Stack API.
- **Console**: Print events to the console.
### Providers
#### Meta-Reference Provider
Currently, only the meta-reference provider is implemented. It can be configured to send events to three sink types:
1) OpenTelemetry Collector
2) SQLite
3) Console
#### Configuration
Here's an example that sends telemetry signals to all three sink types. Your configuration might use only one.
```yaml
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
sinks: ['console', 'sqlite', 'otel']
otel_endpoint: "http://localhost:4318/v1/traces"
sqlite_db_path: "/path/to/telemetry.db"
```
### Jaeger to visualize traces
The `otel` sink works with any service compatible with the OpenTelemetry collector. Let's use Jaeger to visualize this data.
Start a Jaeger instance with the OTLP HTTP endpoint at 4318 and the Jaeger UI at 16686 using the following command:
```bash
$ docker run --rm --name jaeger \
-p 16686:16686 -p 4318:4318 \
jaegertracing/jaeger:2.1.0
```
Once the Jaeger instance is running, you can visualize traces by navigating to http://localhost:16686/.
### Querying Traces Stored in SQLite
The `sqlite` sink allows you to query traces without an external system. Here are some example queries. Refer to the notebook at [Llama Stack Building AI Applications](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) for more examples on how to query traces and spaces.

Some files were not shown because too many files have changed in this diff Show more