Merge branch 'main' into llama_stack_how_to_documentation

This commit is contained in:
Omar Abdelwahab 2025-11-26 12:34:19 -08:00 committed by GitHub
commit 3661d9f150
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3489 changed files with 710200 additions and 535689 deletions

View file

@ -5,7 +5,7 @@ omit =
*/llama_stack/templates/*
.venv/*
*/llama_stack/cli/scripts/*
*/llama_stack/ui/*
*/llama_stack_ui/*
*/llama_stack/distribution/ui/*
*/llama_stack/strong_typing/*
*/llama_stack/env.py

19
.dockerignore Normal file
View file

@ -0,0 +1,19 @@
.venv
__pycache__
*.pyc
*.pyo
*.pyd
*.so
.git
.gitignore
htmlcov*
.coverage
coverage*
.cache
.mypy_cache
.pytest_cache
.ruff_cache
uv.lock
node_modules
build
/tmp

1
.gitattributes vendored Normal file
View file

@ -0,0 +1 @@
tests/**/recordings/** linguist-generated=true

2
.github/CODEOWNERS vendored
View file

@ -2,4 +2,4 @@
# These owners will be the default owners for everything in
# the repo. Unless a later match takes precedence,
* @ashwinb @yanxi0830 @hardikjshah @raghotham @ehhuang @terrytangyuan @leseb @bbrowning @reluctantfuturist @mattf @slekkala1 @franciscojavierarceo
* @ashwinb @raghotham @ehhuang @leseb @bbrowning @mattf @franciscojavierarceo @cdoern

View file

@ -0,0 +1,60 @@
name: Install llama-stack-client
description: Install llama-stack-client based on branch context and client-version input
inputs:
client-version:
description: 'Client version to install on non-release branches (latest or published). Ignored on release branches.'
required: false
default: ""
outputs:
uv-extra-index-url:
description: 'UV_EXTRA_INDEX_URL to use (set for release branches)'
value: ${{ steps.configure.outputs.uv-extra-index-url }}
install-after-sync:
description: 'Whether to install client after uv sync'
value: ${{ steps.configure.outputs.install-after-sync }}
install-source:
description: 'Where to install client from after sync'
value: ${{ steps.configure.outputs.install-source }}
runs:
using: "composite"
steps:
- name: Configure client installation
id: configure
shell: bash
run: |
# Determine the branch we're working with
BRANCH="${{ github.base_ref || github.ref }}"
BRANCH="${BRANCH#refs/heads/}"
echo "Working with branch: $BRANCH"
# On release branches: use test.pypi for uv sync, then install from git
# On non-release branches: install based on client-version after sync
if [[ "$BRANCH" =~ ^release-[0-9]+\.[0-9]+\.x$ ]]; then
echo "Detected release branch: $BRANCH"
# Check if matching branch exists in client repo
if ! git ls-remote --exit-code --heads https://github.com/llamastack/llama-stack-client-python.git "$BRANCH" > /dev/null 2>&1; then
echo "::error::Branch $BRANCH not found in llama-stack-client-python repository"
echo "::error::Please create the matching release branch in llama-stack-client-python before testing"
exit 1
fi
# Configure to use test.pypi as extra index (PyPI is primary)
echo "uv-extra-index-url=https://test.pypi.org/simple/" >> $GITHUB_OUTPUT
echo "install-after-sync=true" >> $GITHUB_OUTPUT
echo "install-source=git+https://github.com/llamastack/llama-stack-client-python.git@$BRANCH" >> $GITHUB_OUTPUT
elif [ "${{ inputs.client-version }}" = "latest" ]; then
# Install from main git after sync
echo "install-after-sync=true" >> $GITHUB_OUTPUT
echo "install-source=git+https://github.com/llamastack/llama-stack-client-python.git@main" >> $GITHUB_OUTPUT
elif [ "${{ inputs.client-version }}" = "published" ]; then
# Use published version from PyPI (installed by sync)
echo "install-after-sync=false" >> $GITHUB_OUTPUT
elif [ -n "${{ inputs.client-version }}" ]; then
echo "::error::Invalid client-version: ${{ inputs.client-version }}"
exit 1
fi

View file

@ -54,6 +54,10 @@ runs:
SCRIPT_ARGS="$SCRIPT_ARGS --pattern ${{ inputs.pattern }}"
fi
echo "=== Running command ==="
echo "uv run --no-sync ./scripts/integration-tests.sh $SCRIPT_ARGS"
echo ""
uv run --no-sync ./scripts/integration-tests.sh $SCRIPT_ARGS | tee pytest-${{ inputs.inference-mode }}.log
@ -62,13 +66,14 @@ runs:
shell: bash
run: |
echo "Checking for recording changes"
git status --porcelain tests/integration/recordings/
git status --porcelain tests/integration/
if [[ -n $(git status --porcelain tests/integration/recordings/) ]]; then
if [[ -n $(git status --porcelain tests/integration/) ]]; then
echo "New recordings detected, committing and pushing"
git add tests/integration/recordings/
git add tests/integration/
git commit -m "Recordings update from CI (setup: ${{ inputs.setup }}, suite: ${{ inputs.suite }})"
git commit -m "Recordings update from CI (suite: ${{ inputs.suite }})"
git fetch origin ${{ github.ref_name }}
git rebase origin/${{ github.ref_name }}
echo "Rebased successfully"
@ -78,17 +83,21 @@ runs:
echo "No recording changes"
fi
- name: Write inference logs to file
- name: Write docker logs to file
if: ${{ always() }}
shell: bash
run: |
sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log || true
# Ollama logs (if ollama container exists)
sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log 2>&1 || true
# vllm logs (if vllm container exists)
sudo docker logs vllm > vllm-${{ inputs.inference-mode }}.log 2>&1 || true
# Note: distro container logs are now dumped in integration-tests.sh before container is removed
- name: Upload logs
if: ${{ always() }}
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
with:
name: logs-${{ github.run_id }}-${{ github.run_attempt || '' }}-${{ strategy.job-index }}
name: logs-${{ github.run_id }}-${{ github.run_attempt || '1' }}-${{ strategy.job-index || github.job }}-${{ github.action }}
path: |
*.log
retention-days: 1

View file

@ -18,25 +18,35 @@ runs:
python-version: ${{ inputs.python-version }}
version: 0.7.6
- name: Configure client installation
id: client-config
uses: ./.github/actions/install-llama-stack-client
with:
client-version: ${{ inputs.client-version }}
- name: Install dependencies
shell: bash
env:
UV_EXTRA_INDEX_URL: ${{ steps.client-config.outputs.uv-extra-index-url }}
run: |
# Export UV env vars for current step and persist to GITHUB_ENV for subsequent steps
if [ -n "$UV_EXTRA_INDEX_URL" ]; then
export UV_INDEX_STRATEGY=unsafe-best-match
echo "UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL" >> $GITHUB_ENV
echo "UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY" >> $GITHUB_ENV
echo "Exported UV environment variables for current and subsequent steps"
fi
echo "Updating project dependencies via uv sync"
uv sync --all-groups
echo "Installing ad-hoc dependencies"
uv pip install faiss-cpu
# Install llama-stack-client-python based on the client-version input
if [ "${{ inputs.client-version }}" = "latest" ]; then
echo "Installing latest llama-stack-client-python from main branch"
uv pip install git+https://github.com/llamastack/llama-stack-client-python.git@main
elif [ "${{ inputs.client-version }}" = "published" ]; then
echo "Installing published llama-stack-client-python from PyPI"
uv pip install llama-stack-client
else
echo "Invalid client-version: ${{ inputs.client-version }}"
exit 1
# Install specific client version after sync if needed
if [ "${{ steps.client-config.outputs.install-after-sync }}" = "true" ]; then
echo "Installing llama-stack-client from: ${{ steps.client-config.outputs.install-source }}"
uv pip install ${{ steps.client-config.outputs.install-source }}
fi
echo "Installed llama packages"

View file

@ -39,25 +39,40 @@ runs:
if: ${{ inputs.setup == 'vllm' && inputs.inference-mode == 'record' }}
uses: ./.github/actions/setup-vllm
- name: Start Postgres service
if: ${{ contains(inputs.setup, 'postgres') }}
shell: bash
run: |
sudo docker rm -f postgres-ci || true
sudo docker run -d --name postgres-ci \
-e POSTGRES_USER=llamastack \
-e POSTGRES_PASSWORD=llamastack \
-e POSTGRES_DB=llamastack \
-p 5432:5432 \
postgres:16
echo "Waiting for Postgres to become ready..."
for i in {1..30}; do
if sudo docker exec postgres-ci pg_isready -U llamastack -d llamastack >/dev/null 2>&1; then
echo "Postgres is ready"
break
fi
if [ "$i" -eq 30 ]; then
echo "Postgres failed to start in time"
sudo docker logs postgres-ci || true
exit 1
fi
sleep 2
done
- name: Build Llama Stack
shell: bash
run: |
# Install llama-stack-client-python based on the client-version input
if [ "${{ inputs.client-version }}" = "latest" ]; then
echo "Installing latest llama-stack-client-python from main branch"
export LLAMA_STACK_CLIENT_DIR=git+https://github.com/llamastack/llama-stack-client-python.git@main
elif [ "${{ inputs.client-version }}" = "published" ]; then
echo "Installing published llama-stack-client-python from PyPI"
unset LLAMA_STACK_CLIENT_DIR
else
echo "Invalid client-version: ${{ inputs.client-version }}"
exit 1
fi
# Client is already installed by setup-runner (handles both main and release branches)
echo "Building Llama Stack"
LLAMA_STACK_DIR=. \
uv run --no-sync llama stack build --template ci-tests --image-type venv
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
- name: Configure git for commits
shell: bash

View file

@ -0,0 +1,35 @@
name: Setup TypeScript client
description: Conditionally checkout and link llama-stack-client-typescript based on client-version
inputs:
client-version:
description: 'Client version (latest or published)'
required: true
outputs:
ts-client-path:
description: 'Path or version to use for TypeScript client'
value: ${{ steps.set-path.outputs.ts-client-path }}
runs:
using: "composite"
steps:
- name: Checkout TypeScript client (latest)
if: ${{ inputs.client-version == 'latest' }}
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
with:
repository: llamastack/llama-stack-client-typescript
ref: main
path: .ts-client-checkout
- name: Set TS_CLIENT_PATH
id: set-path
shell: bash
run: |
if [ "${{ inputs.client-version }}" = "latest" ]; then
echo "ts-client-path=${{ github.workspace }}/.ts-client-checkout" >> $GITHUB_OUTPUT
elif [ "${{ inputs.client-version }}" = "published" ]; then
echo "ts-client-path=^0.3.2" >> $GITHUB_OUTPUT
else
echo "::error::Invalid client-version: ${{ inputs.client-version }}"
exit 1
fi

View file

@ -11,13 +11,14 @@ runs:
--name vllm \
-p 8000:8000 \
--privileged=true \
quay.io/higginsd/vllm-cpu:65393ee064 \
quay.io/higginsd/vllm-cpu:65393ee064-qwen3 \
--host 0.0.0.0 \
--port 8000 \
--enable-auto-tool-choice \
--tool-call-parser llama3_json \
--model /root/.cache/Llama-3.2-1B-Instruct \
--served-model-name meta-llama/Llama-3.2-1B-Instruct
--tool-call-parser hermes \
--model /root/.cache/Qwen3-0.6B \
--served-model-name Qwen/Qwen3-0.6B \
--max-model-len 8192
# Wait for vllm to be ready
echo "Waiting for vllm to be ready..."

View file

@ -22,7 +22,7 @@ updates:
prefix: chore(python-deps)
- package-ecosystem: npm
directory: "/llama_stack/ui"
directory: "/llama_stack_ui"
schedule:
interval: "weekly"
day: "saturday"

23
.github/mergify.yml vendored Normal file
View file

@ -0,0 +1,23 @@
pull_request_rules:
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict
- -closed
actions:
label:
add:
- needs-rebase
comment:
message: >
This pull request has merge conflicts that must be resolved before it
can be merged. @{{author}} please rebase it.
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict
- -closed
actions:
label:
remove:
- needs-rebase

View file

@ -4,7 +4,7 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl
| Name | File | Purpose |
| ---- | ---- | ------- |
| Update Changelog | [changelog.yml](changelog.yml) | Creates PR for updating the CHANGELOG.md |
| Backward Compatibility Check | [backward-compat.yml](backward-compat.yml) | Check backward compatibility for run.yaml configs |
| API Conformance Tests | [conformance.yml](conformance.yml) | Run the API Conformance test suite on the changes. |
| Installer CI | [install-script-ci.yml](install-script-ci.yml) | Test the installation script |
| Integration Auth Tests | [integration-auth-tests.yml](integration-auth-tests.yml) | Run the integration test suite with Kubernetes authentication |
@ -12,11 +12,12 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl
| Integration Tests (Replay) | [integration-tests.yml](integration-tests.yml) | Run the integration test suites from tests/integration in replay mode |
| Vector IO Integration Tests | [integration-vector-io-tests.yml](integration-vector-io-tests.yml) | Run the integration test suite with various VectorIO providers |
| Pre-commit | [pre-commit.yml](pre-commit.yml) | Run pre-commit checks |
| Pre-commit Bot | [precommit-trigger.yml](precommit-trigger.yml) | Pre-commit bot for PR |
| Test Llama Stack Build | [providers-build.yml](providers-build.yml) | Test llama stack build |
| Test llama stack list-deps | [providers-list-deps.yml](providers-list-deps.yml) | Test llama stack list-deps |
| Python Package Build Test | [python-build-test.yml](python-build-test.yml) | Test building the llama-stack PyPI project |
| Integration Tests (Record) | [record-integration-tests.yml](record-integration-tests.yml) | Run the integration test suite from tests/integration |
| Check semantic PR titles | [semantic-pr.yml](semantic-pr.yml) | Ensure that PR titles follow the conventional commit spec |
| Stainless SDK Builds | [stainless-builds.yml](stainless-builds.yml) | Build Stainless SDK from OpenAPI spec changes |
| Close stale issues and PRs | [stale_bot.yml](stale_bot.yml) | Run the Stale Bot action |
| Test External Providers Installed via Module | [test-external-provider-module.yml](test-external-provider-module.yml) | Test External Provider installation via Python module |
| Test External API and Providers | [test-external.yml](test-external.yml) | Test the External API and Provider mechanisms |

578
.github/workflows/backward-compat.yml vendored Normal file
View file

@ -0,0 +1,578 @@
name: Backward Compatibility Check
run-name: Check backward compatibility for run.yaml configs
on:
pull_request:
branches:
- main
- 'release-[0-9]+.[0-9]+.[0-9]+.[0-9]+'
- 'release-[0-9]+.[0-9]+.[0-9]+'
- 'release-[0-9]+.[0-9]+'
paths:
- 'src/llama_stack/core/datatypes.py'
- 'src/llama_stack/providers/datatypes.py'
- 'src/llama_stack/distributions/**/run.yaml'
- 'tests/backward_compat/**'
- '.github/workflows/backward-compat.yml'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
check-main-compatibility:
name: Check Compatibility with main
runs-on: ubuntu-latest
steps:
- name: Checkout PR branch
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
fetch-depth: 0 # Need full history to access main branch
- name: Set up Python
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'
- name: Install uv
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # v7.1.4
with:
enable-cache: true
- name: Install dependencies
run: |
uv sync --group dev
- name: Extract run.yaml files from main branch
id: extract_configs
run: |
# Get list of run.yaml paths from main
git fetch origin main
CONFIG_PATHS=$(git ls-tree -r --name-only origin/main | grep "src/llama_stack/distributions/.*/run.yaml$" || true)
if [ -z "$CONFIG_PATHS" ]; then
echo "No run.yaml files found in main branch"
exit 1
fi
# Extract all configs to a temp directory
mkdir -p /tmp/main_configs
echo "Extracting configs from main branch:"
while IFS= read -r config_path; do
if [ -z "$config_path" ]; then
continue
fi
# Extract filename for storage
filename=$(basename $(dirname "$config_path"))
echo " - $filename (from $config_path)"
git show origin/main:"$config_path" > "/tmp/main_configs/${filename}.yaml"
done <<< "$CONFIG_PATHS"
echo ""
echo "Extracted $(ls /tmp/main_configs/*.yaml | wc -l) config files"
- name: Test all configs from main
id: test_configs
continue-on-error: true
run: |
# Run pytest once with all configs parameterized
if COMPAT_TEST_CONFIGS_DIR=/tmp/main_configs uv run pytest tests/backward_compat/test_run_config.py -v; then
echo "failed=false" >> $GITHUB_OUTPUT
else
echo "failed=true" >> $GITHUB_OUTPUT
exit 1
fi
- name: Check for breaking change acknowledgment
id: check_ack
if: steps.test_configs.outputs.failed == 'true'
run: |
echo "Breaking changes detected. Checking for acknowledgment..."
# Check PR title for '!:' marker (conventional commits)
PR_TITLE="${{ github.event.pull_request.title }}"
if [[ "$PR_TITLE" =~ ^[a-z]+\!: ]]; then
echo "✓ Breaking change acknowledged in PR title"
echo "acknowledged=true" >> $GITHUB_OUTPUT
exit 0
fi
# Check commit messages for BREAKING CHANGE:
if git log origin/main..HEAD --format=%B | grep -q "BREAKING CHANGE:"; then
echo "✓ Breaking change acknowledged in commit message"
echo "acknowledged=true" >> $GITHUB_OUTPUT
exit 0
fi
echo "✗ Breaking change NOT acknowledged"
echo "acknowledged=false" >> $GITHUB_OUTPUT
env:
GH_TOKEN: ${{ github.token }}
- name: Evaluate results
if: always()
run: |
FAILED="${{ steps.test_configs.outputs.failed }}"
ACKNOWLEDGED="${{ steps.check_ack.outputs.acknowledged }}"
if [[ "$FAILED" == "true" ]]; then
if [[ "$ACKNOWLEDGED" == "true" ]]; then
echo ""
echo "⚠️ WARNING: Breaking changes detected but acknowledged"
echo ""
echo "This PR introduces backward-incompatible changes to run.yaml."
echo "The changes have been properly acknowledged."
echo ""
exit 0 # Pass the check
else
echo ""
echo "❌ ERROR: Breaking changes detected without acknowledgment"
echo ""
echo "This PR introduces backward-incompatible changes to run.yaml"
echo "that will break existing user configurations."
echo ""
echo "To acknowledge this breaking change, do ONE of:"
echo " 1. Add '!:' to your PR title (e.g., 'feat!: change xyz')"
echo " 2. Add the 'breaking-change' label to this PR"
echo " 3. Include 'BREAKING CHANGE:' in a commit message"
echo ""
exit 1 # Fail the check
fi
fi
test-integration-main:
name: Run Integration Tests with main Config
runs-on: ubuntu-latest
steps:
- name: Checkout PR branch
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
fetch-depth: 0
- name: Extract ci-tests run.yaml from main
run: |
git fetch origin main
git show origin/main:src/llama_stack/distributions/ci-tests/run.yaml > /tmp/main-ci-tests-run.yaml
echo "Extracted ci-tests run.yaml from main branch"
- name: Setup test environment
uses: ./.github/actions/setup-test-environment
with:
python-version: '3.12'
client-version: 'latest'
setup: 'ollama'
suite: 'base'
inference-mode: 'replay'
- name: Run integration tests with main config
id: test_integration
continue-on-error: true
uses: ./.github/actions/run-and-record-tests
with:
stack-config: /tmp/main-ci-tests-run.yaml
setup: 'ollama'
inference-mode: 'replay'
suite: 'base'
- name: Check for breaking change acknowledgment
id: check_ack
if: steps.test_integration.outcome == 'failure'
run: |
echo "Integration tests failed. Checking for acknowledgment..."
# Check PR title for '!:' marker (conventional commits)
PR_TITLE="${{ github.event.pull_request.title }}"
if [[ "$PR_TITLE" =~ ^[a-z]+\!: ]]; then
echo "✓ Breaking change acknowledged in PR title"
echo "acknowledged=true" >> $GITHUB_OUTPUT
exit 0
fi
# Check commit messages for BREAKING CHANGE:
if git log origin/main..HEAD --format=%B | grep -q "BREAKING CHANGE:"; then
echo "✓ Breaking change acknowledged in commit message"
echo "acknowledged=true" >> $GITHUB_OUTPUT
exit 0
fi
echo "✗ Breaking change NOT acknowledged"
echo "acknowledged=false" >> $GITHUB_OUTPUT
env:
GH_TOKEN: ${{ github.token }}
- name: Evaluate integration test results
if: always()
run: |
TEST_FAILED="${{ steps.test_integration.outcome == 'failure' }}"
ACKNOWLEDGED="${{ steps.check_ack.outputs.acknowledged }}"
if [[ "$TEST_FAILED" == "true" ]]; then
if [[ "$ACKNOWLEDGED" == "true" ]]; then
echo ""
echo "⚠️ WARNING: Integration tests failed with main config but acknowledged"
echo ""
exit 0 # Pass the check
else
echo ""
echo "❌ ERROR: Integration tests failed with main config without acknowledgment"
echo ""
echo "To acknowledge this breaking change, do ONE of:"
echo " 1. Add '!:' to your PR title (e.g., 'feat!: change xyz')"
echo " 2. Include 'BREAKING CHANGE:' in a commit message"
echo ""
exit 1 # Fail the check
fi
fi
test-integration-release:
name: Run Integration Tests with Latest Release (Informational)
runs-on: ubuntu-latest
steps:
- name: Checkout PR branch
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
fetch-depth: 0
- name: Get latest release
id: get_release
run: |
# Get the latest release from GitHub
LATEST_TAG=$(gh release list --limit 1 --json tagName --jq '.[0].tagName' 2>/dev/null || echo "")
if [ -z "$LATEST_TAG" ]; then
echo "No releases found, skipping release compatibility check"
echo "has_release=false" >> $GITHUB_OUTPUT
exit 0
fi
echo "Latest release: $LATEST_TAG"
echo "has_release=true" >> $GITHUB_OUTPUT
echo "tag=$LATEST_TAG" >> $GITHUB_OUTPUT
env:
GH_TOKEN: ${{ github.token }}
- name: Extract ci-tests run.yaml from release
if: steps.get_release.outputs.has_release == 'true'
id: extract_config
run: |
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
# Try with src/ prefix first (newer releases), then without (older releases)
if git show "$RELEASE_TAG:src/llama_stack/distributions/ci-tests/run.yaml" > /tmp/release-ci-tests-run.yaml 2>/dev/null; then
echo "Extracted ci-tests run.yaml from release $RELEASE_TAG (src/ path)"
echo "has_config=true" >> $GITHUB_OUTPUT
elif git show "$RELEASE_TAG:llama_stack/distributions/ci-tests/run.yaml" > /tmp/release-ci-tests-run.yaml 2>/dev/null; then
echo "Extracted ci-tests run.yaml from release $RELEASE_TAG (old path)"
echo "has_config=true" >> $GITHUB_OUTPUT
else
echo "::warning::ci-tests/run.yaml not found in release $RELEASE_TAG"
echo "has_config=false" >> $GITHUB_OUTPUT
fi
- name: Setup test environment
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
uses: ./.github/actions/setup-test-environment
with:
python-version: '3.12'
client-version: 'latest'
setup: 'ollama'
suite: 'base'
inference-mode: 'replay'
- name: Run integration tests with release config (PR branch)
id: test_release_pr
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
continue-on-error: true
uses: ./.github/actions/run-and-record-tests
with:
stack-config: /tmp/release-ci-tests-run.yaml
setup: 'ollama'
inference-mode: 'replay'
suite: 'base'
- name: Checkout main branch to test baseline
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
run: |
git checkout origin/main
- name: Setup test environment for main
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
uses: ./.github/actions/setup-test-environment
with:
python-version: '3.12'
client-version: 'latest'
setup: 'ollama'
suite: 'base'
inference-mode: 'replay'
- name: Run integration tests with release config (main branch)
id: test_release_main
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
continue-on-error: true
uses: ./.github/actions/run-and-record-tests
with:
stack-config: /tmp/release-ci-tests-run.yaml
setup: 'ollama'
inference-mode: 'replay'
suite: 'base'
- name: Report results and post PR comment
if: always() && steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
run: |
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
PR_OUTCOME="${{ steps.test_release_pr.outcome }}"
MAIN_OUTCOME="${{ steps.test_release_main.outcome }}"
if [[ "$PR_OUTCOME" == "failure" && "$MAIN_OUTCOME" == "success" ]]; then
# NEW breaking change - PR fails but main passes
echo "::error::🚨 This PR introduces a NEW breaking change!"
# Check if we already posted a comment (to avoid spam on every push)
EXISTING_COMMENT=$(gh pr view ${{ github.event.pull_request.number }} --json comments --jq '.comments[] | select(.body | contains("🚨 New Breaking Change Detected") and contains("Integration tests")) | .id' | head -1)
if [[ -z "$EXISTING_COMMENT" ]]; then
gh pr comment ${{ github.event.pull_request.number }} --body "## 🚨 New Breaking Change Detected
**Integration tests against release \`$RELEASE_TAG\` are now failing**
⚠️ This PR introduces a breaking change that affects compatibility with the latest release.
- Users on release \`$RELEASE_TAG\` may not be able to upgrade
- Existing configurations may break
The tests pass on \`main\` but fail with this PR's changes.
> **Note:** This is informational only and does not block merge.
> Consider whether this breaking change is acceptable for users."
else
echo "Comment already exists, skipping to avoid spam"
fi
cat >> $GITHUB_STEP_SUMMARY <<EOF
## 🚨 NEW Breaking Change Detected
**Integration tests against release \`$RELEASE_TAG\` FAILED**
⚠️ **This PR introduces a NEW breaking change**
- Tests **PASS** on main branch ✅
- Tests **FAIL** on PR branch ❌
- Users on release \`$RELEASE_TAG\` may not be able to upgrade
- Existing configurations may break
> **Note:** This is informational only and does not block merge.
> Consider whether this breaking change is acceptable for users.
EOF
elif [[ "$PR_OUTCOME" == "failure" ]]; then
# Existing breaking change - both PR and main fail
echo "::warning::Breaking change already exists in main branch"
cat >> $GITHUB_STEP_SUMMARY <<EOF
## ⚠️ Release Compatibility Test Failed (Existing Issue)
**Integration tests against release \`$RELEASE_TAG\` FAILED**
- Tests **FAIL** on main branch ❌
- Tests **FAIL** on PR branch ❌
- This breaking change already exists in main (not introduced by this PR)
> **Note:** This is informational only.
EOF
else
# Success - tests pass
cat >> $GITHUB_STEP_SUMMARY <<EOF
## ✅ Release Compatibility Test Passed
Integration tests against release \`$RELEASE_TAG\` passed successfully.
This PR maintains compatibility with the latest release.
EOF
fi
env:
GH_TOKEN: ${{ github.token }}
check-schema-release-compatibility:
name: Check Schema Compatibility with Latest Release (Informational)
runs-on: ubuntu-latest
steps:
- name: Checkout PR branch
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'
- name: Install uv
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # v7.1.4
with:
enable-cache: true
- name: Install dependencies
run: |
uv sync --group dev
- name: Get latest release
id: get_release
run: |
# Get the latest release from GitHub
LATEST_TAG=$(gh release list --limit 1 --json tagName --jq '.[0].tagName' 2>/dev/null || echo "")
if [ -z "$LATEST_TAG" ]; then
echo "No releases found, skipping release compatibility check"
echo "has_release=false" >> $GITHUB_OUTPUT
exit 0
fi
echo "Latest release: $LATEST_TAG"
echo "has_release=true" >> $GITHUB_OUTPUT
echo "tag=$LATEST_TAG" >> $GITHUB_OUTPUT
env:
GH_TOKEN: ${{ github.token }}
- name: Extract configs from release
if: steps.get_release.outputs.has_release == 'true'
id: extract_release_configs
run: |
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
# Get run.yaml files from the release (try both src/ and old path)
CONFIG_PATHS=$(git ls-tree -r --name-only "$RELEASE_TAG" | grep "llama_stack/distributions/.*/run.yaml$" || true)
if [ -z "$CONFIG_PATHS" ]; then
echo "::warning::No run.yaml files found in release $RELEASE_TAG"
echo "has_configs=false" >> $GITHUB_OUTPUT
exit 0
fi
# Extract all configs to a temp directory
mkdir -p /tmp/release_configs
echo "Extracting configs from release $RELEASE_TAG:"
while IFS= read -r config_path; do
if [ -z "$config_path" ]; then
continue
fi
filename=$(basename $(dirname "$config_path"))
echo " - $filename (from $config_path)"
git show "$RELEASE_TAG:$config_path" > "/tmp/release_configs/${filename}.yaml" 2>/dev/null || true
done <<< "$CONFIG_PATHS"
echo ""
echo "Extracted $(ls /tmp/release_configs/*.yaml 2>/dev/null | wc -l) config files"
echo "has_configs=true" >> $GITHUB_OUTPUT
- name: Test against release configs (PR branch)
id: test_schema_pr
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
continue-on-error: true
run: |
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
COMPAT_TEST_CONFIGS_DIR=/tmp/release_configs uv run pytest tests/backward_compat/test_run_config.py -v --tb=short
- name: Checkout main branch to test baseline
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
run: |
git checkout origin/main
- name: Install dependencies for main
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
run: |
uv sync --group dev
- name: Test against release configs (main branch)
id: test_schema_main
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
continue-on-error: true
run: |
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
COMPAT_TEST_CONFIGS_DIR=/tmp/release_configs uv run pytest tests/backward_compat/test_run_config.py -v --tb=short
- name: Report results and post PR comment
if: always() && steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
run: |
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
PR_OUTCOME="${{ steps.test_schema_pr.outcome }}"
MAIN_OUTCOME="${{ steps.test_schema_main.outcome }}"
if [[ "$PR_OUTCOME" == "failure" && "$MAIN_OUTCOME" == "success" ]]; then
# NEW breaking change - PR fails but main passes
echo "::error::🚨 This PR introduces a NEW schema breaking change!"
# Check if we already posted a comment (to avoid spam on every push)
EXISTING_COMMENT=$(gh pr view ${{ github.event.pull_request.number }} --json comments --jq '.comments[] | select(.body | contains("🚨 New Schema Breaking Change Detected")) | .id' | head -1)
if [[ -z "$EXISTING_COMMENT" ]]; then
gh pr comment ${{ github.event.pull_request.number }} --body "## 🚨 New Schema Breaking Change Detected
**Schema validation against release \`$RELEASE_TAG\` is now failing**
⚠️ This PR introduces a schema breaking change that affects compatibility with the latest release.
- Users on release \`$RELEASE_TAG\` will not be able to upgrade
- Existing run.yaml configurations will fail validation
The tests pass on \`main\` but fail with this PR's changes.
> **Note:** This is informational only and does not block merge.
> Consider whether this breaking change is acceptable for users."
else
echo "Comment already exists, skipping to avoid spam"
fi
cat >> $GITHUB_STEP_SUMMARY <<EOF
## 🚨 NEW Schema Breaking Change Detected
**Schema validation against release \`$RELEASE_TAG\` FAILED**
⚠️ **This PR introduces a NEW schema breaking change**
- Tests **PASS** on main branch ✅
- Tests **FAIL** on PR branch ❌
- Users on release \`$RELEASE_TAG\` will not be able to upgrade
- Existing run.yaml configurations will fail validation
> **Note:** This is informational only and does not block merge.
> Consider whether this breaking change is acceptable for users.
EOF
elif [[ "$PR_OUTCOME" == "failure" ]]; then
# Existing breaking change - both PR and main fail
echo "::warning::Schema breaking change already exists in main branch"
cat >> $GITHUB_STEP_SUMMARY <<EOF
## ⚠️ Release Schema Compatibility Failed (Existing Issue)
**Schema validation against release \`$RELEASE_TAG\` FAILED**
- Tests **FAIL** on main branch ❌
- Tests **FAIL** on PR branch ❌
- This schema breaking change already exists in main (not introduced by this PR)
> **Note:** This is informational only.
EOF
else
# Success - tests pass
cat >> $GITHUB_STEP_SUMMARY <<EOF
## ✅ Release Schema Compatibility Passed
All run.yaml configs from release \`$RELEASE_TAG\` are compatible.
This PR maintains backward compatibility with the latest release.
EOF
fi
env:
GH_TOKEN: ${{ github.token }}

View file

@ -1,31 +0,0 @@
name: Update Changelog
run-name: Creates PR for updating the CHANGELOG.md
on:
release:
types: [published, unpublished, created, edited, deleted, released]
permissions:
contents: read
jobs:
generate_changelog:
name: Generate changelog
permissions:
contents: write # for peter-evans/create-pull-request to create branch
pull-requests: write # for peter-evans/create-pull-request to create a PR
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
with:
ref: main
fetch-depth: 0
- run: |
python ./scripts/gen-changelog.py
- uses: peter-evans/create-pull-request@271a8d0340265f705b14b6d32b9829c1cb33d45e # v7.0.8
with:
title: 'docs: update CHANGELOG.md for ${{ github.ref_name }}'
commit-message: 'docs: update CHANGELOG.md for ${{ github.ref_name }}'
branch: create-pull-request/changelog
signoff: true

View file

@ -22,7 +22,6 @@ on:
- 'docs/static/stable-llama-stack-spec.yaml' # Stable APIs spec
- 'docs/static/experimental-llama-stack-spec.yaml' # Experimental APIs spec
- 'docs/static/deprecated-llama-stack-spec.yaml' # Deprecated APIs spec
- 'docs/static/llama-stack-spec.html' # Legacy HTML spec
- '.github/workflows/conformance.yml' # This workflow itself
concurrency:
@ -36,16 +35,16 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout PR Code
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
fetch-depth: 0
# Check if we should skip conformance testing due to breaking changes
- name: Check if conformance test should be skipped
id: skip-check
env:
PR_TITLE: ${{ github.event.pull_request.title }}
run: |
PR_TITLE="${{ github.event.pull_request.title }}"
# Skip if title contains "!:" indicating breaking change (like "feat!:")
if [[ "$PR_TITLE" == *"!:"* ]]; then
echo "skip=true" >> $GITHUB_OUTPUT
@ -60,7 +59,7 @@ jobs:
# This allows us to diff the current changes against the previous state
- name: Checkout Base Branch
if: steps.skip-check.outputs.skip != 'true'
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
ref: ${{ github.event.pull_request.base.ref }}
path: 'base'

View file

@ -16,22 +16,31 @@ jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # 5.0.0
- uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # 6.0.0
- name: Run ShellCheck on install.sh
run: shellcheck scripts/install.sh
smoke-test-on-dev:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Build a single provider
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync \
llama stack build --template starter --image-type container --image-name test
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=starter"
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
fi
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
fi
docker build . \
-f containers/Containerfile \
$BUILD_ARGS \
--tag llama-stack:starter-ci
- name: Run installer end-to-end
run: |

View file

@ -4,13 +4,17 @@ run-name: Run the integration test suite with Kubernetes authentication
on:
push:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
pull_request:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'distributions/**'
- 'llama_stack/**'
- '!llama_stack/ui/**'
- 'src/llama_stack/**'
- '!src/llama_stack_ui/**'
- 'tests/integration/**'
- 'uv.lock'
- 'pyproject.toml'
@ -31,7 +35,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -73,6 +77,27 @@ jobs:
image_name: kube
apis: []
providers: {}
storage:
backends:
kv_default:
type: kv_sqlite
db_path: $run_dir/kvstore.db
sql_default:
type: sql_sqlite
db_path: $run_dir/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
namespace: prompts
backend: kv_default
server:
port: 8321
EOF
@ -92,7 +117,8 @@ jobs:
run: |
echo "Waiting for Llama Stack server..."
for i in {1..30}; do
if curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://localhost:8321/v1/health | grep -q "OK"; then
# Note: /v1/health does not require authentication
if curl -s -L http://localhost:8321/v1/health | grep -q "OK"; then
echo "Llama Stack server is up!"
if grep -q "Enabling authentication with provider: ${{ matrix.auth-provider }}" server.log; then
echo "Llama Stack server is configured to use ${{ matrix.auth-provider }} auth"
@ -111,4 +137,27 @@ jobs:
- name: Test auth
run: |
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers|jq
echo "Testing /v1/version without token (should succeed)..."
if curl -s -L -o /dev/null -w "%{http_code}" http://127.0.0.1:8321/v1/version | grep -q "200"; then
echo "/v1/version accessible without token (200)"
else
echo "/v1/version returned non-200 status without token"
exit 1
fi
echo "Testing /v1/providers without token (should fail with 401)..."
if curl -s -L -o /dev/null -w "%{http_code}" http://127.0.0.1:8321/v1/providers | grep -q "401"; then
echo "/v1/providers blocked without token (401)"
else
echo "/v1/providers did not return 401 without token"
exit 1
fi
echo "Testing /v1/providers with valid token (should succeed)..."
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers | jq
if [ $? -eq 0 ]; then
echo "/v1/providers accessible with valid token"
else
echo "/v1/providers failed with valid token"
exit 1
fi

View file

@ -4,11 +4,15 @@ run-name: Run the integration test suite with SqlStore
on:
push:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
pull_request:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'llama_stack/providers/utils/sqlstore/**'
- 'src/llama_stack/providers/utils/sqlstore/**'
- 'tests/integration/sqlstore/**'
- 'uv.lock'
- 'pyproject.toml'
@ -44,7 +48,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -64,7 +68,7 @@ jobs:
- name: Upload test logs
if: ${{ always() }}
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
with:
name: postgres-test-logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ matrix.python-version }}
path: |

View file

@ -4,13 +4,17 @@ run-name: Run the integration test suites from tests/integration in replay mode
on:
push:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
pull_request:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
types: [opened, synchronize, reopened]
paths:
- 'llama_stack/**'
- '!llama_stack/ui/**'
- 'src/llama_stack/**'
- '!src/llama_stack_ui/**'
- 'tests/**'
- 'uv.lock'
- 'pyproject.toml'
@ -18,10 +22,11 @@ on:
- '.github/actions/setup-ollama/action.yml'
- '.github/actions/setup-test-environment/action.yml'
- '.github/actions/run-and-record-tests/action.yml'
- 'scripts/integration-tests.sh'
- 'scripts/generate_ci_matrix.py'
schedule:
# If changing the cron schedule, update the provider in the test-matrix job
- cron: '0 0 * * *' # (test latest client) Daily at 12 AM UTC
- cron: '1 0 * * 0' # (test vllm) Weekly on Sunday at 1 AM UTC
workflow_dispatch:
inputs:
test-all-client-versions:
@ -39,36 +44,47 @@ concurrency:
cancel-in-progress: true
jobs:
generate-matrix:
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Generate test matrix
id: set-matrix
run: |
# Generate matrix from CI_MATRIX in tests/integration/suites.py
# Supports schedule-based and manual input overrides
MATRIX=$(PYTHONPATH=. python3 scripts/generate_ci_matrix.py \
--schedule "${{ github.event.schedule }}" \
--test-setup "${{ github.event.inputs.test-setup }}")
echo "matrix=$MATRIX" >> $GITHUB_OUTPUT
echo "Generated matrix: $MATRIX"
run-replay-mode-tests:
needs: generate-matrix
runs-on: ubuntu-latest
name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client-type, matrix.config.setup, matrix.python-version, matrix.client-version, matrix.config.suite) }}
name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client, matrix.config.setup, matrix.python-version, matrix.client-version, matrix.config.suite) }}
strategy:
fail-fast: false
matrix:
client-type: [library, server]
client: [library, docker, server]
# Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }}
# Define (setup, suite) pairs - they are always matched and cannot be independent
# Weekly schedule (Sun 1 AM): vllm+base
# Input test-setup=ollama-vision: ollama-vision+vision
# Default (including test-setup=ollama): both ollama+base and ollama-vision+vision
config: >-
${{
github.event.schedule == '1 0 * * 0'
&& fromJSON('[{"setup": "vllm", "suite": "base"}]')
|| github.event.inputs.test-setup == 'ollama-vision'
&& fromJSON('[{"setup": "ollama-vision", "suite": "vision"}]')
|| fromJSON('[{"setup": "ollama", "suite": "base"}, {"setup": "ollama-vision", "suite": "vision"}]')
}}
# Test configurations: Generated from CI_MATRIX in tests/integration/suites.py
# See scripts/generate_ci_matrix.py for generation logic
config: ${{ fromJSON(needs.generate-matrix.outputs.matrix).include }}
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Setup test environment
if: ${{ matrix.config.allowed_clients == null || contains(matrix.config.allowed_clients, matrix.client) }}
uses: ./.github/actions/setup-test-environment
with:
python-version: ${{ matrix.python-version }}
@ -77,10 +93,33 @@ jobs:
suite: ${{ matrix.config.suite }}
inference-mode: 'replay'
- name: Run tests
uses: ./.github/actions/run-and-record-tests
- name: Setup Node.js for TypeScript client tests
if: ${{ matrix.client == 'server' }}
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
with:
stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || 'server:ci-tests' }}
node-version: '20'
cache: 'npm'
cache-dependency-path: tests/integration/client-typescript/package-lock.json
- name: Setup TypeScript client
if: ${{ matrix.client == 'server' }}
id: setup-ts-client
uses: ./.github/actions/setup-typescript-client
with:
client-version: ${{ matrix.client-version }}
- name: Run tests
if: ${{ matrix.config.allowed_clients == null || contains(matrix.config.allowed_clients, matrix.client) }}
uses: ./.github/actions/run-and-record-tests
env:
OPENAI_API_KEY: dummy
TS_CLIENT_PATH: ${{ steps.setup-ts-client.outputs.ts-client-path || '' }}
with:
stack-config: >-
${{ matrix.config.stack_config
|| (matrix.client == 'library' && 'ci-tests')
|| (matrix.client == 'server' && 'server:ci-tests')
|| 'docker:ci-tests' }}
setup: ${{ matrix.config.setup }}
inference-mode: 'replay'
suite: ${{ matrix.config.suite }}

View file

@ -4,12 +4,16 @@ run-name: Run the integration test suite with various VectorIO providers
on:
push:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
pull_request:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'llama_stack/**'
- '!llama_stack/ui/**'
- 'src/llama_stack/**'
- '!src/llama_stack_ui/**'
- 'tests/integration/vector_io/**'
- 'uv.lock'
- 'pyproject.toml'
@ -33,7 +37,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -144,7 +148,7 @@ jobs:
- name: Build Llama Stack
run: |
uv run --no-sync llama stack build --template ci-tests --image-type venv
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
- name: Check Storage and Memory Available Before Tests
if: ${{ always() }}
@ -169,8 +173,7 @@ jobs:
run: |
uv run --no-sync \
pytest -sv --stack-config="files=inline::localfs,inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \
tests/integration/vector_io \
--embedding-model inline::sentence-transformers/all-MiniLM-L6-v2
tests/integration/vector_io
- name: Check Storage and Memory Available After Tests
if: ${{ always() }}
@ -195,7 +198,7 @@ jobs:
- name: Upload all logs to artifacts
if: ${{ always() }}
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
with:
name: vector-io-logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ env.SANITIZED_PROVIDER }}-${{ matrix.python-version }}
path: |

View file

@ -5,7 +5,9 @@ run-name: Run pre-commit checks
on:
pull_request:
push:
branches: [main]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
concurrency:
group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.ref }}
@ -20,7 +22,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
# For dependabot PRs, we need to checkout with a token that can push changes
token: ${{ github.actor == 'dependabot[bot]' && secrets.GITHUB_TOKEN || github.token }}
@ -37,29 +39,47 @@ jobs:
.pre-commit-config.yaml
- name: Set up Node.js
uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
with:
node-version: '20'
cache: 'npm'
cache-dependency-path: 'llama_stack/ui/'
cache-dependency-path: 'src/llama_stack_ui/'
- name: Set up uv
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # v7.1.4
- name: Install npm dependencies
run: npm ci
working-directory: llama_stack/ui
working-directory: src/llama_stack_ui
- name: Install pre-commit
run: python -m pip install 'pre-commit>=4.4.0'
- name: Cache pre-commit
uses: actions/cache@0057852bfaa89a56745cba8c7296529d2fc39830 # v4
with:
path: ~/.cache/pre-commit
key: pre-commit-3|${{ env.pythonLocation }}|${{ hashFiles('.pre-commit-config.yaml') }}
- name: Run pre-commit
id: precommit
uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
continue-on-error: true
run: |
set +e
pre-commit run --show-diff-on-failure --color=always --all-files 2>&1 | tee /tmp/precommit.log
status=${PIPESTATUS[0]}
echo "status=$status" >> $GITHUB_OUTPUT
exit 0
env:
SKIP: no-commit-to-branch
SKIP: no-commit-to-branch,mypy
RUFF_OUTPUT_FORMAT: github
- name: Check pre-commit results
if: steps.precommit.outcome == 'failure'
if: steps.precommit.outputs.status != '0'
run: |
echo "::error::Pre-commit hooks failed. Please run 'pre-commit run --all-files' locally and commit the fixes."
echo "::warning::Some pre-commit hooks failed. Check the output above for details."
echo ""
echo "Failed hooks output:"
cat /tmp/precommit.log
exit 1
- name: Debug
@ -109,3 +129,50 @@ jobs:
echo "$unstaged_files"
exit 1
fi
- name: Configure client installation
id: client-config
uses: ./.github/actions/install-llama-stack-client
- name: Sync dev + type_checking dependencies
env:
UV_EXTRA_INDEX_URL: ${{ steps.client-config.outputs.uv-extra-index-url }}
run: |
if [ -n "$UV_EXTRA_INDEX_URL" ]; then
export UV_INDEX_STRATEGY="unsafe-best-match"
fi
uv sync --group dev --group type_checking
# Install specific client version after sync if needed
if [ "${{ steps.client-config.outputs.install-after-sync }}" = "true" ]; then
echo "Installing llama-stack-client from: ${{ steps.client-config.outputs.install-source }}"
uv pip install ${{ steps.client-config.outputs.install-source }}
fi
- name: Run mypy (full type_checking)
env:
UV_EXTRA_INDEX_URL: ${{ steps.client-config.outputs.uv-extra-index-url }}
run: |
if [ -n "$UV_EXTRA_INDEX_URL" ]; then
export UV_INDEX_STRATEGY="unsafe-best-match"
fi
set +e
uv run --group dev --group type_checking mypy
status=$?
if [ $status -ne 0 ]; then
echo "::error::Full mypy failed. Reproduce locally with 'uv run pre-commit run mypy-full --hook-stage manual --all-files'."
fi
exit $status
- name: Check if any unused recordings
run: |
set -e
PYTHONPATH=$PWD uv run ./scripts/cleanup_recordings.py --delete
changes=$(git status --short tests/integration | grep 'recordings' || true)
if [ -n "$changes" ]; then
echo "::error::Unused integration recordings detected. Run 'PYTHONPATH=$(pwd) uv run ./scripts/cleanup_recordings.py --delete' locally and commit the deletions."
echo "$changes"
exit 1
fi

View file

@ -1,227 +0,0 @@
name: Pre-commit Bot
run-name: Pre-commit bot for PR #${{ github.event.issue.number }}
on:
issue_comment:
types: [created]
jobs:
pre-commit:
# Only run on pull request comments
if: github.event.issue.pull_request && contains(github.event.comment.body, '@github-actions run precommit')
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
steps:
- name: Check comment author and get PR details
id: check_author
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
// Get PR details
const pr = await github.rest.pulls.get({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: context.issue.number
});
// Check if commenter has write access or is the PR author
const commenter = context.payload.comment.user.login;
const prAuthor = pr.data.user.login;
let hasPermission = false;
// Check if commenter is PR author
if (commenter === prAuthor) {
hasPermission = true;
console.log(`Comment author ${commenter} is the PR author`);
} else {
// Check if commenter has write/admin access
try {
const permission = await github.rest.repos.getCollaboratorPermissionLevel({
owner: context.repo.owner,
repo: context.repo.repo,
username: commenter
});
const level = permission.data.permission;
hasPermission = ['write', 'admin', 'maintain'].includes(level);
console.log(`Comment author ${commenter} has permission: ${level}`);
} catch (error) {
console.log(`Could not check permissions for ${commenter}: ${error.message}`);
}
}
if (!hasPermission) {
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: `❌ @${commenter} You don't have permission to trigger pre-commit. Only PR authors or repository collaborators can run this command.`
});
core.setFailed(`User ${commenter} does not have permission`);
return;
}
// Save PR info for later steps
core.setOutput('pr_number', context.issue.number);
core.setOutput('pr_head_ref', pr.data.head.ref);
core.setOutput('pr_head_sha', pr.data.head.sha);
core.setOutput('pr_head_repo', pr.data.head.repo.full_name);
core.setOutput('pr_base_ref', pr.data.base.ref);
core.setOutput('is_fork', pr.data.head.repo.full_name !== context.payload.repository.full_name);
core.setOutput('authorized', 'true');
- name: React to comment
if: steps.check_author.outputs.authorized == 'true'
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
await github.rest.reactions.createForIssueComment({
owner: context.repo.owner,
repo: context.repo.repo,
comment_id: context.payload.comment.id,
content: 'rocket'
});
- name: Comment starting
if: steps.check_author.outputs.authorized == 'true'
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: ${{ steps.check_author.outputs.pr_number }},
body: `⏳ Running pre-commit hooks on PR #${{ steps.check_author.outputs.pr_number }}...`
});
- name: Checkout PR branch (same-repo)
if: steps.check_author.outputs.authorized == 'true' && steps.check_author.outputs.is_fork == 'false'
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
with:
ref: ${{ steps.check_author.outputs.pr_head_ref }}
fetch-depth: 0
token: ${{ secrets.GITHUB_TOKEN }}
- name: Checkout PR branch (fork)
if: steps.check_author.outputs.authorized == 'true' && steps.check_author.outputs.is_fork == 'true'
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
with:
repository: ${{ steps.check_author.outputs.pr_head_repo }}
ref: ${{ steps.check_author.outputs.pr_head_ref }}
fetch-depth: 0
token: ${{ secrets.GITHUB_TOKEN }}
- name: Verify checkout
if: steps.check_author.outputs.authorized == 'true'
run: |
echo "Current SHA: $(git rev-parse HEAD)"
echo "Expected SHA: ${{ steps.check_author.outputs.pr_head_sha }}"
if [[ "$(git rev-parse HEAD)" != "${{ steps.check_author.outputs.pr_head_sha }}" ]]; then
echo "::error::Checked out SHA does not match expected SHA"
exit 1
fi
- name: Set up Python
if: steps.check_author.outputs.authorized == 'true'
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'
cache: pip
cache-dependency-path: |
**/requirements*.txt
.pre-commit-config.yaml
- name: Set up Node.js
if: steps.check_author.outputs.authorized == 'true'
uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0
with:
node-version: '20'
cache: 'npm'
cache-dependency-path: 'llama_stack/ui/'
- name: Install npm dependencies
if: steps.check_author.outputs.authorized == 'true'
run: npm ci
working-directory: llama_stack/ui
- name: Run pre-commit
if: steps.check_author.outputs.authorized == 'true'
id: precommit
uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
continue-on-error: true
env:
SKIP: no-commit-to-branch
RUFF_OUTPUT_FORMAT: github
- name: Check for changes
if: steps.check_author.outputs.authorized == 'true'
id: changes
run: |
if ! git diff --exit-code || [ -n "$(git ls-files --others --exclude-standard)" ]; then
echo "has_changes=true" >> $GITHUB_OUTPUT
echo "Changes detected after pre-commit"
else
echo "has_changes=false" >> $GITHUB_OUTPUT
echo "No changes after pre-commit"
fi
- name: Commit and push changes
if: steps.check_author.outputs.authorized == 'true' && steps.changes.outputs.has_changes == 'true'
run: |
git config --local user.email "github-actions[bot]@users.noreply.github.com"
git config --local user.name "github-actions[bot]"
git add -A
git commit -m "style: apply pre-commit fixes
🤖 Applied by @github-actions bot via pre-commit workflow"
# Push changes
git push origin HEAD:${{ steps.check_author.outputs.pr_head_ref }}
- name: Comment success with changes
if: steps.check_author.outputs.authorized == 'true' && steps.changes.outputs.has_changes == 'true'
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: ${{ steps.check_author.outputs.pr_number }},
body: `✅ Pre-commit hooks completed successfully!\n\n🔧 Changes have been committed and pushed to the PR branch.`
});
- name: Comment success without changes
if: steps.check_author.outputs.authorized == 'true' && steps.changes.outputs.has_changes == 'false' && steps.precommit.outcome == 'success'
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: ${{ steps.check_author.outputs.pr_number }},
body: `✅ Pre-commit hooks passed!\n\n✨ No changes needed - your code is already formatted correctly.`
});
- name: Comment failure
if: failure()
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: ${{ steps.check_author.outputs.pr_number }},
body: `❌ Pre-commit workflow failed!\n\nPlease check the [workflow logs](https://github.com/${context.repo.owner}/${context.repo.repo}/actions/runs/${context.runId}) for details.`
});

View file

@ -7,23 +7,27 @@ on:
branches:
- main
paths:
- 'llama_stack/cli/stack/build.py'
- 'llama_stack/cli/stack/_build.py'
- 'llama_stack/core/build.*'
- 'llama_stack/core/*.sh'
- 'src/llama_stack/cli/stack/build.py'
- 'src/llama_stack/cli/stack/_build.py'
- 'src/llama_stack/core/build.*'
- 'src/llama_stack/core/*.sh'
- '.github/workflows/providers-build.yml'
- 'llama_stack/distributions/**'
- 'src/llama_stack/distributions/**'
- 'pyproject.toml'
- 'containers/Containerfile'
- '.dockerignore'
pull_request:
paths:
- 'llama_stack/cli/stack/build.py'
- 'llama_stack/cli/stack/_build.py'
- 'llama_stack/core/build.*'
- 'llama_stack/core/*.sh'
- 'src/llama_stack/cli/stack/build.py'
- 'src/llama_stack/cli/stack/_build.py'
- 'src/llama_stack/core/build.*'
- 'src/llama_stack/core/*.sh'
- '.github/workflows/providers-build.yml'
- 'llama_stack/distributions/**'
- 'src/llama_stack/distributions/**'
- 'pyproject.toml'
- 'containers/Containerfile'
- '.dockerignore'
concurrency:
group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.ref }}
@ -36,12 +40,12 @@ jobs:
distros: ${{ steps.set-matrix.outputs.distros }}
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Generate Distribution List
id: set-matrix
run: |
distros=$(ls llama_stack/distributions/*/*build.yaml | awk -F'/' '{print $(NF-1)}' | jq -R -s -c 'split("\n")[:-1]')
distros=$(ls src/llama_stack/distributions/*/*build.yaml | awk -F'/' '{print $(NF-1)}' | jq -R -s -c 'split("\n")[:-1]')
echo "distros=$distros" >> "$GITHUB_OUTPUT"
build:
@ -55,20 +59,30 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Print build dependencies
- name: Install distribution into venv
if: matrix.image-type == 'venv'
run: |
uv run llama stack build --distro ${{ matrix.distro }} --image-type ${{ matrix.image-type }} --image-name test --print-deps-only
uv run llama stack list-deps ${{ matrix.distro }} | xargs -L1 uv pip install
- name: Run Llama Stack Build
- name: Build container image
if: matrix.image-type == 'container'
run: |
# USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead
# LLAMA_STACK_DIR is set to the current directory so we are building from the source
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --distro ${{ matrix.distro }} --image-type ${{ matrix.image-type }} --image-name test
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=${{ matrix.distro }}"
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
fi
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
fi
docker build . \
-f containers/Containerfile \
$BUILD_ARGS \
--tag llama-stack:${{ matrix.distro }}-ci
- name: Print dependencies in the image
if: matrix.image-type == 'venv'
@ -79,29 +93,40 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Build a single provider
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --image-type venv --image-name test --providers inference=remote::ollama
uv pip install -e .
uv run --no-sync llama stack list-deps --providers inference=remote::ollama | xargs -L1 uv pip install
build-custom-container-distribution:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Build a single provider
- name: Build container image
run: |
yq -i '.image_type = "container"' llama_stack/distributions/ci-tests/build.yaml
yq -i '.image_name = "test"' llama_stack/distributions/ci-tests/build.yaml
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config llama_stack/distributions/ci-tests/build.yaml
BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "python:3.12-slim"' src/llama_stack/distributions/ci-tests/build.yaml)
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=ci-tests"
BUILD_ARGS="$BUILD_ARGS --build-arg BASE_IMAGE=$BASE_IMAGE"
BUILD_ARGS="$BUILD_ARGS --build-arg RUN_CONFIG_PATH=/workspace/src/llama_stack/distributions/ci-tests/run.yaml"
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
fi
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
fi
docker build . \
-f containers/Containerfile \
$BUILD_ARGS \
-t llama-stack:ci-tests
- name: Inspect the container image entrypoint
run: |
@ -112,7 +137,7 @@ jobs:
fi
entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID)
echo "Entrypoint: $entrypoint"
if [ "$entrypoint" != "[llama stack run /app/run.yaml]" ]; then
if [ "$entrypoint" != "[/usr/local/bin/llama-stack-entrypoint.sh]" ]; then
echo "Entrypoint is not correct"
exit 1
fi
@ -121,7 +146,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -129,17 +154,25 @@ jobs:
- name: Pin distribution to UBI9 base
run: |
yq -i '
.image_type = "container" |
.image_name = "ubi9-test" |
.distribution_spec.container_image = "registry.access.redhat.com/ubi9:latest"
' llama_stack/distributions/ci-tests/build.yaml
' src/llama_stack/distributions/ci-tests/build.yaml
- name: Build dev container (UBI9)
env:
USE_COPY_NOT_MOUNT: "true"
LLAMA_STACK_DIR: "."
- name: Build UBI9 container image
run: |
uv run llama stack build --config llama_stack/distributions/ci-tests/build.yaml
BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "registry.access.redhat.com/ubi9:latest"' src/llama_stack/distributions/ci-tests/build.yaml)
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=ci-tests"
BUILD_ARGS="$BUILD_ARGS --build-arg BASE_IMAGE=$BASE_IMAGE"
BUILD_ARGS="$BUILD_ARGS --build-arg RUN_CONFIG_PATH=/workspace/src/llama_stack/distributions/ci-tests/run.yaml"
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
fi
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
fi
docker build . \
-f containers/Containerfile \
$BUILD_ARGS \
-t llama-stack:ci-tests-ubi9
- name: Inspect UBI9 image
run: |
@ -150,7 +183,7 @@ jobs:
fi
entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID)
echo "Entrypoint: $entrypoint"
if [ "$entrypoint" != "[llama stack run /app/run.yaml]" ]; then
if [ "$entrypoint" != "[/usr/local/bin/llama-stack-entrypoint.sh]" ]; then
echo "Entrypoint is not correct"
exit 1
fi

View file

@ -0,0 +1,105 @@
name: Test llama stack list-deps
run-name: Test llama stack list-deps
on:
push:
branches:
- main
paths:
- 'src/llama_stack/cli/stack/list_deps.py'
- 'src/llama_stack/cli/stack/_list_deps.py'
- 'src/llama_stack/core/build.*'
- 'src/llama_stack/core/*.sh'
- '.github/workflows/providers-list-deps.yml'
- 'src/llama_stack/templates/**'
- 'pyproject.toml'
pull_request:
paths:
- 'src/llama_stack/cli/stack/list_deps.py'
- 'src/llama_stack/cli/stack/_list_deps.py'
- 'src/llama_stack/core/build.*'
- 'src/llama_stack/core/*.sh'
- '.github/workflows/providers-list-deps.yml'
- 'src/llama_stack/templates/**'
- 'pyproject.toml'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
generate-matrix:
runs-on: ubuntu-latest
outputs:
distros: ${{ steps.set-matrix.outputs.distros }}
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Generate Distribution List
id: set-matrix
run: |
distros=$(ls src/llama_stack/distributions/*/*build.yaml | awk -F'/' '{print $(NF-1)}' | jq -R -s -c 'split("\n")[:-1]')
echo "distros=$distros" >> "$GITHUB_OUTPUT"
list-deps:
needs: generate-matrix
runs-on: ubuntu-latest
strategy:
matrix:
distro: ${{ fromJson(needs.generate-matrix.outputs.distros) }}
image-type: [venv, container]
fail-fast: false # We want to run all jobs even if some fail
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Print dependencies
run: |
uv run llama stack list-deps ${{ matrix.distro }}
- name: Install Distro using llama stack list-deps
run: |
# USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead
# LLAMA_STACK_DIR is set to the current directory so we are building from the source
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack list-deps ${{ matrix.distro }} | xargs -L1 uv pip install
- name: Print dependencies in the image
if: matrix.image-type == 'venv'
run: |
uv pip list
show-single-provider:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Show a single provider
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack list-deps --providers inference=remote::ollama
list-deps-from-config:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: list-des from Config
env:
USE_COPY_NOT_MOUNT: "true"
LLAMA_STACK_DIR: "."
run: |
uv run llama stack list-deps src/llama_stack/distributions/ci-tests/build.yaml

View file

@ -10,7 +10,7 @@ on:
branches:
- main
paths-ignore:
- 'llama_stack/ui/**'
- 'src/llama_stack_ui/**'
jobs:
build:
@ -21,29 +21,31 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install uv
uses: astral-sh/setup-uv@d0cc045d04ccac9d8b7881df0226f9e82c39688e # v6.8.0
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # v7.1.4
with:
python-version: ${{ matrix.python-version }}
activate-environment: true
version: 0.7.6
- name: Build Llama Stack package
run: |
uv build
- name: Build Llama Stack API package
working-directory: src/llama_stack_api
run: uv build
- name: Install Llama Stack package
- name: Build Llama Stack package
run: uv build
- name: Install Llama Stack package (with api stubs from local build)
run: |
uv pip install dist/*.whl
uv pip install --find-links src/llama_stack_api/dist dist/*.whl
- name: Verify Llama Stack package
run: |
uv pip list
uv pip show llama-stack
command -v llama
llama model prompt-format -m Llama3.2-90B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference
llama stack list-deps starter

View file

@ -46,7 +46,7 @@ jobs:
echo "::endgroup::"
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
fetch-depth: 0
@ -61,6 +61,9 @@ jobs:
- name: Run and record tests
uses: ./.github/actions/run-and-record-tests
env:
# Set OPENAI_API_KEY if using gpt setup
OPENAI_API_KEY: ${{ inputs.test-setup == 'gpt' && secrets.OPENAI_API_KEY || '' }}
with:
stack-config: 'server:ci-tests' # recording must be done with server since more tests are run
setup: ${{ inputs.test-setup || 'ollama' }}

146
.github/workflows/stainless-builds.yml vendored Normal file
View file

@ -0,0 +1,146 @@
name: Stainless SDK Builds
run-name: Build Stainless SDK from OpenAPI spec changes
# This workflow uses pull_request_target, which allows it to run on pull requests
# from forks with access to secrets. This is safe because the workflow definition
# comes from the base branch (trusted), and the action only reads OpenAPI spec
# files without executing any code from the PR.
on:
pull_request_target:
types:
- opened
- synchronize
- reopened
- closed
paths:
- "client-sdks/stainless/**"
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number }}
cancel-in-progress: true
env:
# Stainless organization name.
STAINLESS_ORG: llamastack
# Stainless project name.
STAINLESS_PROJECT: llama-stack-client
# Path to your OpenAPI spec.
OAS_PATH: ./client-sdks/stainless/openapi.yml
# Path to your Stainless config. Optional; only provide this if you prefer
# to maintain the ground truth Stainless config in your own repo.
CONFIG_PATH: ./client-sdks/stainless/config.yml
# When to fail the job based on build conclusion.
# Options: "never" | "note" | "warning" | "error" | "fatal".
FAIL_ON: error
# In your repo secrets, configure:
# - STAINLESS_API_KEY: a Stainless API key, which you can generate on the
# Stainless organization dashboard
jobs:
compute-branch:
runs-on: ubuntu-latest
outputs:
preview_branch: ${{ steps.compute.outputs.preview_branch }}
base_branch: ${{ steps.compute.outputs.base_branch }}
merge_branch: ${{ steps.compute.outputs.merge_branch }}
steps:
- name: Compute branch names
id: compute
run: |
HEAD_REPO="${{ github.event.pull_request.head.repo.full_name }}"
BASE_REPO="${{ github.repository }}"
BRANCH_NAME="${{ github.event.pull_request.head.ref }}"
FORK_OWNER="${{ github.event.pull_request.head.repo.owner.login }}"
if [ "$HEAD_REPO" != "$BASE_REPO" ]; then
# Fork PR: prefix with fork owner for isolation
if [ -z "$FORK_OWNER" ]; then
echo "Error: Fork PR detected but fork owner is empty" >&2
exit 1
fi
PREVIEW_BRANCH="preview/${FORK_OWNER}/${BRANCH_NAME}"
BASE_BRANCH="preview/base/${FORK_OWNER}/${BRANCH_NAME}"
else
# Same-repo PR
PREVIEW_BRANCH="preview/${BRANCH_NAME}"
BASE_BRANCH="preview/base/${BRANCH_NAME}"
fi
echo "preview_branch=${PREVIEW_BRANCH}" >> $GITHUB_OUTPUT
echo "base_branch=${BASE_BRANCH}" >> $GITHUB_OUTPUT
echo "merge_branch=${PREVIEW_BRANCH}" >> $GITHUB_OUTPUT
preview:
needs: compute-branch
if: github.event.action != 'closed'
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
# Checkout the PR's code to access the OpenAPI spec and config files.
# This is necessary to read the spec/config from the PR (including from forks).
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
repository: ${{ github.event.pull_request.head.repo.full_name }}
ref: ${{ github.event.pull_request.head.sha }}
fetch-depth: 2
- name: Run preview builds
uses: stainless-api/upload-openapi-spec-action/preview@9133735bca5ce0a1df7d3b26e75364e26137a016 # 1.7.0
with:
stainless_api_key: ${{ secrets.STAINLESS_API_KEY }}
org: ${{ env.STAINLESS_ORG }}
project: ${{ env.STAINLESS_PROJECT }}
oas_path: ${{ env.OAS_PATH }}
config_path: ${{ env.CONFIG_PATH }}
fail_on: ${{ env.FAIL_ON }}
base_sha: ${{ github.event.pull_request.base.sha }}
base_ref: ${{ github.event.pull_request.base.ref }}
head_sha: ${{ github.event.pull_request.head.sha }}
branch: ${{ needs.compute-branch.outputs.preview_branch }}
base_branch: ${{ needs.compute-branch.outputs.base_branch }}
merge:
needs: compute-branch
if: github.event.action == 'closed' && github.event.pull_request.merged == true
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
# Checkout the PR's code to access the OpenAPI spec and config files.
# This is necessary to read the spec/config from the PR (including from forks).
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
repository: ${{ github.event.pull_request.head.repo.full_name }}
ref: ${{ github.event.pull_request.head.sha }}
fetch-depth: 2
# Note that this only merges in changes that happened on the last build on
# the computed preview branch. It's possible that there are OAS/config
# changes that haven't been built, if the preview job didn't finish
# before this step starts. In theory we want to wait for all builds
# against the preview branch to complete, but assuming that
# the preview job happens before the PR merge, it should be fine.
- name: Run merge build
uses: stainless-api/upload-openapi-spec-action/merge@9133735bca5ce0a1df7d3b26e75364e26137a016 # 1.7.0
with:
stainless_api_key: ${{ secrets.STAINLESS_API_KEY }}
org: ${{ env.STAINLESS_ORG }}
project: ${{ env.STAINLESS_PROJECT }}
oas_path: ${{ env.OAS_PATH }}
config_path: ${{ env.CONFIG_PATH }}
fail_on: ${{ env.FAIL_ON }}
base_sha: ${{ github.event.pull_request.base.sha }}
base_ref: ${{ github.event.pull_request.base.ref }}
head_sha: ${{ github.event.pull_request.head.sha }}
merge_branch: ${{ needs.compute-branch.outputs.merge_branch }}

View file

@ -8,7 +8,7 @@ on:
pull_request:
branches: [ main ]
paths:
- 'llama_stack/**'
- 'src/llama_stack/**'
- 'tests/integration/**'
- 'uv.lock'
- 'pyproject.toml'
@ -27,7 +27,7 @@ jobs:
# container and point 'uv pip install' to the correct path...
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -46,9 +46,9 @@ jobs:
yq -i '.image_type = "${{ matrix.image-type }}"' tests/external/ramalama-stack/run.yaml
cat tests/external/ramalama-stack/run.yaml
- name: Build distro from config file
- name: Install distribution dependencies
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config tests/external/ramalama-stack/build.yaml
uv run llama stack list-deps tests/external/ramalama-stack/build.yaml | xargs -L1 uv pip install
- name: Start Llama Stack server in background
if: ${{ matrix.image-type }} == 'venv'
@ -78,7 +78,7 @@ jobs:
- name: Upload all logs to artifacts
if: ${{ always() }}
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
with:
name: logs-${{ github.run_id }}-${{ github.run_attempt }}-external-provider-module-test
path: |

View file

@ -8,8 +8,8 @@ on:
pull_request:
branches: [ main ]
paths:
- 'llama_stack/**'
- '!llama_stack/ui/**'
- 'src/llama_stack/**'
- '!src/llama_stack_ui/**'
- 'tests/integration/**'
- 'uv.lock'
- 'pyproject.toml'
@ -27,7 +27,7 @@ jobs:
# container and point 'uv pip install' to the correct path...
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -44,11 +44,14 @@ jobs:
- name: Print distro dependencies
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack build --config tests/external/build.yaml --print-deps-only
uv run --no-sync llama stack list-deps tests/external/build.yaml
- name: Build distro from config file
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack build --config tests/external/build.yaml
uv venv ci-test
source ci-test/bin/activate
uv pip install -e .
LLAMA_STACK_LOGGING=all=CRITICAL llama stack list-deps tests/external/build.yaml | xargs -L1 uv pip install
- name: Start Llama Stack server in background
if: ${{ matrix.image-type }} == 'venv'
@ -81,7 +84,7 @@ jobs:
- name: Upload all logs to artifacts
if: ${{ always() }}
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
with:
name: logs-${{ github.run_id }}-${{ github.run_attempt }}-external-test
path: |

View file

@ -8,7 +8,7 @@ on:
pull_request:
branches: [ main ]
paths:
- 'llama_stack/ui/**'
- 'src/llama_stack_ui/**'
- '.github/workflows/ui-unit-tests.yml' # This workflow
workflow_dispatch:
@ -26,29 +26,29 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Setup Node.js
uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: 'llama_stack/ui/package-lock.json'
cache-dependency-path: 'src/llama_stack_ui/package-lock.json'
- name: Install dependencies
working-directory: llama_stack/ui
working-directory: src/llama_stack_ui
run: npm ci
- name: Run linting
working-directory: llama_stack/ui
working-directory: src/llama_stack_ui
run: npm run lint
- name: Run format check
working-directory: llama_stack/ui
working-directory: src/llama_stack_ui
run: npm run format:check
- name: Run unit tests
working-directory: llama_stack/ui
working-directory: src/llama_stack_ui
env:
CI: true

View file

@ -4,12 +4,16 @@ run-name: Run the unit test suite
on:
push:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
pull_request:
branches: [ main ]
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'llama_stack/**'
- '!llama_stack/ui/**'
- 'src/llama_stack/**'
- '!src/llama_stack_ui/**'
- 'tests/unit/**'
- 'uv.lock'
- 'pyproject.toml'
@ -32,7 +36,7 @@ jobs:
- "3.13"
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
@ -45,7 +49,7 @@ jobs:
- name: Upload test results
if: always()
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
with:
name: test-results-${{ matrix.python }}
path: |

6
.gitignore vendored
View file

@ -31,3 +31,9 @@ CLAUDE.md
.claude/
docs/.docusaurus/
docs/node_modules/
docs/static/imported-files/
docs/docs/api-deprecated/
docs/docs/api-experimental/
docs/docs/api/
tests/integration/client-typescript/node_modules/
.ts-client-checkout/

View file

@ -1,5 +1,5 @@
exclude: 'build/'
minimum_pre_commit_version: 4.4.0
default_language_version:
python: python3.12
node: "22"
@ -42,7 +42,6 @@ repos:
hooks:
- id: ruff
args: [ --fix ]
exclude: ^llama_stack/strong_typing/.*$
- id: ruff-format
- repo: https://github.com/adamchainz/blacken-docs
@ -52,13 +51,9 @@ repos:
additional_dependencies:
- black==24.3.0
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.7.20
hooks:
- id: uv-lock
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.16.1
rev: v1.18.2
hooks:
- id: mypy
additional_dependencies:
@ -78,33 +73,48 @@ repos:
- repo: local
hooks:
- id: uv-lock
name: uv-lock
additional_dependencies:
- uv==0.7.20
entry: ./scripts/uv-run-with-index.sh lock
language: python
pass_filenames: false
require_serial: true
files: ^(pyproject\.toml|uv\.lock)$
- id: mypy-full
name: mypy (full type_checking)
entry: ./scripts/uv-run-with-index.sh run --group dev --group type_checking mypy
language: system
pass_filenames: false
stages: [manual]
- id: distro-codegen
name: Distribution Template Codegen
additional_dependencies:
- uv==0.7.8
entry: uv run --group codegen ./scripts/distro_codegen.py
entry: ./scripts/uv-run-with-index.sh run --group codegen ./scripts/distro_codegen.py
language: python
pass_filenames: false
require_serial: true
files: ^llama_stack/distributions/.*$|^llama_stack/providers/.*/inference/.*/models\.py$
files: ^src/llama_stack/distributions/.*$|^src/llama_stack/providers/.*/inference/.*/models\.py$
- id: provider-codegen
name: Provider Codegen
additional_dependencies:
- uv==0.7.8
entry: uv run --group codegen ./scripts/provider_codegen.py
entry: ./scripts/uv-run-with-index.sh run --group codegen ./scripts/provider_codegen.py
language: python
pass_filenames: false
require_serial: true
files: ^llama_stack/providers/.*$
files: ^src/llama_stack/providers/.*$|^scripts/run_openapi_generator.sh$
- id: openapi-codegen
name: API Spec Codegen
additional_dependencies:
- uv==0.7.8
entry: sh -c 'uv run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
entry: sh -c './scripts/uv-run-with-index.sh run scripts/run_openapi_generator.sh'
language: python
pass_filenames: false
require_serial: true
files: ^llama_stack/apis/|^docs/openapi_generator/
files: ^src/llama_stack_api/.*$
- id: check-workflows-use-hashes
name: Check GitHub Actions use SHA-pinned actions
entry: ./scripts/check-workflows-use-hashes.sh
@ -120,7 +130,7 @@ repos:
pass_filenames: false
require_serial: true
always_run: true
files: ^llama_stack/.*$
files: ^src/llama_stack/.*$
- id: forbid-pytest-asyncio
name: Block @pytest.mark.asyncio and @pytest_asyncio.fixture
entry: bash
@ -141,7 +151,7 @@ repos:
name: Generate CI documentation
additional_dependencies:
- uv==0.7.8
entry: uv run ./scripts/gen-ci-docs.py
entry: ./scripts/uv-run-with-index.sh run ./scripts/gen-ci-docs.py
language: python
pass_filenames: false
require_serial: true
@ -150,7 +160,7 @@ repos:
name: Format & Lint UI
entry: bash ./scripts/run-ui-linter.sh
language: system
files: ^llama_stack/ui/.*\.(ts|tsx)$
files: ^src/llama_stack_ui/.*\.(ts|tsx)$
pass_filenames: false
require_serial: true
@ -172,6 +182,44 @@ repos:
exit 1
fi
exit 0
- id: fips-compliance
name: Ensure llama-stack remains FIPS compliant
entry: bash
language: system
types: [python]
pass_filenames: true
exclude: '^tests/.*$' # Exclude test dir as some safety tests used MD5
args:
- -c
- |
grep -EnH '^[^#]*\b(md5|sha1|uuid3|uuid5)\b' "$@" && {
echo;
echo "❌ Do not use any of the following functions: hashlib.md5, hashlib.sha1, uuid.uuid3, uuid.uuid5"
echo " These functions are not FIPS-compliant"
echo;
exit 1;
} || true
- id: check-api-independence
name: Ensure llama_stack_api does not import llama_stack
entry: bash
language: system
pass_filenames: false
require_serial: true
always_run: true
files: ^src/llama_stack_api/.*$
args:
- -c
- |
API_DIR="src/llama_stack_api"
grep -rn --include="*.py" -E '^[^#]*(import llama_stack\b|from llama_stack\b)' "$API_DIR" 2>/dev/null && {
echo "llama_stack_api must not import llama_stack";
exit 1;
}
[ -f "$API_DIR/pyproject.toml" ] && grep -n 'llama_stack[^_]' "$API_DIR/pyproject.toml" && {
echo "llama_stack_api must not depend on llama_stack in pyproject.toml";
exit 1;
}
exit 0
ci:
autofix_commit_msg: 🎨 [pre-commit.ci] Auto format from pre-commit.com hooks

View file

@ -1,614 +0,0 @@
# Changelog
# v0.2.20
Published on: 2025-08-29T22:25:32Z
Here are some key changes that are coming as part of this release.
### Build and Environment
- Environment improvements: fixed env var replacement to preserve types.
- Docker stability: fixed container startup failures for Fireworks AI provider.
- Removed absolute paths in build for better portability.
### Features
- UI Enhancements: Implemented file upload and VectorDB creation/configuration directly in UI.
- Vector Store Improvements: Added keyword, vector, and hybrid search inside vector store.
- Added S3 authorization support for file providers.
- SQL Store: Added inequality support to where clause.
### Documentation
- Fixed post-training docs.
- Added Contributor Guidelines for creating Internal vs. External providers.
### Fixes
- Removed unsupported bfcl scoring function.
- Multiple reliability and configuration fixes for providers and environment handling.
### Engineering / Chores
- Cleaner internal development setup with consistent paths.
- Incremental improvements to provider integration and vector store behavior.
### New Contributors
- @omertuc made their first contribution in #3270
- @r3v5 made their first contribution in vector store hybrid search
---
# v0.2.19
Published on: 2025-08-26T22:06:55Z
## Highlights
* feat: Add CORS configuration support for server by @skamenan7 in https://github.com/llamastack/llama-stack/pull/3201
* feat(api): introduce /rerank by @ehhuang in https://github.com/llamastack/llama-stack/pull/2940
* feat: Add S3 Files Provider by @mattf in https://github.com/llamastack/llama-stack/pull/3202
---
# v0.2.18
Published on: 2025-08-20T01:09:27Z
## Highlights
* Add moderations create API
* Hybrid search in Milvus
* Numerous Responses API improvements
* Documentation updates
---
# v0.2.17
Published on: 2025-08-05T01:51:14Z
## Highlights
* feat(tests): introduce inference record/replay to increase test reliability by @ashwinb in https://github.com/meta-llama/llama-stack/pull/2941
* fix(library_client): improve initialization error handling and prevent AttributeError by @mattf in https://github.com/meta-llama/llama-stack/pull/2944
* fix: use OLLAMA_URL to activate Ollama provider in starter by @ashwinb in https://github.com/meta-llama/llama-stack/pull/2963
* feat(UI): adding MVP playground UI by @franciscojavierarceo in https://github.com/meta-llama/llama-stack/pull/2828
* Standardization of errors (@nathan-weinberg)
* feat: Enable DPO training with HuggingFace inline provider by @Nehanth in https://github.com/meta-llama/llama-stack/pull/2825
* chore: rename templates to distributions by @ashwinb in https://github.com/meta-llama/llama-stack/pull/3035
---
# v0.2.16
Published on: 2025-07-28T23:35:23Z
## Highlights
* Automatic model registration for self-hosted providers (ollama and vllm currently). No need for `INFERENCE_MODEL` environment variables which need to be updated, etc.
* Much simplified starter distribution. Most `ENABLE_` env variables are now gone. When you set `VLLM_URL`, the `vllm` provider is auto-enabled. Similar for `MILVUS_URL`, `PGVECTOR_DB`, etc. Check the [run.yaml](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/templates/starter/run.yaml) for more details.
* All tests migrated to pytest now (thanks @Elbehery)
* DPO implementation in the post-training provider (thanks @Nehanth)
* (Huge!) Support for external APIs and providers thereof (thanks @leseb, @cdoern and others). This is a really big deal -- you can now add more APIs completely out of tree and experiment with them before (optionally) wanting to contribute back.
* `inline::vllm` provider is gone thank you very much
* several improvements to OpenAI inference implementations and LiteLLM backend (thanks @mattf)
* Chroma now supports Vector Store API (thanks @franciscojavierarceo).
* Authorization improvements: Vector Store/File APIs now supports access control (thanks @franciscojavierarceo); Telemetry read APIs are gated according to logged-in user's roles.
---
# v0.2.15
Published on: 2025-07-16T03:30:01Z
---
# v0.2.14
Published on: 2025-07-04T16:06:48Z
## Highlights
* Support for Llama Guard 4
* Added Milvus support to vector-stores API
* Documentation and zero-to-hero updates for latest APIs
---
# v0.2.13
Published on: 2025-06-28T04:28:11Z
## Highlights
* search_mode support in OpenAI vector store API
* Security fixes
---
# v0.2.12
Published on: 2025-06-20T22:52:12Z
## Highlights
* Filter support in file search
* Support auth attributes in inference and response stores
---
# v0.2.11
Published on: 2025-06-17T20:26:26Z
## Highlights
* OpenAI-compatible vector store APIs
* Hybrid Search in Sqlite-vec
* File search tool in Responses API
* Pagination in inference and response stores
* Added `suffix` to completions API for fill-in-the-middle tasks
---
# v0.2.10.1
Published on: 2025-06-06T20:11:02Z
## Highlights
* ChromaDB provider fix
---
# v0.2.10
Published on: 2025-06-05T23:21:45Z
## Highlights
* OpenAI-compatible embeddings API
* OpenAI-compatible Files API
* Postgres support in starter distro
* Enable ingestion of precomputed embeddings
* Full multi-turn support in Responses API
* Fine-grained access control policy
---
# v0.2.9
Published on: 2025-05-30T20:01:56Z
## Highlights
* Added initial streaming support in Responses API
* UI view for Responses
* Postgres inference store support
---
# v0.2.8
Published on: 2025-05-27T21:03:47Z
# Release v0.2.8
## Highlights
* Server-side MCP with auth firewalls now works in the Stack - both for Agents and Responses
* Get chat completions APIs and UI to show chat completions
* Enable keyword search for sqlite-vec
---
# v0.2.7
Published on: 2025-05-16T20:38:10Z
## Highlights
This is a small update. But a couple highlights:
* feat: function tools in OpenAI Responses by @bbrowning in https://github.com/meta-llama/llama-stack/pull/2094, getting closer to ready. Streaming is the next missing piece.
* feat: Adding support for customizing chunk context in RAG insertion and querying by @franciscojavierarceo in https://github.com/meta-llama/llama-stack/pull/2134
* feat: scaffolding for Llama Stack UI by @ehhuang in https://github.com/meta-llama/llama-stack/pull/2149, more to come in the coming releases.
---
# v0.2.6
Published on: 2025-05-12T18:06:52Z
---
# v0.2.5
Published on: 2025-05-04T20:16:49Z
---
# v0.2.4
Published on: 2025-04-29T17:26:01Z
## Highlights
* One-liner to install and run Llama Stack yay! by @reluctantfuturist in https://github.com/meta-llama/llama-stack/pull/1383
* support for NVIDIA NeMo datastore by @raspawar in https://github.com/meta-llama/llama-stack/pull/1852
* (yuge!) Kubernetes authentication by @leseb in https://github.com/meta-llama/llama-stack/pull/1778
* (yuge!) OpenAI Responses API by @bbrowning in https://github.com/meta-llama/llama-stack/pull/1989
* add api.llama provider, llama-guard-4 model by @ashwinb in https://github.com/meta-llama/llama-stack/pull/2058
---
# v0.2.3
Published on: 2025-04-25T22:46:21Z
## Highlights
* OpenAI compatible inference endpoints and client-SDK support. `client.chat.completions.create()` now works.
* significant improvements and functionality added to the nVIDIA distribution
* many improvements to the test verification suite.
* new inference providers: Ramalama, IBM WatsonX
* many improvements to the Playground UI
---
# v0.2.2
Published on: 2025-04-13T01:19:49Z
## Main changes
- Bring Your Own Provider (@leseb) - use out-of-tree provider code to execute the distribution server
- OpenAI compatible inference API in progress (@bbrowning)
- Provider verifications (@ehhuang)
- Many updates and fixes to playground
- Several llama4 related fixes
---
# v0.2.1
Published on: 2025-04-05T23:13:00Z
---
# v0.2.0
Published on: 2025-04-05T19:04:29Z
## Llama 4 Support
Checkout more at https://www.llama.com
---
# v0.1.9
Published on: 2025-03-29T00:52:23Z
### Build and Test Agents
* Agents: Entire document context with attachments
* RAG: Documentation with sqlite-vec faiss comparison
* Getting started: Fixes to getting started notebook.
### Agent Evals and Model Customization
* (**New**) Post-training: Add nemo customizer
### Better Engineering
* Moved sqlite-vec to non-blocking calls
* Don't return a payload on file delete
---
# v0.1.8
Published on: 2025-03-24T01:28:50Z
# v0.1.8 Release Notes
### Build and Test Agents
* Safety: Integrated NVIDIA as a safety provider.
* VectorDB: Added Qdrant as an inline provider.
* Agents: Added support for multiple tool groups in agents.
* Agents: Simplified imports for Agents in client package
### Agent Evals and Model Customization
* Introduced DocVQA and IfEval benchmarks.
### Deploying and Monitoring Agents
* Introduced a Containerfile and image workflow for the Playground.
* Implemented support for Bearer (API Key) authentication.
* Added attribute-based access control for resources.
* Fixes on docker deployments: use --pull always and standardized the default port to 8321
* Deprecated: /v1/inspect/providers use /v1/providers/ instead
### Better Engineering
* Consolidated scripts under the ./scripts directory.
* Addressed mypy violations in various modules.
* Added Dependabot scans for Python dependencies.
* Implemented a scheduled workflow to update the changelog automatically.
* Enforced concurrency to reduce CI loads.
### New Contributors
* @cmodi-meta made their first contribution in https://github.com/meta-llama/llama-stack/pull/1650
* @jeffmaury made their first contribution in https://github.com/meta-llama/llama-stack/pull/1671
* @derekhiggins made their first contribution in https://github.com/meta-llama/llama-stack/pull/1698
* @Bobbins228 made their first contribution in https://github.com/meta-llama/llama-stack/pull/1745
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.1.7...v0.1.8
---
# v0.1.7
Published on: 2025-03-14T22:30:51Z
## 0.1.7 Release Notes
### Build and Test Agents
* Inference: ImageType is now refactored to LlamaStackImageType
* Inference: Added tests to measure TTFT
* Inference: Bring back usage metrics
* Agents: Added endpoint for get agent, list agents and list sessions
* Agents: Automated conversion of type hints in client tool for lite llm format
* Agents: Deprecated ToolResponseMessage in agent.resume API
* Added Provider API for listing and inspecting provider info
### Agent Evals and Model Customization
* Eval: Added new eval benchmarks Math 500 and BFCL v3
* Deploy and Monitoring of Agents
* Telemetry: Fix tracing to work across coroutines
### Better Engineering
* Display code coverage for unit tests
* Updated call sites (inference, tool calls, agents) to move to async non blocking calls
* Unit tests also run on Python 3.11, 3.12, and 3.13
* Added ollama inference to Integration tests CI
* Improved documentation across examples, testing, CLI, updated providers table )
---
# v0.1.6
Published on: 2025-03-08T04:35:08Z
## 0.1.6 Release Notes
### Build and Test Agents
* Inference: Fixed support for inline vllm provider
* (**New**) Agent: Build & Monitor Agent Workflows with Llama Stack + Anthropic's Best Practice [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb)
* (**New**) Agent: Revamped agent [documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html) with more details and examples
* Agent: Unify tools and Python SDK Agents API
* Agent: AsyncAgent Python SDK wrapper supporting async client tool calls
* Agent: Support python functions without @client_tool decorator as client tools
* Agent: deprecation for allow_resume_turn flag, and remove need to specify tool_prompt_format
* VectorIO: MilvusDB support added
### Agent Evals and Model Customization
* (**New**) Agent: Llama Stack RAG Lifecycle [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_RAG_Lifecycle.ipynb)
* Eval: Documentation for eval, scoring, adding new benchmarks
* Eval: Distribution template to run benchmarks on llama & non-llama models
* Eval: Ability to register new custom LLM-as-judge scoring functions
* (**New**) Looking for contributors for open benchmarks. See [documentation](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) for details.
### Deploy and Monitoring of Agents
* Better support for different log levels across all components for better monitoring
### Better Engineering
* Enhance OpenAPI spec to include Error types across all APIs
* Moved all tests to /tests and created unit tests to run on each PR
* Removed all dependencies on llama-models repo
---
# v0.1.5.1
Published on: 2025-02-28T22:37:44Z
## 0.1.5.1 Release Notes
* Fixes for security risk in https://github.com/meta-llama/llama-stack/pull/1327 and https://github.com/meta-llama/llama-stack/pull/1328
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.1.5...v0.1.5.1
---
# v0.1.5
Published on: 2025-02-28T18:14:01Z
## 0.1.5 Release Notes
### Build Agents
* Inference: Support more non-llama models (openai, anthropic, gemini)
* Inference: Can use the provider's model name in addition to the HF alias
* Inference: Fixed issues with calling tools that weren't specified in the prompt
* RAG: Improved system prompt for RAG and no more need for hard-coded rag-tool calling
* Embeddings: Added support for Nemo retriever embedding models
* Tools: Added support for MCP tools in Ollama Distribution
* Distributions: Added new Groq distribution
### Customize Models
* Save post-trained checkpoint in SafeTensor format to allow Ollama inference provider to use the post-trained model
### Monitor agents
* More comprehensive logging of agent steps including client tools
* Telemetry inputs/outputs are now structured and queryable
* Ability to retrieve agents session, turn, step by ids
### Better Engineering
* Moved executorch Swift code out of this repo into the llama-stack-client-swift repo, similar to kotlin
* Move most logging to use logger instead of prints
* Completed text /chat-completion and /completion tests
---
# v0.1.4
Published on: 2025-02-25T00:02:43Z
## v0.1.4 Release Notes
Here are the key changes coming as part of this release:
### Build and Test Agents
* Inference: Added support for non-llama models
* Inference: Added option to list all downloaded models and remove models
* Agent: Introduce new api agents.resume_turn to include client side tool execution in the same turn
* Agent: AgentConfig introduces new variable “tool_config” that allows for better tool configuration and system prompt overrides
* Agent: Added logging for agent step start and completion times
* Agent: Added support for logging for tool execution metadata
* Embedding: Updated /inference/embeddings to support asymmetric models, truncation and variable sized outputs
* Embedding: Updated embedding models for Ollama, Together, and Fireworks with available defaults
* VectorIO: Improved performance of sqlite-vec using chunked writes
### Agent Evals and Model Customization
* Deprecated api /eval-tasks. Use /eval/benchmark instead
* Added CPU training support for TorchTune
### Deploy and Monitoring of Agents
* Consistent view of client and server tool calls in telemetry
### Better Engineering
* Made tests more data-driven for consistent evaluation
* Fixed documentation links and improved API reference generation
* Various small fixes for build scripts and system reliability
---
# v0.1.3
Published on: 2025-02-14T20:24:32Z
## v0.1.3 Release
Here are some key changes that are coming as part of this release.
### Build and Test Agents
Streamlined the initial development experience
- Added support for llama stack run --image-type venv
- Enhanced vector store options with new sqlite-vec provider and improved Qdrant integration
- vLLM improvements for tool calling and logprobs
- Better handling of sporadic code_interpreter tool calls
### Agent Evals
Better benchmarking and Agent performance assessment
- Renamed eval API /eval-task to /benchmarks
- Improved documentation and notebooks for RAG and evals
### Deploy and Monitoring of Agents
Improved production readiness
- Added usage metrics collection for chat completions
- CLI improvements for provider information
- Improved error handling and system reliability
- Better model endpoint handling and accessibility
- Improved signal handling on distro server
### Better Engineering
Infrastructure and code quality improvements
- Faster text-based chat completion tests
- Improved testing for non-streaming agent apis
- Standardized import formatting with ruff linter
- Added conventional commits standard
- Fixed documentation parsing issues
---
# v0.1.2
Published on: 2025-02-07T22:06:49Z
# TL;DR
- Several stabilizations to development flows after the switch to `uv`
- Migrated CI workflows to new OSS repo - [llama-stack-ops](https://github.com/meta-llama/llama-stack-ops)
- Added automated rebuilds for ReadTheDocs
- Llama Stack server supports HTTPS
- Added system prompt overrides support
- Several bug fixes and improvements to documentation (check out Kubernetes deployment guide by @terrytangyuan )
---
# v0.1.1
Published on: 2025-02-02T02:29:24Z
A bunch of small / big improvements everywhere including support for Windows, switching to `uv` and many provider improvements.
---
# v0.1.0
Published on: 2025-01-24T17:47:47Z
We are excited to announce a stable API release of Llama Stack, which enables developers to build RAG applications and Agents using tools and safety shields, monitor and those agents with telemetry, and evaluate the agent with scoring functions.
## Context
GenAI application developers need more than just an LLM - they need to integrate tools, connect with their data sources, establish guardrails, and ground the LLM responses effectively. Currently, developers must piece together various tools and APIs, complicating the development lifecycle and increasing costs. The result is that developers are spending more time on these integrations rather than focusing on the application logic itself. The bespoke coupling of components also makes it challenging to adopt state-of-the-art solutions in the rapidly evolving GenAI space. This is particularly difficult for open models like Llama, as best practices are not widely established in the open.
Llama Stack was created to provide developers with a comprehensive and coherent interface that simplifies AI application development and codifies best practices across the Llama ecosystem. Since our launch in September 2024, we have seen a huge uptick in interest in Llama Stack APIs by both AI developers and from partners building AI services with Llama models. Partners like Nvidia, Fireworks, and Ollama have collaborated with us to develop implementations across various APIs, including inference, memory, and safety.
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stacks plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
## Release
After iterating on the APIs for the last 3 months, today were launching a stable release (V1) of the Llama Stack APIs and the corresponding llama-stack server and client packages(v0.1.0). We now have automated tests for providers. These tests make sure that all provider implementations are verified. Developers can now easily and reliably select distributions or providers based on their specific requirements.
There are example standalone apps in llama-stack-apps.
## Key Features of this release
- **Unified API Layer**
- Inference: Run LLM models
- RAG: Store and retrieve knowledge for RAG
- Agents: Build multi-step agentic workflows
- Tools: Register tools that can be called by the agent
- Safety: Apply content filtering and safety policies
- Evaluation: Test model and agent quality
- Telemetry: Collect and analyze usage data and complex agentic traces
- Post Training ( Coming Soon ): Fine tune models for specific use cases
- **Rich Provider Ecosystem**
- Local Development: Meta's Reference, Ollama
- Cloud: Fireworks, Together, Nvidia, AWS Bedrock, Groq, Cerebras
- On-premises: Nvidia NIM, vLLM, TGI, Dell-TGI
- On-device: iOS and Android support
- **Built for Production**
- Pre-packaged distributions for common deployment scenarios
- Backwards compatibility across model versions
- Comprehensive evaluation capabilities
- Full observability and monitoring
- **Multiple developer interfaces**
- CLI: Command line interface
- Python SDK
- Swift iOS SDK
- Kotlin Android SDK
- **Sample llama stack applications**
- Python
- iOS
- Android
---
# v0.1.0rc12
Published on: 2025-01-22T22:24:01Z
---
# v0.0.63
Published on: 2024-12-18T07:17:43Z
A small but important bug-fix release to update the URL datatype for the client-SDKs. The issue affected multimodal agentic turns especially.
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.0.62...v0.0.63
---

View file

@ -11,14 +11,17 @@ You can install the dependencies by running:
```bash
cd llama-stack
uv venv --python 3.12
uv sync --group dev
uv pip install -e .
source .venv/bin/activate
```
```{note}
You can use a specific version of Python with `uv` by adding the `--python <version>` flag (e.g. `--python 3.12`).
Otherwise, `uv` will automatically select a Python version according to the `requires-python` section of the `pyproject.toml`.
If you are making changes to Llama Stack, it is essential that you use Python 3.12 as shown above.
Llama Stack can work with Python 3.13 but the pre-commit hooks used to validate code changes only work with Python 3.12.
If you don't specify a Python version, `uv` will automatically select a Python version according to the `requires-python`
section of the `pyproject.toml`, which is fine for running Llama Stack but not for committing changes.
For more info, see the [uv docs around Python versions](https://docs.astral.sh/uv/concepts/python-versions/).
```
@ -42,15 +45,32 @@ uv run --env-file .env -- pytest -v tests/integration/inference/test_text_infere
We use [pre-commit](https://pre-commit.com/) to run linting and formatting checks on your code. You can install the pre-commit hooks by running:
```bash
uv pip install pre-commit==4.3.0
uv run pre-commit install
```
After that, pre-commit hooks will run automatically before each commit.
Note that the only version of pre-commit that works with the Llama Stack continuous integration is `4.3.0` so it is essential that you pull
that specific version as shown above. Once you have run these commands, pre-commit hooks will run automatically before each commit.
Alternatively, if you don't want to install the pre-commit hooks, you can run the checks manually by running:
Alternatively, if you don't want to install the pre-commit hooks (or if you want to check if your changes are ready before committing),
you can run the checks manually by running:
```bash
uv run pre-commit run --all-files
uv run pre-commit run --all-files -v
```
The `-v` (verbose) parameter is optional but often helpful for getting more information about any issues with that the pre-commit checks identify.
To run the expanded mypy configuration that CI enforces, use:
```bash
uv run pre-commit run mypy-full --hook-stage manual --all-files
```
or invoke mypy directly with all optional dependencies:
```bash
uv run --group dev --group type_checking mypy
```
```{caution}
@ -83,6 +103,7 @@ If you are new to the project, start by looking at the issues tagged with "good
leave a comment on the issue and a triager will assign it to you.
Please avoid picking up too many issues at once. This helps you stay focused and ensures that others in the community also have opportunities to contribute.
- Try to work on only 12 issues at a time, especially if youre still getting familiar with the codebase.
- Before taking an issue, check if its already assigned or being actively discussed.
- If youre blocked or cant continue with an issue, feel free to unassign yourself or leave a comment so others can step in.
@ -158,9 +179,9 @@ under the LICENSE file in the root directory of this source tree.
Some tips about common tasks you work on while contributing to Llama Stack:
### Using `llama stack build`
### Installing dependencies of distributions
Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
When installing dependencies for a distribution, you can use `llama stack list-deps` to view and install the required packages.
Example:
```bash
@ -168,7 +189,12 @@ cd work/
git clone https://github.com/llamastack/llama-stack.git
git clone https://github.com/llamastack/llama-stack-client-python.git
cd llama-stack
LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama stack build --distro <...>
# Show dependencies for a distribution
llama stack list-deps <distro-name>
# Install dependencies
llama stack list-deps <distro-name> | xargs -L1 uv pip install
```
### Updating distribution configurations
@ -191,6 +217,7 @@ If you are making changes to the documentation at [https://llamastack.github.io/
```bash
# This rebuilds the documentation pages and the OpenAPI spec.
cd docs/
npm install
npm run gen-api-docs all
npm run build
@ -204,7 +231,7 @@ npm run serve
If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command:
```bash
uv run ./docs/openapi_generator/run_openapi_generator.sh
uv run ./scripts/run_openapi_generator.sh
```
The generated API schema will be available in `docs/static/`. Make sure to review the changes before committing.

View file

@ -1,11 +1,11 @@
include pyproject.toml
include llama_stack/models/llama/llama3/tokenizer.model
include llama_stack/models/llama/llama4/tokenizer.model
include llama_stack/core/*.sh
include llama_stack/cli/scripts/*.sh
include llama_stack/distributions/*/*.yaml
exclude llama_stack/distributions/ci-tests
include src/llama_stack/models/llama/llama3/tokenizer.model
include src/llama_stack/models/llama/llama4/tokenizer.model
include src/llama_stack/core/*.sh
include src/llama_stack/cli/scripts/*.sh
include src/llama_stack/distributions/*/*.yaml
exclude src/llama_stack/distributions/ci-tests
include tests/integration/test_cases/inference/*.json
include llama_stack/models/llama/*/*.md
include llama_stack/tests/integration/*.jpg
prune llama_stack/distributions/ci-tests
include src/llama_stack/models/llama/*/*.md
include src/llama_stack/tests/integration/*.jpg
prune src/llama_stack/distributions/ci-tests

134
README.md
View file

@ -10,93 +10,19 @@
[**Quick Start**](https://llamastack.github.io/docs/getting_started/quickstart) | [**Documentation**](https://llamastack.github.io/docs) | [**Colab Notebook**](./docs/getting_started.ipynb) | [**Discord**](https://discord.gg/llama-stack)
### ✨🎉 Llama 4 Support 🎉✨
We released [Version 0.2.0](https://github.com/meta-llama/llama-stack/releases/tag/v0.2.0) with support for the Llama 4 herd of models released by Meta.
<details>
<summary>👋 Click here to see how to run Llama 4 models on Llama Stack </summary>
\
*Note you need 8xH100 GPU-host to run these models*
```bash
pip install -U llama_stack
MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>
# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu
# install client to interact with the server
pip install llama-stack-client
```
### CLI
```bash
# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"
OpenAIChatCompletion(
...
choices=[
OpenAIChatCompletionChoice(
finish_reason='stop',
index=0,
message=OpenAIChatCompletionChoiceMessageOpenAIAssistantMessageParam(
role='assistant',
content='...**Silent minds awaken,** \n**Whispers of billions of words,** \n**Reasoning breaks the night.** \n\n— \n*This haiku blends the essence of LLaMA 4\'s capabilities with nature-inspired metaphor, evoking its vast training data and transformative potential.*',
...
),
...
)
],
...
)
```
### Python SDK
```python
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:8321")
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"
print(f"User> {prompt}")
response = client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
print(f"Assistant> {response.choices[0].message.content}")
```
As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!
</details>
### 🚀 One-Line Installer 🚀
To try Llama Stack locally, run:
```bash
curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash
curl -LsSf https://github.com/llamastack/llama-stack/raw/main/scripts/install.sh | bash
```
### Overview
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- **Unified API layer** for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- **Unified API layer** for Inference, RAG, Agents, Tools, Safety, Evals.
- **Plugin architecture** to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- **Prepackaged verified distributions** which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- **Multiple developer interfaces** like CLI and SDKs for Python, Typescript, iOS, and Android.
@ -122,34 +48,34 @@ By reducing friction and complexity, Llama Stack empowers developers to focus on
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
Please checkout for [full list](https://llamastack.github.io/docs/providers)
| API Provider Builder | Environments | Agents | Inference | VectorIO | Safety | Telemetry | Post Training | Eval | DatasetIO |
|:--------------------:|:------------:|:------:|:---------:|:--------:|:------:|:---------:|:-------------:|:----:|:--------:|
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SambaNova | Hosted | | ✅ | | ✅ | | | | |
| Cerebras | Hosted | | ✅ | | | | | | |
| Fireworks | Hosted | ✅ | ✅ | ✅ | | | | | |
| AWS Bedrock | Hosted | | ✅ | | ✅ | | | | |
| Together | Hosted | ✅ | ✅ | | ✅ | | | | |
| Groq | Hosted | | ✅ | | | | | | |
| Ollama | Single Node | | ✅ | | | | | | |
| TGI | Hosted/Single Node | | ✅ | | | | | | |
| NVIDIA NIM | Hosted/Single Node | | ✅ | | ✅ | | | | |
| ChromaDB | Hosted/Single Node | | | ✅ | | | | | |
| Milvus | Hosted/Single Node | | | ✅ | | | | | |
| Qdrant | Hosted/Single Node | | | ✅ | | | | | |
| Weaviate | Hosted/Single Node | | | ✅ | | | | | |
| SQLite-vec | Single Node | | | ✅ | | | | | |
| PG Vector | Single Node | | | ✅ | | | | | |
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | | | | |
| vLLM | Single Node | | ✅ | | | | | | |
| OpenAI | Hosted | | ✅ | | | | | | |
| Anthropic | Hosted | | ✅ | | | | | | |
| Gemini | Hosted | | ✅ | | | | | | |
| WatsonX | Hosted | | ✅ | | | | | | |
| HuggingFace | Single Node | | | | | | ✅ | | ✅ |
| TorchTune | Single Node | | | | | | ✅ | | |
| NVIDIA NEMO | Hosted | | ✅ | ✅ | | | ✅ | ✅ | ✅ |
| NVIDIA | Hosted | | | | | | ✅ | ✅ | ✅ |
| API Provider Builder | Environments | Agents | Inference | VectorIO | Safety | Post Training | Eval | DatasetIO |
|:--------------------:|:------------:|:------:|:---------:|:--------:|:------:|:-------------:|:----:|:--------:|
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SambaNova | Hosted | | ✅ | | ✅ | | | |
| Cerebras | Hosted | | ✅ | | | | | |
| Fireworks | Hosted | ✅ | ✅ | ✅ | | | | |
| AWS Bedrock | Hosted | | ✅ | | ✅ | | | |
| Together | Hosted | ✅ | ✅ | | ✅ | | | |
| Groq | Hosted | | ✅ | | | | | |
| Ollama | Single Node | | ✅ | | | | | |
| TGI | Hosted/Single Node | | ✅ | | | | | |
| NVIDIA NIM | Hosted/Single Node | | ✅ | | ✅ | | | |
| ChromaDB | Hosted/Single Node | | | ✅ | | | | |
| Milvus | Hosted/Single Node | | | ✅ | | | | |
| Qdrant | Hosted/Single Node | | | ✅ | | | | |
| Weaviate | Hosted/Single Node | | | ✅ | | | | |
| SQLite-vec | Single Node | | | ✅ | | | | |
| PG Vector | Single Node | | | ✅ | | | | |
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | | | |
| vLLM | Single Node | | ✅ | | | | | |
| OpenAI | Hosted | | ✅ | | | | | |
| Anthropic | Hosted | | ✅ | | | | | |
| Gemini | Hosted | | ✅ | | | | | |
| WatsonX | Hosted | | ✅ | | | | | |
| HuggingFace | Single Node | | | | | ✅ | | ✅ |
| TorchTune | Single Node | | | | | ✅ | | |
| NVIDIA NEMO | Hosted | | ✅ | ✅ | | ✅ | ✅ | ✅ |
| NVIDIA | Hosted | | | | | ✅ | ✅ | ✅ |
> **Note**: Additional providers are available through external packages. See [External Providers](https://llamastack.github.io/docs/providers/external) documentation.

View file

@ -44,14 +44,6 @@ data:
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -98,25 +90,42 @@ data:
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
prompts:
backend: kv_default
namespace: prompts
models:
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
embedding_dimension: 768
model_id: nomic-embed-text-v1.5
provider_id: sentence-transformers
model_type: embedding
- model_id: ${env.INFERENCE_MODEL}
@ -137,5 +146,4 @@ data:
port: 8323
kind: ConfigMap
metadata:
creationTimestamp: null
name: llama-stack-config

View file

@ -6,7 +6,6 @@ apis:
- inference
- files
- safety
- telemetry
- tool_runtime
- vector_io
providers:
@ -27,28 +26,16 @@ providers:
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
table_name: files_metadata
backend: sql_default
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -58,26 +45,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
@ -95,40 +71,65 @@ providers:
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
namespace: prompts
backend: kv_default
registered_resources:
models:
- metadata:
embedding_dimension: 768
model_id: nomic-embed-text-v1.5
provider_id: sentence-transformers
model_type: embedding
- model_id: ${env.INFERENCE_MODEL}
- model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8323
telemetry:
enabled: true
vector_stores:
default_provider_id: chromadb
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5

View file

@ -0,0 +1,11 @@
These are the source-of-truth configuration files used to generate the Stainless client SDKs via Stainless.
- `openapi.yml`: this is the OpenAPI specification for the Llama Stack API.
- `config.yml`: this is the Stainless _configuration_ which instructs Stainless how to generate the client SDKs.
A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files.
These files go hand-in-hand. Both `openapi.yml` and `config.yml` are generated by `scripts/run_openapi_generator.sh`:
- `openapi.yml` comes from the FastAPI-based generator.
- `config.yml` is rendered from `scripts/openapi_generator/stainless_config/config_data.py` so the Stainless config stays in lock-step with the spec.

View file

@ -0,0 +1,490 @@
# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json
organization:
name: llama-stack-client
docs: https://llama-stack.readthedocs.io/en/latest/
contact: llamastack@meta.com
security:
- {}
- BearerAuth: []
security_schemes:
BearerAuth:
type: http
scheme: bearer
targets:
node:
package_name: llama-stack-client
production_repo: llamastack/llama-stack-client-typescript
publish:
npm: false
python:
package_name: llama_stack_client
production_repo: llamastack/llama-stack-client-python
options:
use_uv: true
publish:
pypi: true
project_name: llama_stack_client
kotlin:
reverse_domain: com.llama_stack_client.api
production_repo: null
publish:
maven: false
go:
package_name: llama-stack-client
production_repo: llamastack/llama-stack-client-go
options:
enable_v2: true
back_compat_use_shared_package: false
client_settings:
default_env_prefix: LLAMA_STACK_CLIENT
opts:
api_key:
type: string
read_env: LLAMA_STACK_CLIENT_API_KEY
auth:
security_scheme: BearerAuth
nullable: true
environments:
production: http://any-hosted-llama-stack.com
pagination:
- name: datasets_iterrows
type: offset
request:
dataset_id:
type: string
start_index:
type: integer
x-stainless-pagination-property:
purpose: offset_count_param
limit:
type: integer
response:
data:
type: array
items:
type: object
next_index:
type: integer
x-stainless-pagination-property:
purpose: offset_count_start_field
- name: openai_cursor_page
type: cursor
request:
limit:
type: integer
after:
type: string
x-stainless-pagination-property:
purpose: next_cursor_param
response:
data:
type: array
items: {}
has_more:
type: boolean
last_id:
type: string
x-stainless-pagination-property:
purpose: next_cursor_field
settings:
license: MIT
unwrap_response_fields:
- data
file_header: 'Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the terms described in the LICENSE file in
the root directory of this source tree.
'
openapi:
transformations:
- command: mergeObject
reason: Better return_type using enum
args:
target:
- $.components.schemas
object:
ReturnType:
additionalProperties: false
properties:
type:
enum:
- string
- number
- boolean
- array
- object
- json
- union
- chat_completion_input
- completion_input
- agent_turn_input
required:
- type
type: object
- command: replaceProperties
reason: Replace return type properties with better model (see above)
args:
filter:
only:
- $.components.schemas.ScoringFn.properties.return_type
- $.components.schemas.RegisterScoringFunctionRequest.properties.return_type
value:
$ref: '#/components/schemas/ReturnType'
- command: oneOfToAnyOf
reason: Prism (mock server) doesn't like one of our requests as it technically
matches multiple variants
readme:
example_requests:
default:
type: request
endpoint: post /v1/chat/completions
params: {}
headline:
type: request
endpoint: get /v1/models
params: {}
pagination:
type: request
endpoint: post /v1/chat/completions
params: {}
resources:
$shared:
models:
interleaved_content_item: InterleavedContentItem
interleaved_content: InterleavedContent
param_type: ParamType
safety_violation: SafetyViolation
sampling_params: SamplingParams
scoring_result: ScoringResult
system_message: SystemMessage
toolgroups:
models:
tool_group: ToolGroup
list_tool_groups_response: ListToolGroupsResponse
methods:
register: post /v1/toolgroups
get: get /v1/toolgroups/{toolgroup_id}
list: get /v1/toolgroups
unregister: delete /v1/toolgroups/{toolgroup_id}
tools:
methods:
get: get /v1/tools/{tool_name}
list:
paginated: false
endpoint: get /v1/tools
tool_runtime:
models:
tool_def: ToolDef
tool_invocation_result: ToolInvocationResult
methods:
list_tools:
paginated: false
endpoint: get /v1/tool-runtime/list-tools
invoke_tool: post /v1/tool-runtime/invoke
responses:
models:
response_object_stream: OpenAIResponseObjectStream
response_object: OpenAIResponseObject
methods:
create:
type: http
streaming:
stream_event_model: responses.response_object_stream
param_discriminator: stream
endpoint: post /v1/responses
retrieve: get /v1/responses/{response_id}
list:
type: http
endpoint: get /v1/responses
delete:
type: http
endpoint: delete /v1/responses/{response_id}
subresources:
input_items:
methods:
list:
type: http
paginated: false
endpoint: get /v1/responses/{response_id}/input_items
prompts:
models:
prompt: Prompt
list_prompts_response: ListPromptsResponse
methods:
create: post /v1/prompts
list:
paginated: false
endpoint: get /v1/prompts
retrieve: get /v1/prompts/{prompt_id}
update: post /v1/prompts/{prompt_id}
delete: delete /v1/prompts/{prompt_id}
set_default_version: post /v1/prompts/{prompt_id}/set-default-version
subresources:
versions:
methods:
list:
paginated: false
endpoint: get /v1/prompts/{prompt_id}/versions
conversations:
models:
conversation_object: Conversation
methods:
create:
type: http
endpoint: post /v1/conversations
retrieve: get /v1/conversations/{conversation_id}
update:
type: http
endpoint: post /v1/conversations/{conversation_id}
delete:
type: http
endpoint: delete /v1/conversations/{conversation_id}
subresources:
items:
methods:
get:
type: http
endpoint: get /v1/conversations/{conversation_id}/items/{item_id}
list:
type: http
endpoint: get /v1/conversations/{conversation_id}/items
create:
type: http
endpoint: post /v1/conversations/{conversation_id}/items
delete:
type: http
endpoint: delete /v1/conversations/{conversation_id}/items/{item_id}
inspect:
models:
healthInfo: HealthInfo
providerInfo: ProviderInfo
routeInfo: RouteInfo
versionInfo: VersionInfo
methods:
health: get /v1/health
version: get /v1/version
embeddings:
models:
create_embeddings_response: OpenAIEmbeddingsResponse
methods:
create: post /v1/embeddings
chat:
models:
chat_completion_chunk: OpenAIChatCompletionChunk
subresources:
completions:
methods:
create:
type: http
streaming:
stream_event_model: chat.chat_completion_chunk
param_discriminator: stream
endpoint: post /v1/chat/completions
list:
type: http
paginated: false
endpoint: get /v1/chat/completions
retrieve:
type: http
endpoint: get /v1/chat/completions/{completion_id}
completions:
methods:
create:
type: http
streaming:
param_discriminator: stream
endpoint: post /v1/completions
vector_io:
models:
queryChunksResponse: QueryChunksResponse
methods:
insert: post /v1/vector-io/insert
query: post /v1/vector-io/query
vector_stores:
models:
vector_store: VectorStoreObject
list_vector_stores_response: VectorStoreListResponse
vector_store_delete_response: VectorStoreDeleteResponse
vector_store_search_response: VectorStoreSearchResponsePage
methods:
create: post /v1/vector_stores
list: get /v1/vector_stores
retrieve: get /v1/vector_stores/{vector_store_id}
update: post /v1/vector_stores/{vector_store_id}
delete: delete /v1/vector_stores/{vector_store_id}
search: post /v1/vector_stores/{vector_store_id}/search
subresources:
files:
models:
vector_store_file: VectorStoreFileObject
methods:
list: get /v1/vector_stores/{vector_store_id}/files
retrieve: get /v1/vector_stores/{vector_store_id}/files/{file_id}
update: post /v1/vector_stores/{vector_store_id}/files/{file_id}
delete: delete /v1/vector_stores/{vector_store_id}/files/{file_id}
create: post /v1/vector_stores/{vector_store_id}/files
content: get /v1/vector_stores/{vector_store_id}/files/{file_id}/content
file_batches:
models:
vector_store_file_batches: VectorStoreFileBatchObject
list_vector_store_files_in_batch_response: VectorStoreFilesListInBatchResponse
methods:
create: post /v1/vector_stores/{vector_store_id}/file_batches
retrieve: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}
list_files: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files
cancel: post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel
models:
models:
model: OpenAIModel
list_models_response: OpenAIListModelsResponse
methods:
list:
paginated: false
endpoint: get /v1/models
retrieve: get /v1/models/{model_id}
register: post /v1/models
unregister: delete /v1/models/{model_id}
subresources:
openai:
methods:
list:
paginated: false
endpoint: get /v1/models
providers:
models:
list_providers_response: ListProvidersResponse
methods:
list:
paginated: false
endpoint: get /v1/providers
retrieve: get /v1/providers/{provider_id}
routes:
models:
list_routes_response: ListRoutesResponse
methods:
list:
paginated: false
endpoint: get /v1/inspect/routes
moderations:
models:
create_response: ModerationObject
methods:
create: post /v1/moderations
safety:
models:
run_shield_response: RunShieldResponse
methods:
run_shield: post /v1/safety/run-shield
shields:
models:
shield: Shield
list_shields_response: ListShieldsResponse
methods:
retrieve: get /v1/shields/{identifier}
list:
paginated: false
endpoint: get /v1/shields
register: post /v1/shields
delete: delete /v1/shields/{identifier}
scoring:
methods:
score: post /v1/scoring/score
score_batch: post /v1/scoring/score-batch
scoring_functions:
models:
scoring_fn: ScoringFn
scoring_fn_params: ScoringFnParams
list_scoring_functions_response: ListScoringFunctionsResponse
methods:
retrieve: get /v1/scoring-functions/{scoring_fn_id}
list:
paginated: false
endpoint: get /v1/scoring-functions
register: post /v1/scoring-functions
unregister: delete /v1/scoring-functions/{scoring_fn_id}
files:
models:
file: OpenAIFileObject
list_files_response: ListOpenAIFileResponse
delete_file_response: OpenAIFileDeleteResponse
methods:
create: post /v1/files
list: get /v1/files
retrieve: get /v1/files/{file_id}
delete: delete /v1/files/{file_id}
content: get /v1/files/{file_id}/content
batches:
methods:
create: post /v1/batches
list: get /v1/batches
retrieve: get /v1/batches/{batch_id}
cancel: post /v1/batches/{batch_id}/cancel
alpha:
subresources:
inference:
methods:
rerank: post /v1alpha/inference/rerank
post_training:
models:
algorithm_config: AlgorithmConfig
post_training_job: PostTrainingJob
list_post_training_jobs_response: ListPostTrainingJobsResponse
methods:
preference_optimize: post /v1alpha/post-training/preference-optimize
supervised_fine_tune: post /v1alpha/post-training/supervised-fine-tune
subresources:
job:
methods:
artifacts: get /v1alpha/post-training/job/artifacts
cancel: post /v1alpha/post-training/job/cancel
status: get /v1alpha/post-training/job/status
list:
paginated: false
endpoint: get /v1alpha/post-training/jobs
benchmarks:
models:
benchmark: Benchmark
list_benchmarks_response: ListBenchmarksResponse
methods:
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}
list:
paginated: false
endpoint: get /v1alpha/eval/benchmarks
register: post /v1alpha/eval/benchmarks
unregister: delete /v1alpha/eval/benchmarks/{benchmark_id}
eval:
models:
evaluate_response: EvaluateResponse
benchmark_config: BenchmarkConfig
job: Job
methods:
evaluate_rows: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
evaluate_rows_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
subresources:
jobs:
methods:
cancel: delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
status: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result
beta:
subresources:
datasets:
models:
list_datasets_response: ListDatasetsResponse
methods:
register: post /v1beta/datasets
retrieve: get /v1beta/datasets/{dataset_id}
list:
paginated: false
endpoint: get /v1beta/datasets
unregister: delete /v1beta/datasets/{dataset_id}
iterrows: get /v1beta/datasetio/iterrows/{dataset_id}
appendrows: post /v1beta/datasetio/append-rows/{dataset_id}

File diff suppressed because it is too large Load diff

152
containers/Containerfile Normal file
View file

@ -0,0 +1,152 @@
# syntax=docker/dockerfile:1.6
#
# This Dockerfile is used to build the Llama Stack container image.
# Example:
# docker build \
# -f containers/Containerfile \
# --build-arg DISTRO_NAME=starter \
# --tag llama-stack:starter .
ARG BASE_IMAGE=python:3.12-slim
FROM ${BASE_IMAGE}
ARG INSTALL_MODE="pypi"
ARG LLAMA_STACK_DIR="/workspace"
ARG LLAMA_STACK_CLIENT_DIR=""
ARG PYPI_VERSION=""
ARG TEST_PYPI_VERSION=""
ARG KEEP_WORKSPACE=""
ARG DISTRO_NAME="starter"
ARG RUN_CONFIG_PATH=""
ARG UV_HTTP_TIMEOUT=500
ARG UV_EXTRA_INDEX_URL=""
ARG UV_INDEX_STRATEGY=""
ENV UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT}
ENV PYTHONDONTWRITEBYTECODE=1
ENV PIP_DISABLE_PIP_VERSION_CHECK=1
WORKDIR /app
RUN set -eux; \
if command -v dnf >/dev/null 2>&1; then \
dnf -y update && \
dnf install -y iputils git net-tools wget \
vim-minimal python3.12 python3.12-pip python3.12-wheel \
python3.12-setuptools python3.12-devel gcc gcc-c++ make && \
ln -sf /usr/bin/pip3.12 /usr/local/bin/pip && \
ln -sf /usr/bin/python3.12 /usr/local/bin/python && \
dnf clean all; \
elif command -v apt-get >/dev/null 2>&1; then \
apt-get update && \
apt-get install -y --no-install-recommends \
iputils-ping net-tools iproute2 dnsutils telnet \
curl wget git procps psmisc lsof traceroute bubblewrap \
gcc g++ && \
rm -rf /var/lib/apt/lists/*; \
else \
echo "Unsupported base image: expected dnf or apt-get" >&2; \
exit 1; \
fi
RUN pip install --no-cache uv
ENV UV_SYSTEM_PYTHON=1
ENV INSTALL_MODE=${INSTALL_MODE}
ENV LLAMA_STACK_DIR=${LLAMA_STACK_DIR}
ENV LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR}
ENV PYPI_VERSION=${PYPI_VERSION}
ENV TEST_PYPI_VERSION=${TEST_PYPI_VERSION}
ENV KEEP_WORKSPACE=${KEEP_WORKSPACE}
ENV DISTRO_NAME=${DISTRO_NAME}
ENV RUN_CONFIG_PATH=${RUN_CONFIG_PATH}
# Copy the repository so editable installs and run configurations are available.
COPY . /workspace
# Install the client package if it is provided
# NOTE: this is installed before llama-stack since llama-stack depends on llama-stack-client-python
# Unset UV index env vars to ensure we only use PyPI for the client
RUN set -eux; \
unset UV_EXTRA_INDEX_URL UV_INDEX_STRATEGY; \
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then \
if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ]; then \
echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \
exit 1; \
fi; \
uv pip install --no-cache -e "$LLAMA_STACK_CLIENT_DIR"; \
fi;
# Install llama-stack
# Use UV_EXTRA_INDEX_URL inline only for editable install with RC dependencies
RUN set -eux; \
SAVED_UV_EXTRA_INDEX_URL="${UV_EXTRA_INDEX_URL:-}"; \
SAVED_UV_INDEX_STRATEGY="${UV_INDEX_STRATEGY:-}"; \
unset UV_EXTRA_INDEX_URL UV_INDEX_STRATEGY; \
if [ "$INSTALL_MODE" = "editable" ]; then \
if [ ! -d "$LLAMA_STACK_DIR" ]; then \
echo "INSTALL_MODE=editable requires LLAMA_STACK_DIR to point to a directory inside the build context" >&2; \
exit 1; \
fi; \
if [ -n "$SAVED_UV_EXTRA_INDEX_URL" ] && [ -n "$SAVED_UV_INDEX_STRATEGY" ]; then \
UV_EXTRA_INDEX_URL="$SAVED_UV_EXTRA_INDEX_URL" UV_INDEX_STRATEGY="$SAVED_UV_INDEX_STRATEGY" \
uv pip install --no-cache -e "$LLAMA_STACK_DIR"; \
else \
uv pip install --no-cache -e "$LLAMA_STACK_DIR"; \
fi; \
elif [ "$INSTALL_MODE" = "test-pypi" ]; then \
uv pip install --no-cache fastapi libcst; \
if [ -n "$TEST_PYPI_VERSION" ]; then \
uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \
else \
uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \
fi; \
else \
if [ -n "$PYPI_VERSION" ]; then \
uv pip install --no-cache "llama-stack==$PYPI_VERSION"; \
else \
uv pip install --no-cache llama-stack; \
fi; \
fi;
# Install the dependencies for the distribution
# Explicitly unset UV index env vars to ensure we only use PyPI for distribution deps
RUN set -eux; \
unset UV_EXTRA_INDEX_URL UV_INDEX_STRATEGY; \
if [ -z "$DISTRO_NAME" ]; then \
echo "DISTRO_NAME must be provided" >&2; \
exit 1; \
fi; \
deps="$(llama stack list-deps "$DISTRO_NAME")"; \
if [ -n "$deps" ]; then \
printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache; \
fi
# Cleanup
RUN set -eux; \
pip uninstall -y uv; \
should_remove=1; \
if [ -n "$KEEP_WORKSPACE" ]; then should_remove=0; fi; \
if [ "$INSTALL_MODE" = "editable" ]; then should_remove=0; fi; \
case "$RUN_CONFIG_PATH" in \
/workspace*) should_remove=0 ;; \
esac; \
if [ "$should_remove" -eq 1 ] && [ -d /workspace ]; then rm -rf /workspace; fi
RUN cat <<'EOF' >/usr/local/bin/llama-stack-entrypoint.sh
#!/bin/sh
set -e
if [ -n "$RUN_CONFIG_PATH" ] && [ -f "$RUN_CONFIG_PATH" ]; then
exec llama stack run "$RUN_CONFIG_PATH" "$@"
fi
if [ -n "$DISTRO_NAME" ]; then
exec llama stack run "$DISTRO_NAME" "$@"
fi
exec llama stack run "$@"
EOF
RUN chmod +x /usr/local/bin/llama-stack-entrypoint.sh
RUN mkdir -p /.llama /.cache && chmod -R g+rw /app /.llama /.cache
ENTRYPOINT ["/usr/local/bin/llama-stack-entrypoint.sh"]

View file

@ -13,6 +13,42 @@ npm run serve
```
You can open up the docs in your browser at http://localhost:3000
## File Import System
This documentation uses `remark-code-import` to import files directly from the repository, eliminating copy-paste maintenance. Files are automatically embedded during build time.
### Importing Code Files
To import Python code (or any code files) with syntax highlighting, use this syntax in `.mdx` files:
```markdown
```python file=./demo_script.py title="demo_script.py"
```
```
This automatically imports the file content and displays it as a formatted code block with Python syntax highlighting.
**Note:** Paths are relative to the current `.mdx` file location, not the repository root.
### Importing Markdown Files as Content
For importing and rendering markdown files (like CONTRIBUTING.md), use the raw-loader approach:
```jsx
import Contributing from '!!raw-loader!../../../CONTRIBUTING.md';
import ReactMarkdown from 'react-markdown';
<ReactMarkdown>{Contributing}</ReactMarkdown>
```
**Requirements:**
- Install dependencies: `npm install --save-dev raw-loader react-markdown`
**Path Resolution:**
- For `remark-code-import`: Paths are relative to the current `.mdx` file location
- For `raw-loader`: Paths are relative to the current `.mdx` file location
- Use `../` to navigate up directories as needed
## Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:

View file

@ -51,8 +51,8 @@ device: cpu
You can access the HuggingFace trainer via the `starter` distribution:
```bash
llama stack build --distro starter --image-type venv
llama stack run ~/.llama/distributions/starter/starter-run.yaml
llama stack list-deps starter | xargs -L1 uv pip install
llama stack run starter
```
### Usage Example

View file

@ -0,0 +1,62 @@
---
title: Deprecated APIs
description: Legacy APIs that are being phased out
sidebar_label: Deprecated
sidebar_position: 1
---
# Deprecated APIs
This section contains APIs that are being phased out in favor of newer, more standardized implementations. These APIs are maintained for backward compatibility but are not recommended for new projects.
:::warning Deprecation Notice
These APIs are deprecated and will be removed in future versions. Please migrate to the recommended alternatives listed below.
:::
## Migration Guide
When using deprecated APIs, please refer to the migration guides provided for each API to understand how to transition to the supported alternatives.
## Deprecated API List
### Legacy Inference APIs
Some older inference endpoints that have been superseded by the standardized Inference API.
**Migration Path:** Use the [Inference API](../api/) instead.
### Legacy Vector Operations
Older vector database operations that have been replaced by the Vector IO API.
**Migration Path:** Use the [Vector IO API](../api/) instead.
### Legacy File Operations
Older file management endpoints that have been replaced by the Files API.
**Migration Path:** Use the [Files API](../api/) instead.
## Support Timeline
Deprecated APIs will be supported according to the following timeline:
- **Current Version**: Full support with deprecation warnings
- **Next Major Version**: Limited support with migration notices
- **Following Major Version**: Removal of deprecated APIs
## Getting Help
If you need assistance migrating from deprecated APIs:
1. Check the specific migration guides for each API
2. Review the [API Reference](../api/) for current alternatives
3. Consult the [Community Forums](https://github.com/llamastack/llama-stack/discussions) for migration support
4. Open an issue on GitHub for specific migration questions
## Contributing
If you find issues with deprecated APIs or have suggestions for improving the migration process, please contribute by:
1. Opening an issue describing the problem
2. Submitting a pull request with improvements
3. Updating migration documentation
For more information on contributing, see our [Contributing Guide](../contributing/).

View file

@ -0,0 +1,128 @@
---
title: Experimental APIs
description: APIs in development with limited support
sidebar_label: Experimental
sidebar_position: 1
---
# Experimental APIs
This section contains APIs that are currently in development and may have limited support or stability. These APIs are available for testing and feedback but should not be used in production environments.
:::warning Experimental Notice
These APIs are experimental and may change without notice. Use with caution and provide feedback to help improve them.
:::
## Current Experimental APIs
### Batch Inference API
Run inference on a dataset of inputs in batch mode for improved efficiency.
**Status:** In Development
**Provider Support:** Limited
**Use Case:** Large-scale inference operations
**Features:**
- Batch processing of multiple inputs
- Optimized resource utilization
- Progress tracking and monitoring
### Batch Agents API
Run agentic workflows on a dataset of inputs in batch mode.
**Status:** In Development
**Provider Support:** Limited
**Use Case:** Large-scale agent operations
**Features:**
- Batch agent execution
- Parallel processing capabilities
- Result aggregation and analysis
### Synthetic Data Generation API
Generate synthetic data for model development and testing.
**Status:** Early Development
**Provider Support:** Very Limited
**Use Case:** Training data augmentation
**Features:**
- Automated data generation
- Quality control mechanisms
- Customizable generation parameters
### Batches API (OpenAI-compatible)
OpenAI-compatible batch management for inference operations.
**Status:** In Development
**Provider Support:** Limited
**Use Case:** OpenAI batch processing compatibility
**Features:**
- OpenAI batch API compatibility
- Job scheduling and management
- Status tracking and monitoring
## Getting Started with Experimental APIs
### Prerequisites
- Llama Stack server running with experimental features enabled
- Appropriate provider configurations
- Understanding of API limitations
### Configuration
Experimental APIs may require special configuration flags or provider settings. Check the specific API documentation for setup requirements.
### Usage Guidelines
1. **Testing Only**: Use experimental APIs for testing and development only
2. **Monitor Changes**: Watch for updates and breaking changes
3. **Provide Feedback**: Report issues and suggest improvements
4. **Backup Data**: Always backup important data when using experimental features
## Feedback and Contribution
We encourage feedback on experimental APIs to help improve them:
### Reporting Issues
- Use GitHub issues with the "experimental" label
- Include detailed error messages and reproduction steps
- Specify the API version and provider being used
### Feature Requests
- Submit feature requests through GitHub discussions
- Provide use cases and expected behavior
- Consider contributing implementations
### Testing
- Test experimental APIs in your environment
- Report performance issues and optimization opportunities
- Share success stories and use cases
## Migration to Stable APIs
As experimental APIs mature, they will be moved to the stable API section. When this happens:
1. **Announcement**: We'll announce the promotion in release notes
2. **Migration Guide**: Detailed migration instructions will be provided
3. **Deprecation Timeline**: Experimental versions will be deprecated with notice
4. **Support**: Full support will be available for stable versions
## Provider Support
Experimental APIs may have limited provider support. Check the specific API documentation for:
- Supported providers
- Configuration requirements
- Known limitations
- Performance characteristics
## Roadmap
Experimental APIs are part of our ongoing development roadmap:
- **Q1 2024**: Batch Inference API stabilization
- **Q2 2024**: Batch Agents API improvements
- **Q3 2024**: Synthetic Data Generation API expansion
- **Q4 2024**: Batches API full OpenAI compatibility
For the latest updates, follow our [GitHub releases](https://github.com/llamastack/llama-stack/releases) and [roadmap discussions](https://github.com/llamastack/llama-stack/discussions).

View file

@ -0,0 +1,287 @@
---
title: OpenAI API Compatibility
description: OpenAI-compatible APIs and features in Llama Stack
sidebar_label: OpenAI Compatibility
sidebar_position: 1
---
# OpenAI API Compatibility
Llama Stack provides comprehensive OpenAI API compatibility, allowing you to use existing OpenAI API clients and tools with Llama Stack providers. This compatibility layer ensures seamless migration and interoperability.
## Overview
OpenAI API compatibility in Llama Stack includes:
- **OpenAI-compatible endpoints** for all major APIs
- **Request/response format compatibility** with OpenAI standards
- **Authentication and authorization** using OpenAI-style API keys
- **Error handling** with OpenAI-compatible error codes and messages
- **Rate limiting** and usage tracking compatible with OpenAI patterns
## Supported OpenAI APIs
### Chat Completions API
OpenAI-compatible chat completions for conversational AI applications.
**Endpoint:** `/v1/chat/completions`
**Compatibility:** Full OpenAI API compatibility
**Providers:** All inference providers
**Features:**
- Message-based conversations
- System prompts and user messages
- Function calling support
- Streaming responses
- Temperature and other parameter controls
### Completions API
OpenAI-compatible text completions for general text generation.
**Endpoint:** `/v1/completions`
**Compatibility:** Full OpenAI API compatibility
**Providers:** All inference providers
**Features:**
- Text completion generation
- Prompt engineering support
- Customizable parameters
- Batch processing capabilities
### Embeddings API
OpenAI-compatible embeddings for vector operations.
**Endpoint:** `/v1/embeddings`
**Compatibility:** Full OpenAI API compatibility
**Providers:** All embedding providers
**Features:**
- Text embedding generation
- Multiple embedding models
- Batch embedding processing
- Vector similarity operations
### Files API
OpenAI-compatible file management for document processing.
**Endpoint:** `/v1/files`
**Compatibility:** Full OpenAI API compatibility
**Providers:** Local Filesystem, S3
**Features:**
- File upload and management
- Document processing
- File metadata tracking
- Secure file access
### Vector Store Files API
OpenAI-compatible vector store file operations for RAG applications.
**Endpoint:** `/v1/vector_stores/{vector_store_id}/files`
**Compatibility:** Full OpenAI API compatibility
**Providers:** FAISS, SQLite-vec, Milvus, ChromaDB, Qdrant, Weaviate, Postgres (PGVector)
**Features:**
- Automatic document processing
- Vector store integration
- File chunking and indexing
- Search and retrieval operations
### Batches API
OpenAI-compatible batch processing for large-scale operations.
**Endpoint:** `/v1/batches`
**Compatibility:** OpenAI API compatibility (experimental)
**Providers:** Limited support
**Features:**
- Batch job creation and management
- Progress tracking
- Result retrieval
- Error handling
## Migration from OpenAI
### Step 1: Update API Endpoint
Change your API endpoint from OpenAI to your Llama Stack server:
```python
# Before (OpenAI)
import openai
client = openai.OpenAI(api_key="your-openai-key")
# After (Llama Stack)
import openai
client = openai.OpenAI(
api_key="your-llama-stack-key",
base_url="http://localhost:8000/v1" # Your Llama Stack server
)
```
### Step 2: Configure Providers
Set up your preferred providers in the Llama Stack configuration:
```yaml
# stack-config.yaml
inference:
providers:
- name: "meta-reference"
type: "inline"
model: "llama-3.1-8b"
```
### Step 3: Test Compatibility
Verify that your existing code works with Llama Stack:
```python
# Test chat completions
response = client.chat.completions.create(
model="llama-3.1-8b",
messages=[
{"role": "user", "content": "Hello, world!"}
]
)
print(response.choices[0].message.content)
```
## Provider-Specific Features
### Meta Reference Provider
- Full OpenAI API compatibility
- Local model execution
- Custom model support
### Remote Providers
- OpenAI API compatibility
- Cloud-based execution
- Scalable infrastructure
### Vector Store Providers
- OpenAI vector store API compatibility
- Automatic document processing
- Advanced search capabilities
## Authentication
Llama Stack supports OpenAI-style authentication:
### API Key Authentication
```python
client = openai.OpenAI(
api_key="your-api-key",
base_url="http://localhost:8000/v1"
)
```
### Environment Variables
```bash
export OPENAI_API_KEY="your-api-key"
export OPENAI_BASE_URL="http://localhost:8000/v1"
```
## Error Handling
Llama Stack provides OpenAI-compatible error responses:
```python
try:
response = client.chat.completions.create(...)
except openai.APIError as e:
print(f"API Error: {e}")
except openai.RateLimitError as e:
print(f"Rate Limit Error: {e}")
except openai.APIConnectionError as e:
print(f"Connection Error: {e}")
```
## Rate Limiting
OpenAI-compatible rate limiting is supported:
- **Requests per minute** limits
- **Tokens per minute** limits
- **Concurrent request** limits
- **Usage tracking** and monitoring
## Monitoring and Observability
Track your API usage with OpenAI-compatible monitoring:
- **Request/response logging**
- **Usage metrics** and analytics
- **Performance monitoring**
- **Error tracking** and alerting
## Best Practices
### 1. Provider Selection
Choose providers based on your requirements:
- **Local development**: Meta Reference, Ollama
- **Production**: Cloud providers (Fireworks, Together, NVIDIA)
- **Specialized use cases**: Custom providers
### 2. Model Configuration
Configure models for optimal performance:
- **Model selection** based on task requirements
- **Parameter tuning** for specific use cases
- **Resource allocation** for performance
### 3. Error Handling
Implement robust error handling:
- **Retry logic** for transient failures
- **Fallback providers** for high availability
- **Monitoring** and alerting for issues
### 4. Security
Follow security best practices:
- **API key management** and rotation
- **Access control** and authorization
- **Data privacy** and compliance
## Implementation Examples
For detailed code examples and implementation guides, see our [OpenAI Implementation Guide](../providers/openai.mdx).
## Known Limitations
### Responses API Limitations
The Responses API is still in active development. For detailed information about current limitations and implementation status, see our [OpenAI Responses API Limitations](../providers/openai_responses_limitations.mdx).
## Troubleshooting
### Common Issues
**Connection Errors**
- Verify server is running
- Check network connectivity
- Validate API endpoint URL
**Authentication Errors**
- Verify API key is correct
- Check key permissions
- Ensure proper authentication headers
**Model Errors**
- Verify model is available
- Check provider configuration
- Validate model parameters
### Getting Help
For OpenAI compatibility issues:
1. **Check Documentation**: Review provider-specific documentation
2. **Community Support**: Ask questions in GitHub discussions
3. **Issue Reporting**: Open GitHub issues for bugs
4. **Professional Support**: Contact support for enterprise issues
## Roadmap
Upcoming OpenAI compatibility features:
- **Enhanced batch processing** support
- **Advanced function calling** capabilities
- **Improved error handling** and diagnostics
- **Performance optimizations** for large-scale deployments
For the latest updates, follow our [GitHub releases](https://github.com/llamastack/llama-stack/releases) and [roadmap discussions](https://github.com/llamastack/llama-stack/discussions).

144
docs/docs/api/index.mdx Normal file
View file

@ -0,0 +1,144 @@
---
title: API Reference
description: Complete reference for Llama Stack APIs
sidebar_label: Overview
sidebar_position: 1
---
# API Reference
Llama Stack provides a comprehensive set of APIs for building generative AI applications. All APIs follow OpenAI-compatible standards and can be used interchangeably across different providers.
## Core APIs
### Inference API
Run inference with Large Language Models (LLMs) and embedding models.
**Supported Providers:**
- Meta Reference (Single Node)
- Ollama (Single Node)
- Fireworks (Hosted)
- Together (Hosted)
- NVIDIA NIM (Hosted and Single Node)
- vLLM (Hosted and Single Node)
- TGI (Hosted and Single Node)
- AWS Bedrock (Hosted)
- Cerebras (Hosted)
- Groq (Hosted)
- SambaNova (Hosted)
- PyTorch ExecuTorch (On-device iOS, Android)
- OpenAI (Hosted)
- Anthropic (Hosted)
- Gemini (Hosted)
- WatsonX (Hosted)
### Agents API
Run multi-step agentic workflows with LLMs, including tool usage, memory (RAG), and complex reasoning.
**Supported Providers:**
- Meta Reference (Single Node)
- Fireworks (Hosted)
- Together (Hosted)
- PyTorch ExecuTorch (On-device iOS)
### Vector IO API
Perform operations on vector stores, including adding documents, searching, and deleting documents.
**Supported Providers:**
- FAISS (Single Node)
- SQLite-Vec (Single Node)
- Chroma (Hosted and Single Node)
- Milvus (Hosted and Single Node)
- Postgres (PGVector) (Hosted and Single Node)
- Weaviate (Hosted)
- Qdrant (Hosted and Single Node)
### Files API (OpenAI-compatible)
Manage file uploads, storage, and retrieval with OpenAI-compatible endpoints.
**Supported Providers:**
- Local Filesystem (Single Node)
- S3 (Hosted)
### Vector Store Files API (OpenAI-compatible)
Integrate file operations with vector stores for automatic document processing and search.
**Supported Providers:**
- FAISS (Single Node)
- SQLite-vec (Single Node)
- Milvus (Single Node)
- ChromaDB (Hosted and Single Node)
- Qdrant (Hosted and Single Node)
- Weaviate (Hosted)
- Postgres (PGVector) (Hosted and Single Node)
### Safety API
Apply safety policies to outputs at a systems level, not just model level.
**Supported Providers:**
- Llama Guard (Depends on Inference Provider)
- Prompt Guard (Single Node)
- Code Scanner (Single Node)
- AWS Bedrock (Hosted)
### Post Training API
Fine-tune models for specific use cases and domains.
**Supported Providers:**
- Meta Reference (Single Node)
- HuggingFace (Single Node)
- TorchTune (Single Node)
- NVIDIA NEMO (Hosted)
### Eval API
Generate outputs and perform scoring to evaluate system performance.
**Supported Providers:**
- Meta Reference (Single Node)
- NVIDIA NEMO (Hosted)
### Telemetry API
Collect telemetry data from the system for monitoring and observability.
**Supported Providers:**
- Meta Reference (Single Node)
### Tool Runtime API
Interact with various tools and protocols to extend LLM capabilities.
**Supported Providers:**
- Brave Search (Hosted)
- RAG Runtime (Single Node)
## API Compatibility
All Llama Stack APIs are designed to be OpenAI-compatible, allowing you to:
- Use existing OpenAI API clients and tools
- Migrate from OpenAI to other providers seamlessly
- Maintain consistent API contracts across different environments
## Getting Started
To get started with Llama Stack APIs:
1. **Choose a Distribution**: Select a pre-configured distribution that matches your environment
2. **Configure Providers**: Set up the providers you want to use for each API
3. **Start the Server**: Launch the Llama Stack server with your configuration
4. **Use the APIs**: Make requests to the API endpoints using your preferred client
For detailed setup instructions, see our [Getting Started Guide](../getting_started/quickstart).
## Provider Details
For complete provider compatibility and setup instructions, see our [Providers Documentation](../providers/).
## API Stability
Llama Stack APIs are organized by stability level:
- **[Stable APIs](./index.mdx)** - Production-ready APIs with full support
- **[Experimental APIs](../api-experimental/)** - APIs in development with limited support
- **[Deprecated APIs](../api-deprecated/)** - Legacy APIs being phased out
## OpenAI Integration
For specific OpenAI API compatibility features, see our [OpenAI Compatibility Guide](../api-openai/).

View file

@ -35,9 +35,6 @@ Here are the key topics that will help you build effective AI applications:
- **[Telemetry](./telemetry.mdx)** - Monitor and analyze your agents' performance and behavior
- **[Safety](./safety.mdx)** - Implement guardrails and safety measures to ensure responsible AI behavior
### 🎮 **Interactive Development**
- **[Playground](./playground.mdx)** - Interactive environment for testing and developing applications
## Application Patterns
### 🤖 **Conversational Agents**

View file

@ -1,299 +1,87 @@
---
title: Llama Stack Playground
description: Interactive interface to explore and experiment with Llama Stack capabilities
title: Admin UI & Chat Playground
description: Web-based admin interface and chat playground for Llama Stack
sidebar_label: Playground
sidebar_position: 10
---
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Admin UI & Chat Playground
# Llama Stack Playground
The Llama Stack UI provides a comprehensive web-based admin interface for managing your Llama Stack server, with an integrated chat playground for interactive testing. This admin interface is the primary way to monitor, manage, and debug your Llama Stack applications.
:::note[Experimental Feature]
The Llama Stack Playground is currently experimental and subject to change. We welcome feedback and contributions to help improve it.
:::
## Quick Start
The Llama Stack Playground is a simple interface that aims to:
- **Showcase capabilities and concepts** of Llama Stack in an interactive environment
- **Demo end-to-end application code** to help users get started building their own applications
- **Provide a UI** to help users inspect and understand Llama Stack API providers and resources
## Key Features
### Interactive Playground Pages
The playground provides interactive pages for users to explore Llama Stack API capabilities:
#### Chatbot Interface
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%'}}
>
<source src="https://github.com/user-attachments/assets/8d2ef802-5812-4a28-96e1-316038c84cbf" type="video/mp4" />
Your browser does not support the video tag.
</video>
<Tabs>
<TabItem value="chat" label="Chat">
**Simple Chat Interface**
- Chat directly with Llama models through an intuitive interface
- Uses the `/chat/completions` streaming API under the hood
- Real-time message streaming for responsive interactions
- Perfect for testing model capabilities and prompt engineering
</TabItem>
<TabItem value="rag" label="RAG Chat">
**Document-Aware Conversations**
- Upload documents to create memory banks
- Chat with a RAG-enabled agent that can query your documents
- Uses Llama Stack's `/agents` API to create and manage RAG sessions
- Ideal for exploring knowledge-enhanced AI applications
</TabItem>
</Tabs>
#### Evaluation Interface
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%'}}
>
<source src="https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5" type="video/mp4" />
Your browser does not support the video tag.
</video>
<Tabs>
<TabItem value="scoring" label="Scoring Evaluations">
**Custom Dataset Evaluation**
- Upload your own evaluation datasets
- Run evaluations using available scoring functions
- Uses Llama Stack's `/scoring` API for flexible evaluation workflows
- Great for testing application performance on custom metrics
</TabItem>
<TabItem value="benchmarks" label="Benchmark Evaluations">
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%', marginBottom: '1rem'}}
>
<source src="https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf" type="video/mp4" />
Your browser does not support the video tag.
</video>
**Pre-registered Evaluation Tasks**
- Evaluate models or agents on pre-defined tasks
- Uses Llama Stack's `/eval` API for comprehensive evaluation
- Combines datasets and scoring functions for standardized testing
**Setup Requirements:**
Register evaluation datasets and benchmarks first:
Launch the admin UI with:
```bash
# Register evaluation dataset
llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string"}, "chat_completion_input": {"type": "string"}}'
# Register benchmark task
llama-stack-client benchmarks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
npx llama-stack-ui
```
</TabItem>
</Tabs>
Then visit `http://localhost:8322` to access the interface.
#### Inspection Interface
## Admin Interface Features
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%'}}
>
<source src="https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99" type="video/mp4" />
Your browser does not support the video tag.
</video>
The Llama Stack UI is organized into three main sections:
<Tabs>
<TabItem value="providers" label="API Providers">
### 🎯 Create
**Chat Playground** - Interactive testing environment
- Real-time chat interface for testing agents and models
- Multi-turn conversations with tool calling support
- Agent SDK integration (will be migrated to Responses API)
- Custom system prompts and model parameter adjustment
**Provider Management**
- Inspect available Llama Stack API providers
- View provider configurations and capabilities
- Uses the `/providers` API for real-time provider information
- Essential for understanding your deployment's capabilities
### 📊 Manage
**Logs & Resource Management** - Monitor and manage your stack
- **Responses Logs**: View and analyze agent responses and interactions
- **Chat Completions Logs**: Monitor chat completion requests and responses
- **Vector Stores**: Create, manage, and monitor vector databases for RAG workflows
- **Prompts**: Full CRUD operations for prompt templates and management
- **Files**: Forthcoming file management capabilities
</TabItem>
<TabItem value="resources" label="API Resources">
## Key Capabilities for Application Development
**Resource Exploration**
- Inspect Llama Stack API resources including:
- **Models**: Available language models
- **Datasets**: Registered evaluation datasets
- **Memory Banks**: Vector databases and knowledge stores
- **Benchmarks**: Evaluation tasks and scoring functions
- **Shields**: Safety and content moderation tools
- Uses `/<resources>/list` APIs for comprehensive resource visibility
- For detailed information about resources, see [Core Concepts](/docs/concepts)
### Real-time Monitoring
- **Response Tracking**: Monitor all agent responses and tool calls
- **Completion Analysis**: View chat completion performance and patterns
- **Vector Store Activity**: Track RAG operations and document processing
- **Prompt Usage**: Analyze prompt template performance
</TabItem>
</Tabs>
### Resource Management
- **Vector Store CRUD**: Create, update, and delete vector databases
- **Prompt Library**: Organize and version control your prompts
- **File Operations**: Manage documents and assets (forthcoming)
### Interactive Testing
- **Chat Playground**: Test conversational flows before production deployment
- **Agent Prototyping**: Validate agent behaviors and tool integrations
## Development Workflow Integration
The admin UI supports your development lifecycle:
1. **Development**: Use chat playground to prototype and test features
2. **Monitoring**: Track system performance through logs and metrics
3. **Management**: Organize prompts, vector stores, and other resources
4. **Debugging**: Analyze logs to identify and resolve issues
## Architecture Notes
- **Current**: Chat playground uses Agents SDK
- **Future**: Migration to Responses API for improved performance and consistency
- **Admin Focus**: Primary emphasis on monitoring, logging, and resource management
## Getting Started
### Quick Start Guide
1. **Launch the UI**: Run `npx llama-stack-ui`
2. **Explore Logs**: Start with Responses and Chat Completions logs to understand your system activity
3. **Test in Playground**: Use the chat interface to validate your agent configurations
4. **Manage Resources**: Create vector stores and organize prompts through the UI
<Tabs>
<TabItem value="setup" label="Setup">
For detailed setup and configuration, see the [Llama Stack UI documentation](/docs/distributions/llama_stack_ui).
**1. Start the Llama Stack API Server**
## Next Steps
```bash
# Build and run a distribution (example: together)
llama stack build --distro together --image-type venv
llama stack run together
```
**2. Start the Streamlit UI**
```bash
# Launch the playground interface
uv run --with ".[ui]" streamlit run llama_stack.core/ui/app.py
```
</TabItem>
<TabItem value="usage" label="Usage Tips">
**Making the Most of the Playground:**
- **Start with Chat**: Test basic model interactions and prompt engineering
- **Explore RAG**: Upload sample documents to see knowledge-enhanced responses
- **Try Evaluations**: Use the scoring interface to understand evaluation metrics
- **Inspect Resources**: Check what providers and resources are available
- **Experiment with Settings**: Adjust parameters to see how they affect results
</TabItem>
</Tabs>
### Available Distributions
The playground works with any Llama Stack distribution. Popular options include:
<Tabs>
<TabItem value="together" label="Together AI">
```bash
llama stack build --distro together --image-type venv
llama stack run together
```
**Features:**
- Cloud-hosted models
- Fast inference
- Multiple model options
</TabItem>
<TabItem value="ollama" label="Ollama (Local)">
```bash
llama stack build --distro ollama --image-type venv
llama stack run ollama
```
**Features:**
- Local model execution
- Privacy-focused
- No internet required
</TabItem>
<TabItem value="meta-reference" label="Meta Reference">
```bash
llama stack build --distro meta-reference --image-type venv
llama stack run meta-reference
```
**Features:**
- Reference implementation
- All API features available
- Best for development
</TabItem>
</Tabs>
## Use Cases & Examples
### Educational Use Cases
- **Learning Llama Stack**: Hands-on exploration of API capabilities
- **Prompt Engineering**: Interactive testing of different prompting strategies
- **RAG Experimentation**: Understanding how document retrieval affects responses
- **Evaluation Understanding**: See how different metrics evaluate model performance
### Development Use Cases
- **Prototype Testing**: Quick validation of application concepts
- **API Exploration**: Understanding available endpoints and parameters
- **Integration Planning**: Seeing how different components work together
- **Demo Creation**: Showcasing Llama Stack capabilities to stakeholders
### Research Use Cases
- **Model Comparison**: Side-by-side testing of different models
- **Evaluation Design**: Understanding how scoring functions work
- **Safety Testing**: Exploring shield effectiveness with different inputs
- **Performance Analysis**: Measuring model behavior across different scenarios
## Best Practices
### 🚀 **Getting Started**
- Begin with simple chat interactions to understand basic functionality
- Gradually explore more advanced features like RAG and evaluations
- Use the inspection tools to understand your deployment's capabilities
### 🔧 **Development Workflow**
- Use the playground to prototype before writing application code
- Test different parameter settings interactively
- Validate evaluation approaches before implementing them programmatically
### 📊 **Evaluation & Testing**
- Start with simple scoring functions before trying complex evaluations
- Use the playground to understand evaluation results before automation
- Test safety features with various input types
### 🎯 **Production Preparation**
- Use playground insights to inform your production API usage
- Test edge cases and error conditions interactively
- Validate resource configurations before deployment
## Related Resources
- **[Getting Started Guide](../getting_started/quickstart)** - Complete setup and introduction
- **[Core Concepts](/docs/concepts)** - Understanding Llama Stack fundamentals
- **[Agents](./agent)** - Building intelligent agents
- **[RAG (Retrieval Augmented Generation)](./rag)** - Knowledge-enhanced applications
- **[Evaluations](./evals)** - Comprehensive evaluation framework
- **[API Reference](/docs/api/llama-stack-specification)** - Complete API documentation
- Set up your [first agent](/docs/building_applications/agent)
- Implement [RAG functionality](/docs/building_applications/rag)
- Add [evaluation metrics](/docs/building_applications/evals)
- Configure [safety measures](/docs/building_applications/safety)

View file

@ -10,358 +10,114 @@ import TabItem from '@theme/TabItem';
# Retrieval Augmented Generation (RAG)
RAG enables your applications to reference and recall information from previous interactions or external documents.
RAG enables your applications to reference and recall information from external documents. Llama Stack makes Agentic RAG available through OpenAI's Responses API.
## Quick Start
### 1. Start the Server
In one terminal, start the Llama Stack server:
```bash
llama stack list-deps starter | xargs -L1 uv pip install
llama stack run starter
```
### 2. Connect with OpenAI Client
In another terminal, use the standard OpenAI client with the Responses API:
```python
import io, requests
from openai import OpenAI
url = "https://www.paulgraham.com/greatwork.html"
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
# Create vector store - auto-detects default embedding model
vs = client.vector_stores.create()
response = requests.get(url)
pseudo_file = io.BytesIO(str(response.content).encode('utf-8'))
file_id = client.files.create(file=(url, pseudo_file, "text/html"), purpose="assistants").id
client.vector_stores.files.create(vector_store_id=vs.id, file_id=file_id)
resp = client.responses.create(
model="gpt-4o",
input="How do you do great work? Use the existing knowledge_search tool.",
tools=[{"type": "file_search", "vector_store_ids": [vs.id]}],
include=["file_search_call.results"],
)
print(resp.output[-1].content[-1].text)
```
Which should give output like:
```
Doing great work is about more than just hard work and ambition; it involves combining several elements:
1. **Pursue What Excites You**: Engage in projects that are both ambitious and exciting to you. It's important to work on something you have a natural aptitude for and a deep interest in.
2. **Explore and Discover**: Great work often feels like a blend of discovery and creation. Focus on seeing possibilities and let ideas take their natural shape, rather than just executing a plan.
3. **Be Bold Yet Flexible**: Take bold steps in your work without over-planning. An adaptable approach that evolves with new ideas can often lead to breakthroughs.
4. **Work on Your Own Projects**: Develop a habit of working on projects of your own choosing, as these often lead to great achievements. These should be projects you find exciting and that challenge you intellectually.
5. **Be Earnest and Authentic**: Approach your work with earnestness and authenticity. Trying to impress others with affectation can be counterproductive, as genuine effort and intellectual honesty lead to better work outcomes.
6. **Build a Supportive Environment**: Work alongside great colleagues who inspire you and enhance your work. Surrounding yourself with motivating individuals creates a fertile environment for great work.
7. **Maintain High Morale**: High morale significantly impacts your ability to do great work. Stay optimistic and protect your mental well-being to maintain progress and momentum.
8. **Balance**: While hard work is essential, overworking can lead to diminishing returns. Balance periods of intensive work with rest to sustain productivity over time.
This approach shows that great work is less about following a strict formula and more about aligning your interests, ambition, and environment to foster creativity and innovation.
```
## Architecture Overview
Llama Stack organizes the APIs that enable RAG into three layers:
Llama Stack provides OpenAI-compatible RAG capabilities through:
1. **Lower-Level APIs**: Deal with raw storage and retrieval. These include Vector IO, KeyValue IO (coming soon) and Relational IO (also coming soon)
2. **RAG Tool**: A first-class tool as part of the [Tools API](./tools) that allows you to ingest documents (from URLs, files, etc) with various chunking strategies and query them smartly
3. **Agents API**: The top-level [Agents API](./agent) that allows you to create agents that can use the tools to answer questions, perform tasks, and more
- **Vector Stores API**: OpenAI-compatible vector storage with automatic embedding model detection
- **Files API**: Document upload and processing using OpenAI's file format
- **Responses API**: Enhanced chat completions with agentic tool calling via file search
![RAG System Architecture](/img/rag.png)
## Configuring Default Embedding Models
The RAG system uses lower-level storage for different types of data:
- **Vector IO**: For semantic search and retrieval
- **Key-Value and Relational IO**: For structured data storage
To enable automatic vector store creation without specifying embedding models, configure a default embedding model in your run.yaml like so:
:::info[Future Storage Types]
We may add more storage types like Graph IO in the future.
:::
## Setting up Vector Databases
For this guide, we will use [Ollama](https://ollama.com/) as the inference provider. Ollama is an LLM runtime that allows you to run Llama models locally.
Here's how to set up a vector database for RAG:
```python
# Create HTTP client
import os
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
# Register a vector database
vector_db_id = "my_documents"
response = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
```
## Document Ingestion
With this configuration:
- `client.vector_stores.create()` works without requiring embedding model or provider parameters
- The system automatically uses the default vector store provider (`faiss`) when multiple providers are available
- The system automatically uses the default embedding model (`sentence-transformers/nomic-ai/nomic-embed-text-v1.5`) for any newly created vector store
- The `default_provider_id` specifies which vector storage backend to use
- The `default_embedding_model` specifies both the inference provider and model for embeddings
You can ingest documents into the vector database using two methods: directly inserting pre-chunked documents or using the RAG Tool.
## Vector Store Operations
### Direct Document Insertion
### Creating Vector Stores
<Tabs>
<TabItem value="basic" label="Basic Insertion">
You can create vector stores with automatic or explicit embedding model selection:
```python
# You can insert a pre-chunked document directly into the vector db
chunks = [
{
"content": "Your document text here",
"mime_type": "text/plain",
"metadata": {
"document_id": "doc1",
"author": "Jane Doe",
},
},
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks)
```
# Automatic - uses default configured embedding model and vector store provider
vs = client.vector_stores.create()
</TabItem>
<TabItem value="embeddings" label="With Precomputed Embeddings">
If you decide to precompute embeddings for your documents, you can insert them directly into the vector database by including the embedding vectors in the chunk data. This is useful if you have a separate embedding service or if you want to customize the ingestion process.
```python
chunks_with_embeddings = [
{
"content": "First chunk of text",
"mime_type": "text/plain",
"embedding": [0.1, 0.2, 0.3, ...], # Your precomputed embedding vector
"metadata": {"document_id": "doc1", "section": "introduction"},
},
{
"content": "Second chunk of text",
"mime_type": "text/plain",
"embedding": [0.2, 0.3, 0.4, ...], # Your precomputed embedding vector
"metadata": {"document_id": "doc1", "section": "methodology"},
},
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks_with_embeddings)
```
:::warning[Embedding Dimensions]
When providing precomputed embeddings, ensure the embedding dimension matches the `embedding_dimension` specified when registering the vector database.
:::
</TabItem>
</Tabs>
### Document Retrieval
You can query the vector database to retrieve documents based on their embeddings.
```python
# You can then query for these chunks
chunks_response = client.vector_io.query(
vector_db_id=vector_db_id,
query="What do you know about..."
)
```
## Using the RAG Tool
:::danger[Deprecation Notice]
The RAG Tool is being deprecated in favor of directly using the OpenAI-compatible Search API. We recommend migrating to the OpenAI APIs for better compatibility and future support.
:::
A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc. and automatically chunks them into smaller pieces. More examples for how to format a RAGDocument can be found in the [appendix](#more-ragdocument-examples).
### OpenAI API Integration & Migration
The RAG tool has been updated to use OpenAI-compatible APIs. This provides several benefits:
- **Files API Integration**: Documents are now uploaded using OpenAI's file upload endpoints
- **Vector Stores API**: Vector storage operations use OpenAI's vector store format with configurable chunking strategies
- **Error Resilience**: When processing multiple documents, individual failures are logged but don't crash the operation. Failed documents are skipped while successful ones continue processing.
### Migration Path
We recommend migrating to the OpenAI-compatible Search API for:
1. **Better OpenAI Ecosystem Integration**: Direct compatibility with OpenAI tools and workflows including the Responses API
2. **Future-Proof**: Continued support and feature development
3. **Full OpenAI Compatibility**: Vector Stores, Files, and Search APIs are fully compatible with OpenAI's Responses API
The OpenAI APIs are used under the hood, so you can continue to use your existing RAG Tool code with minimal changes. However, we recommend updating your code to use the new OpenAI-compatible APIs for better long-term support. If any documents fail to process, they will be logged in the response but will not cause the entire operation to fail.
### RAG Tool Example
```python
from llama_stack_client import RAGDocument
urls = ["memory_optimizations.rst", "chat.rst", "llama3.rst"]
documents = [
RAGDocument(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Query documents
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What do you know about...",
)
```
### Custom Context Configuration
You can configure how the RAG tool adds metadata to the context if you find it useful for your application:
```python
# Query documents with custom template
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What do you know about...",
query_config={
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
},
)
```
## Building RAG-Enhanced Agents
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
### Agent with Knowledge Search
```python
from llama_stack_client import Agent
# Create agent with memory
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
"vector_db_ids": [vector_db_id],
# Defaults
"query_config": {
"chunk_size_in_tokens": 512,
"chunk_overlap_in_tokens": 0,
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
},
},
# Explicit - specify embedding model and/or provider when you need specific ones
vs = client.vector_stores.create(
extra_body={
"provider_id": "faiss", # Optional: specify vector store provider
"embedding_model": "sentence-transformers/nomic-ai/nomic-embed-text-v1.5",
"embedding_dimension": 768 # Optional: will be auto-detected if not provided
}
],
)
session_id = agent.create_session("rag_session")
# Ask questions about documents in the vector db, and the agent will query the db to answer the question.
response = agent.create_turn(
messages=[{"role": "user", "content": "How to optimize memory in PyTorch?"}],
session_id=session_id,
)
```
:::tip[Agent Instructions]
The `instructions` field in the `AgentConfig` can be used to guide the agent's behavior. It is important to experiment with different instructions to see what works best for your use case.
:::
### Document-Aware Conversations
You can also pass documents along with the user's message and ask questions about them:
```python
# Initial document ingestion
response = agent.create_turn(
messages=[
{"role": "user", "content": "I am providing some documents for reference."}
],
documents=[
{
"content": "https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/memory_optimizations.rst",
"mime_type": "text/plain",
}
],
session_id=session_id,
)
# Query with RAG
response = agent.create_turn(
messages=[{"role": "user", "content": "What are the key topics in the documents?"}],
session_id=session_id,
)
```
### Viewing Agent Responses
You can print the response with the following:
```python
from llama_stack_client import AgentEventLogger
for log in AgentEventLogger().log(response):
log.print()
```
## Vector Database Management
### Unregistering Vector DBs
If you need to clean up and unregister vector databases, you can do so as follows:
<Tabs>
<TabItem value="single" label="Single Database">
```python
# Unregister a specified vector database
vector_db_id = "my_vector_db_id"
print(f"Unregistering vector database: {vector_db_id}")
client.vector_dbs.unregister(vector_db_id=vector_db_id)
```
</TabItem>
<TabItem value="all" label="All Databases">
```python
# Unregister all vector databases
for vector_db_id in client.vector_dbs.list():
print(f"Unregistering vector database: {vector_db_id.identifier}")
client.vector_dbs.unregister(vector_db_id=vector_db_id.identifier)
```
</TabItem>
</Tabs>
## Best Practices
### 🎯 **Document Chunking**
- Use appropriate chunk sizes (512 tokens is often a good starting point)
- Consider overlap between chunks for better context preservation
- Experiment with different chunking strategies for your content type
### 🔍 **Embedding Strategy**
- Choose embedding models that match your domain
- Consider the trade-off between embedding dimension and performance
- Test different embedding models for your specific use case
### 📊 **Query Optimization**
- Use specific, well-formed queries for better retrieval
- Experiment with different search strategies
- Consider hybrid approaches (keyword + semantic search)
### 🛡️ **Error Handling**
- Implement proper error handling for failed document processing
- Monitor ingestion success rates
- Have fallback strategies for retrieval failures
## Appendix
### More RAGDocument Examples
Here are various ways to create RAGDocument objects for different content types:
```python
from llama_stack_client import RAGDocument
import base64
# File URI
RAGDocument(document_id="num-0", content={"uri": "file://path/to/file"})
# Plain text
RAGDocument(document_id="num-1", content="plain text")
# Explicit text input
RAGDocument(
document_id="num-2",
content={
"type": "text",
"text": "plain text input",
}, # for inputs that should be treated as text explicitly
)
# Image from URL
RAGDocument(
document_id="num-3",
content={
"type": "image",
"image": {"url": {"uri": "https://mywebsite.com/image.jpg"}},
},
)
# Base64 encoded image
B64_ENCODED_IMAGE = base64.b64encode(
requests.get(
"https://raw.githubusercontent.com/meta-llama/llama-stack/refs/heads/main/docs/_static/llama-stack.png"
).content
)
RAGDocument(
document_id="num-4",
content={"type": "image", "image": {"data": B64_ENCODED_IMAGE}},
)
```
For more strongly typed interaction use the typed dicts found [here](https://github.com/meta-llama/llama-stack-client-python/blob/38cd91c9e396f2be0bec1ee96a19771582ba6f17/src/llama_stack_client/types/shared_params/document.py).

View file

@ -391,5 +391,4 @@ client.shields.register(
- **[Agents](./agent)** - Integrating safety shields with intelligent agents
- **[Agent Execution Loop](./agent_execution_loop)** - Understanding safety in the execution flow
- **[Evaluations](./evals)** - Evaluating safety shield effectiveness
- **[Telemetry](./telemetry)** - Monitoring safety violations and metrics
- **[Llama Guard Documentation](https://github.com/meta-llama/PurpleLlama/tree/main/Llama-Guard3)** - Advanced safety model details

View file

@ -10,58 +10,8 @@ import TabItem from '@theme/TabItem';
# Telemetry
The Llama Stack telemetry system provides comprehensive tracing, metrics, and logging capabilities. It supports multiple sink types including OpenTelemetry, SQLite, and Console output for complete observability of your AI applications.
The Llama Stack uses OpenTelemetry to provide comprehensive tracing, metrics, and logging capabilities.
## Event Types
The telemetry system supports three main types of events:
<Tabs>
<TabItem value="unstructured" label="Unstructured Logs">
Free-form log messages with severity levels for general application logging:
```python
unstructured_log_event = UnstructuredLogEvent(
message="This is a log message",
severity=LogSeverity.INFO
)
```
</TabItem>
<TabItem value="metrics" label="Metric Events">
Numerical measurements with units for tracking performance and usage:
```python
metric_event = MetricEvent(
metric="my_metric",
value=10,
unit="count"
)
```
</TabItem>
<TabItem value="structured" label="Structured Logs">
System events like span start/end that provide structured operation tracking:
```python
structured_log_event = SpanStartPayload(
name="my_span",
parent_span_id="parent_span_id"
)
```
</TabItem>
</Tabs>
## Spans and Traces
- **Spans**: Represent individual operations with timing information and hierarchical relationships
- **Traces**: Collections of related spans that form a complete request flow across your application
This hierarchical structure allows you to understand the complete execution path of requests through your Llama Stack application.
## Automatic Metrics Generation
@ -129,21 +79,6 @@ Send events to an OpenTelemetry Collector for integration with observability pla
- Compatible with all OpenTelemetry collectors
- Supports both traces and metrics
</TabItem>
<TabItem value="sqlite" label="SQLite">
Store events in a local SQLite database for direct querying:
**Use Cases:**
- Local development and debugging
- Custom analytics and reporting
- Offline analysis of application behavior
**Features:**
- Direct SQL querying capabilities
- Persistent local storage
- No external dependencies
</TabItem>
<TabItem value="console" label="Console">
@ -174,9 +109,8 @@ telemetry:
provider_type: inline::meta-reference
config:
service_name: "llama-stack-service"
sinks: ['console', 'sqlite', 'otel_trace', 'otel_metric']
sinks: ['console', 'otel_trace', 'otel_metric']
otel_exporter_otlp_endpoint: "http://localhost:4318"
sqlite_db_path: "/path/to/telemetry.db"
```
### Environment Variables
@ -185,7 +119,7 @@ Configure telemetry behavior using environment variables:
- **`OTEL_EXPORTER_OTLP_ENDPOINT`**: OpenTelemetry Collector endpoint (default: `http://localhost:4318`)
- **`OTEL_SERVICE_NAME`**: Service name for telemetry (default: empty string)
- **`TELEMETRY_SINKS`**: Comma-separated list of sinks (default: `console,sqlite`)
- **`TELEMETRY_SINKS`**: Comma-separated list of sinks (default: `[]`)
### Quick Setup: Complete Telemetry Stack
@ -248,37 +182,10 @@ Forward metrics to other observability systems:
</TabItem>
</Tabs>
## SQLite Querying
The `sqlite` sink allows you to query traces without an external system. This is particularly useful for development and custom analytics.
### Example Queries
```sql
-- Query recent traces
SELECT * FROM traces WHERE timestamp > datetime('now', '-1 hour');
-- Analyze span durations
SELECT name, AVG(duration_ms) as avg_duration
FROM spans
GROUP BY name
ORDER BY avg_duration DESC;
-- Find slow operations
SELECT * FROM spans
WHERE duration_ms > 1000
ORDER BY duration_ms DESC;
```
:::tip[Advanced Analytics]
Refer to the [Getting Started notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) for more examples on querying traces and spans programmatically.
:::
## Best Practices
### 🔍 **Monitoring Strategy**
- Use OpenTelemetry for production environments
- Combine multiple sinks for development (console + SQLite)
- Set up alerts on key metrics like token usage and error rates
### 📊 **Metrics Analysis**
@ -293,45 +200,8 @@ Refer to the [Getting Started notebook](https://github.com/meta-llama/llama-stac
### 🔧 **Configuration Management**
- Use environment variables for flexible deployment
- Configure appropriate retention policies for SQLite
- Ensure proper network access to OpenTelemetry collectors
## Integration Examples
### Basic Telemetry Setup
```python
from llama_stack_client import LlamaStackClient
# Client with telemetry headers
client = LlamaStackClient(
base_url="http://localhost:8000",
extra_headers={
"X-Telemetry-Service": "my-ai-app",
"X-Telemetry-Version": "1.0.0"
}
)
# All API calls will be automatically traced
response = client.chat.completions.create(
model="meta-llama/Llama-3.2-3B-Instruct",
messages=[{"role": "user", "content": "Hello!"}]
)
```
### Custom Telemetry Context
```python
# Add custom span attributes for better tracking
with tracer.start_as_current_span("custom_operation") as span:
span.set_attribute("user_id", "user123")
span.set_attribute("operation_type", "chat_completion")
response = client.chat.completions.create(
model="meta-llama/Llama-3.2-3B-Instruct",
messages=[{"role": "user", "content": "Hello!"}]
)
```
## Related Resources

View file

@ -104,23 +104,19 @@ client.toolgroups.register(
)
```
Note that most of the more useful MCP servers need you to authenticate with them. Many of them use OAuth2.0 for authentication. You can provide authorization headers to send to the MCP server using the "Provider Data" abstraction provided by Llama Stack. When making an agent call,
Note that most of the more useful MCP servers need you to authenticate with them. Many of them use OAuth2.0 for authentication. You can provide the authorization token when creating the Agent:
```python
agent = Agent(
...,
tools=["mcp::deepwiki"],
extra_headers={
"X-LlamaStack-Provider-Data": json.dumps(
tools=[
{
"mcp_headers": {
"http://mcp.deepwiki.com/sse": {
"Authorization": "Bearer <your_access_token>",
},
},
"type": "mcp",
"server_url": "https://mcp.deepwiki.com/sse",
"server_label": "mcp::deepwiki",
"authorization": "<your_access_token>", # OAuth token (without "Bearer " prefix)
}
),
},
],
)
agent.create_turn(...)
```

View file

@ -62,6 +62,10 @@ The new `/v2` API must be introduced alongside the existing `/v1` API and run in
When a `/v2` API is introduced, a clear and generous deprecation policy for the `/v1` API must be published simultaneously. This policy must outline the timeline for the eventual removal of the `/v1` API, giving users ample time to migrate.
### Deprecated APIs
Deprecated APIs are those that are no longer actively maintained or supported. Depreated APIs are marked with the flag `deprecated = True` in the OpenAPI spec. These APIs will be removed in a future release.
### API Stability vs. Provider Stability
The leveling introduced in this document relates to the stability of the API and not specifically the providers within the API.

View file

@ -58,7 +58,7 @@ External APIs must expose a `available_providers()` function in their module tha
```python
# llama_stack_api_weather/api.py
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
from llama_stack_api import Api, InlineProviderSpec, ProviderSpec
def available_providers() -> list[ProviderSpec]:
@ -79,7 +79,7 @@ A Protocol class like so:
# llama_stack_api_weather/api.py
from typing import Protocol
from llama_stack.schema_utils import webmethod
from llama_stack_api import webmethod
class WeatherAPI(Protocol):
@ -151,13 +151,12 @@ __all__ = ["WeatherAPI", "available_providers"]
# llama-stack-api-weather/src/llama_stack_api_weather/weather.py
from typing import Protocol
from llama_stack.providers.datatypes import (
from llama_stack_api import (
Api,
ProviderSpec,
RemoteProviderSpec,
webmethod,
)
from llama_stack.schema_utils import webmethod
def available_providers() -> list[ProviderSpec]:
return [

View file

@ -7,7 +7,7 @@ sidebar_position: 1
# APIs
A Llama Stack API is described as a collection of REST endpoints. We currently support the following APIs:
A Llama Stack API is described as a collection of REST endpoints following OpenAI API standards. We currently support the following APIs:
- **Inference**: run inference with a LLM
- **Safety**: apply safety policies to the output at a Systems (not only model) level
@ -16,13 +16,26 @@ A Llama Stack API is described as a collection of REST endpoints. We currently s
- **Scoring**: evaluate outputs of the system
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
- **VectorIO**: perform operations on vector stores, such as adding documents, searching, and deleting documents
- **Files**: manage file uploads, storage, and retrieval
- **Telemetry**: collect telemetry data from the system
- **Post Training**: fine-tune a model
- **Tool Runtime**: interact with various tools and protocols
- **Responses**: generate responses from an LLM using this OpenAI compatible API.
- **Responses**: generate responses from an LLM
We are working on adding a few more APIs to complete the application lifecycle. These will include:
- **Batch Inference**: run inference on a dataset of inputs
- **Batch Agents**: run agents on a dataset of inputs
- **Synthetic Data Generation**: generate synthetic data for model development
- **Batches**: OpenAI-compatible batch management for inference
## OpenAI API Compatibility
We are working on adding OpenAI API compatibility to Llama Stack. This will allow you to use Llama Stack with OpenAI API clients and tools.
### File Operations and Vector Store Integration
The Files API and Vector Store APIs work together through file operations, enabling automatic document processing and search. This integration implements the [OpenAI Vector Store Files API specification](https://platform.openai.com/docs/api-reference/vector-stores-files) and allows you to:
- Upload documents through the Files API
- Automatically process and chunk documents into searchable vectors
- Store processed content in vector databases based on the availability of [our providers](../../providers/index.mdx)
- Search through documents using natural language queries
For detailed information about this integration, see [File Operations and Vector Store Integration](../file_operations_vector_stores.md).

View file

@ -0,0 +1,420 @@
# File Operations and Vector Store Integration
## Overview
Llama Stack provides seamless integration between the Files API and Vector Store APIs, enabling you to upload documents and automatically process them into searchable vector embeddings. This integration implements file operations following the [OpenAI Vector Store Files API specification](https://platform.openai.com/docs/api-reference/vector-stores-files).
## Enhanced Capabilities Beyond OpenAI
While Llama Stack maintains full compatibility with OpenAI's Vector Store API, it provides several additional capabilities that enhance functionality and flexibility:
### **Embedding Model Specification**
Unlike OpenAI's vector stores which use a fixed embedding model, Llama Stack allows you to specify which embedding model to use when creating a vector store:
```python
# Create vector store with specific embedding model
vector_store = client.vector_stores.create(
name="my_documents",
embedding_model="all-MiniLM-L6-v2", # Specify your preferred model
embedding_dimension=384,
)
```
### **Advanced Search Modes**
Llama Stack supports multiple search modes beyond basic vector similarity:
- **Vector Search**: Pure semantic similarity search using embeddings
- **Keyword Search**: Traditional keyword-based search for exact matches
- **Hybrid Search**: Combines both vector and keyword search for optimal results
```python
# Different search modes
results = await client.vector_stores.search(
vector_store_id=vector_store.id,
query="machine learning algorithms",
search_mode="hybrid", # or "vector", "keyword"
max_num_results=5,
)
```
### **Flexible Ranking Options**
For hybrid search, Llama Stack offers configurable ranking strategies:
- **RRF (Reciprocal Rank Fusion)**: Combines rankings with configurable impact factor
- **Weighted Ranker**: Linear combination of vector and keyword scores with adjustable weights
```python
# Custom ranking configuration
results = await client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks",
search_mode="hybrid",
ranking_options={
"ranker": {"type": "weighted", "alpha": 0.7} # 70% vector, 30% keyword
},
)
```
### **Provider Selection**
Choose from multiple vector store providers based on your specific needs:
- **Inline Providers**: FAISS (fast in-memory), SQLite-vec (disk-based), Milvus (high-performance)
- **Remote Providers**: ChromaDB, Qdrant, Weaviate, Postgres (PGVector), Milvus
```python
# Specify provider when creating vector store
vector_store = client.vector_stores.create(
name="my_documents", provider_id="sqlite-vec" # Choose your preferred provider
)
```
## How It Works
The file operations work through several key components:
1. **File Upload**: Documents are uploaded through the Files API
2. **Automatic Processing**: Files are automatically chunked and converted to embeddings
3. **Vector Storage**: Chunks are stored in vector databases with metadata
4. **Search & Retrieval**: Users can search through processed documents using natural language
## Supported Vector Store Providers
The following vector store providers support file operations:
### Inline Providers (Single Node)
- **FAISS**: Fast in-memory vector similarity search
- **SQLite-vec**: Disk-based storage with hybrid search capabilities
### Remote Providers (Hosted)
- **ChromaDB**: Vector database with metadata filtering
- **Weaviate**: Vector database with GraphQL interface
- **Postgres (PGVector)**: Vector extensions for PostgreSQL
### Both Inline & Remote Providers
- **Milvus**: High-performance vector database with advanced indexing
- **Qdrant**: Vector similarity search with payload filtering
## File Processing Pipeline
### 1. File Upload
```python
from llama_stack import LlamaStackClient
client = LlamaStackClient("http://localhost:8000")
# Upload a document
with open("document.pdf", "rb") as f:
file_info = await client.files.upload(file=f, purpose="assistants")
```
### 2. Attach to Vector Store
```python
# Create a vector store
vector_store = client.vector_stores.create(name="my_documents")
# Attach the file to the vector store
file_attach_response = await client.vector_stores.files.create(
vector_store_id=vector_store.id, file_id=file_info.id
)
```
### 3. Automatic Processing
The system automatically:
- Detects the file type and extracts text content
- Splits content into chunks (default: 800 tokens with 400 token overlap)
- Generates embeddings for each chunk
- Stores chunks with metadata in the vector store
- Updates file status to "completed"
### 4. Search and Retrieval
```python
# Search through processed documents
search_results = await client.vector_stores.search(
vector_store_id=vector_store.id,
query="What is the main topic discussed?",
max_num_results=5,
)
# Process results
for result in search_results.data:
print(f"Score: {result.score}")
for content in result.content:
print(f"Content: {content.text}")
```
## Supported File Types
The FileResponse system supports various document formats:
- **Text Files**: `.txt`, `.md`, `.rst`
- **Documents**: `.pdf`, `.docx`, `.doc`
- **Code**: `.py`, `.js`, `.java`, `.cpp`, etc.
- **Data**: `.json`, `.csv`, `.xml`
- **Web Content**: HTML files
## Chunking Strategies
### Default Strategy
The default chunking strategy uses:
- **Max Chunk Size**: 800 tokens
- **Overlap**: 400 tokens
- **Method**: Semantic boundary detection
### Custom Chunking
You can customize chunking when attaching files:
```python
from llama_stack.apis.vector_io import VectorStoreChunkingStrategy
# Attach file with custom chunking
file_attach_response = await client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file_info.id,
chunking_strategy=chunking_strategy,
)
```
**Note**: While Llama Stack is OpenAI-compatible, it also supports additional options beyond the standard OpenAI API. When creating vector stores, you can specify custom embedding models and embedding dimensions that will be used when processing chunks from attached files.
## File Management
### List Files in Vector Store
```python
# List all files in a vector store
files = await client.vector_stores.files.list(vector_store_id=vector_store.id)
for file in files:
print(f"File: {file.filename}, Status: {file.status}")
```
### File Status Tracking
Files go through several statuses:
- **in_progress**: File is being processed
- **completed**: File successfully processed and searchable
- **failed**: Processing failed (check `last_error` for details)
- **cancelled**: Processing was cancelled
### Retrieve File Content
```python
# Get chunked content from vector store
content_response = await client.vector_stores.files.retrieve_content(
vector_store_id=vector_store.id, file_id=file_info.id
)
for chunk in content_response.content:
print(f"Chunk {chunk.metadata.get('chunk_index', 0)}: {chunk.text}")
```
## Vector Store Management
### List Vector Stores
Retrieve a paginated list of all vector stores:
```python
# List all vector stores with default pagination
vector_stores = await client.vector_stores.list()
# Custom pagination and ordering
vector_stores = await client.vector_stores.list(
limit=10,
order="asc", # or "desc"
after="vs_12345678", # cursor-based pagination
)
for store in vector_stores.data:
print(f"Store: {store.name}, Files: {store.file_counts.total}")
print(f"Created: {store.created_at}, Status: {store.status}")
```
### Retrieve Vector Store Details
Get detailed information about a specific vector store:
```python
# Get vector store details
store_details = await client.vector_stores.retrieve(vector_store_id="vs_12345678")
print(f"Name: {store_details.name}")
print(f"Status: {store_details.status}")
print(f"File Counts: {store_details.file_counts}")
print(f"Usage: {store_details.usage_bytes} bytes")
print(f"Created: {store_details.created_at}")
print(f"Metadata: {store_details.metadata}")
```
### Update Vector Store
Modify vector store properties such as name, metadata, or expiration settings:
```python
# Update vector store name and metadata
updated_store = await client.vector_stores.update(
vector_store_id="vs_12345678",
name="Updated Document Collection",
metadata={
"description": "Updated collection for research",
"category": "research",
"version": "2.0",
},
)
# Set expiration policy
expired_store = await client.vector_stores.update(
vector_store_id="vs_12345678",
expires_after={"anchor": "last_active_at", "days": 30},
)
print(f"Updated store: {updated_store.name}")
print(f"Last active: {updated_store.last_active_at}")
```
### Delete Vector Store
Remove a vector store and all its associated data:
```python
# Delete a vector store
delete_response = await client.vector_stores.delete(vector_store_id="vs_12345678")
if delete_response.deleted:
print(f"Vector store {delete_response.id} successfully deleted")
else:
print("Failed to delete vector store")
```
**Important Notes:**
- Deleting a vector store removes all files, chunks, and embeddings
- This operation cannot be undone
- The underlying vector database is also cleaned up
- Consider backing up important data before deletion
## Search Capabilities
### Vector Search
Pure similarity search using embeddings:
```python
results = await client.vector_stores.search(
vector_store_id=vector_store.id,
query="machine learning algorithms",
max_num_results=10,
)
```
### Filtered Search
Combine vector search with metadata filtering:
```python
results = await client.vector_stores.search(
vector_store_id=vector_store.id,
query="machine learning algorithms",
filters={"file_type": "pdf", "upload_date": "2024-01-01"},
max_num_results=10,
)
```
### Hybrid Search
[SQLite-vec](../providers/vector_io/inline_sqlite-vec.mdx), [pgvector](../providers/vector_io/remote_pgvector.mdx), and [Milvus](../providers/vector_io/inline_milvus.mdx) support combining vector and keyword search.
## Performance Considerations
> **Note**: For detailed performance optimization strategies, see [Performance Considerations](../providers/files/openai_file_operations_support.md#performance-considerations) in the provider documentation.
**Key Points:**
- **Chunk Size**: 400-600 tokens for precision, 800-1200 for context
- **Storage**: Choose provider based on your performance needs
- **Search**: Optimize for your specific use case
## Error Handling
> **Note**: For comprehensive troubleshooting and error handling, see [Troubleshooting](../providers/files/openai_file_operations_support.md#troubleshooting) in the provider documentation.
**Common Issues:**
- File processing failures (format, size limits)
- Search performance optimization
- Storage and memory issues
## Best Practices
> **Note**: For detailed best practices and recommendations, see [Best Practices](../providers/files/openai_file_operations_support.md#best-practices) in the provider documentation.
**Key Recommendations:**
- File organization and naming conventions
- Chunking strategy optimization
- Metadata and monitoring practices
- Regular cleanup and maintenance
## Integration Examples
### RAG Application
```python
# Build a RAG system with file uploads
async def build_rag_system():
# Create vector store
vector_store = client.vector_stores.create(name="knowledge_base")
# Upload and process documents
documents = ["doc1.pdf", "doc2.pdf", "doc3.pdf"]
for doc in documents:
with open(doc, "rb") as f:
file_info = await client.files.create(file=f, purpose="assistants")
await client.vector_stores.files.create(
vector_store_id=vector_store.id, file_id=file_info.id
)
return vector_store
# Query the RAG system
async def query_rag(vector_store_id, question):
results = await client.vector_stores.search(
vector_store_id=vector_store_id, query=question, max_num_results=5
)
return results
```
### Document Analysis
```python
# Analyze document content through vector search
async def analyze_document(vector_store_id, file_id):
# Get document content
content = await client.vector_stores.files.retrieve_content(
vector_store_id=vector_store_id, file_id=file_id
)
# Search for specific topics
topics = ["introduction", "methodology", "conclusion"]
analysis = {}
for topic in topics:
results = await client.vector_stores.search(
vector_store_id=vector_store_id, query=topic, max_num_results=3
)
analysis[topic] = results.data
return analysis
```
## Next Steps
- Explore the [Files API documentation](../../providers/files/files.mdx) for detailed API reference
- Check [Vector Store Providers](../providers/vector_io/index.mdx) for specific implementation details
- Review [Getting Started](../getting_started/quickstart.mdx) for quick setup instructions

View file

@ -1,233 +1,13 @@
# Contributing to Llama Stack
We want to make contributing to this project as easy and transparent as
possible.
---
title: Contributing
description: Contributing to Llama Stack
sidebar_label: Contributing to Llama Stack
sidebar_position: 3
hide_title: true
---
## Set up your development environment
import Contributing from '!!raw-loader!../../../CONTRIBUTING.md';
import ReactMarkdown from 'react-markdown';
We use [uv](https://github.com/astral-sh/uv) to manage python dependencies and virtual environments.
You can install `uv` by following this [guide](https://docs.astral.sh/uv/getting-started/installation/).
You can install the dependencies by running:
```bash
cd llama-stack
uv sync --group dev
uv pip install -e .
source .venv/bin/activate
```
```{note}
You can use a specific version of Python with `uv` by adding the `--python <version>` flag (e.g. `--python 3.12`).
Otherwise, `uv` will automatically select a Python version according to the `requires-python` section of the `pyproject.toml`.
For more info, see the [uv docs around Python versions](https://docs.astral.sh/uv/concepts/python-versions/).
```
Note that you can create a dotenv file `.env` that includes necessary environment variables:
```
LLAMA_STACK_BASE_URL=http://localhost:8321
LLAMA_STACK_CLIENT_LOG=debug
LLAMA_STACK_PORT=8321
LLAMA_STACK_CONFIG=<provider-name>
TAVILY_SEARCH_API_KEY=
BRAVE_SEARCH_API_KEY=
```
And then use this dotenv file when running client SDK tests via the following:
```bash
uv run --env-file .env -- pytest -v tests/integration/inference/test_text_inference.py --text-model=meta-llama/Llama-3.1-8B-Instruct
```
### Pre-commit Hooks
We use [pre-commit](https://pre-commit.com/) to run linting and formatting checks on your code. You can install the pre-commit hooks by running:
```bash
uv run pre-commit install
```
After that, pre-commit hooks will run automatically before each commit.
Alternatively, if you don't want to install the pre-commit hooks, you can run the checks manually by running:
```bash
uv run pre-commit run --all-files
```
```{caution}
Before pushing your changes, make sure that the pre-commit hooks have passed successfully.
```
## Discussions -> Issues -> Pull Requests
We actively welcome your pull requests. However, please read the following. This is heavily inspired by [Ghostty](https://github.com/ghostty-org/ghostty/blob/main/CONTRIBUTING.md).
If in doubt, please open a [discussion](https://github.com/meta-llama/llama-stack/discussions); we can always convert that to an issue later.
### Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
Meta has a [bounty program](http://facebook.com/whitehat/info) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
### Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Meta's open source projects.
Complete your CLA here: [https://code.facebook.com/cla](https://code.facebook.com/cla)
**I'd like to contribute!**
If you are new to the project, start by looking at the issues tagged with "good first issue". If you're interested
leave a comment on the issue and a triager will assign it to you.
Please avoid picking up too many issues at once. This helps you stay focused and ensures that others in the community also have opportunities to contribute.
- Try to work on only 12 issues at a time, especially if youre still getting familiar with the codebase.
- Before taking an issue, check if its already assigned or being actively discussed.
- If youre blocked or cant continue with an issue, feel free to unassign yourself or leave a comment so others can step in.
**I have a bug!**
1. Search the issue tracker and discussions for similar issues.
2. If you don't have steps to reproduce, open a discussion.
3. If you have steps to reproduce, open an issue.
**I have an idea for a feature!**
1. Open a discussion.
**I've implemented a feature!**
1. If there is an issue for the feature, open a pull request.
2. If there is no issue, open a discussion and link to your branch.
**I have a question!**
1. Open a discussion or use [Discord](https://discord.gg/llama-stack).
**Opening a Pull Request**
1. Fork the repo and create your branch from `main`.
2. If you've changed APIs, update the documentation.
3. Ensure the test suite passes.
4. Make sure your code lints using `pre-commit`.
5. If you haven't already, complete the Contributor License Agreement ("CLA").
6. Ensure your pull request follows the [conventional commits format](https://www.conventionalcommits.org/en/v1.0.0/).
7. Ensure your pull request follows the [coding style](#coding-style).
Please keep pull requests (PRs) small and focused. If you have a large set of changes, consider splitting them into logically grouped, smaller PRs to facilitate review and testing.
```{tip}
As a general guideline:
- Experienced contributors should try to keep no more than 5 open PRs at a time.
- New contributors are encouraged to have only one open PR at a time until theyre familiar with the codebase and process.
```
## Repository guidelines
### Coding Style
* Comments should provide meaningful insights into the code. Avoid filler comments that simply
describe the next step, as they create unnecessary clutter, same goes for docstrings.
* Prefer comments to clarify surprising behavior and/or relationships between parts of the code
rather than explain what the next line of code does.
* Catching exceptions, prefer using a specific exception type rather than a broad catch-all like
`Exception`.
* Error messages should be prefixed with "Failed to ..."
* 4 spaces for indentation rather than tab
* When using `# noqa` to suppress a style or linter warning, include a comment explaining the
justification for bypassing the check.
* When using `# type: ignore` to suppress a mypy warning, include a comment explaining the
justification for bypassing the check.
* Don't use unicode characters in the codebase. ASCII-only is preferred for compatibility or
readability reasons.
* Providers configuration class should be Pydantic Field class. It should have a `description` field
that describes the configuration. These descriptions will be used to generate the provider
documentation.
* When possible, use keyword arguments only when calling functions.
* Llama Stack utilizes custom Exception classes for certain Resources that should be used where applicable.
### License
By contributing to Llama, you agree that your contributions will be licensed
under the LICENSE file in the root directory of this source tree.
## Common Tasks
Some tips about common tasks you work on while contributing to Llama Stack:
### Using `llama stack build`
Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
Example:
```bash
cd work/
git clone https://github.com/meta-llama/llama-stack.git
git clone https://github.com/meta-llama/llama-stack-client-python.git
cd llama-stack
LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama stack build --distro <...>
```
### Updating distribution configurations
If you have made changes to a provider's configuration in any form (introducing a new config key, or
changing models, etc.), you should run `./scripts/distro_codegen.py` to re-generate various YAML
files as well as the documentation. You should not change `docs/source/.../distributions/` files
manually as they are auto-generated.
### Updating the provider documentation
If you have made changes to a provider's configuration, you should run `./scripts/provider_codegen.py`
to re-generate the documentation. You should not change `docs/source/.../providers/` files manually
as they are auto-generated.
Note that the provider "description" field will be used to generate the provider documentation.
### Building the Documentation
If you are making changes to the documentation at [https://llamastack.github.io/](https://llamastack.github.io/), you can use the following command to build the documentation and preview your changes.
```bash
# This rebuilds the documentation pages and the OpenAPI spec.
npm install
npm run gen-api-docs all
npm run build
# This will start a local server (usually at http://127.0.0.1:3000).
npm run serve
```
### Update API Documentation
If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command:
```bash
uv run ./docs/openapi_generator/run_openapi_generator.sh
```
The generated API schema will be available in `docs/static/`. Make sure to review the changes before committing.
## Adding a New Provider
See:
- [Adding a New API Provider Page](./new_api_provider.mdx) which describes how to add new API providers to the Stack.
- [Vector Database Page](./new_vector_database.mdx) which describes how to add a new vector databases with Llama Stack.
- [External Provider Page](/docs/providers/external/) which describes how to add external providers to the Stack.
## Testing
See the [Testing README](https://github.com/meta-llama/llama-stack/blob/main/tests/README.md) for detailed testing information.
## Advanced Topics
For developers who need deeper understanding of the testing system internals:
- [Record-Replay Testing](./testing/record-replay.mdx)
### Benchmarking
See the [Benchmarking README](https://github.com/meta-llama/llama-stack/blob/main/benchmarking/k8s-benchmark/README.md) for benchmarking information.
<ReactMarkdown>{Contributing}</ReactMarkdown>

View file

@ -67,7 +67,7 @@ def get_base_url(self) -> str:
## Testing the Provider
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --distro together`.
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, install its dependencies with `llama stack list-deps together | xargs -L1 uv pip install`.
### 1. Integration Testing

View file

@ -68,7 +68,9 @@ recordings/
Direct API calls with no recording or replay:
```python
with inference_recording(mode=InferenceMode.LIVE):
from llama_stack.testing.api_recorder import api_recording, APIRecordingMode
with api_recording(mode=APIRecordingMode.LIVE):
response = await client.chat.completions.create(...)
```
@ -79,7 +81,7 @@ Use for initial development and debugging against real APIs.
Captures API interactions while passing through real responses:
```python
with inference_recording(mode=InferenceMode.RECORD, storage_dir="./recordings"):
with api_recording(mode=APIRecordingMode.RECORD, storage_dir="./recordings"):
response = await client.chat.completions.create(...)
# Real API call made, response captured AND returned
```
@ -96,7 +98,7 @@ The recording process:
Returns stored responses instead of making API calls:
```python
with inference_recording(mode=InferenceMode.REPLAY, storage_dir="./recordings"):
with api_recording(mode=APIRecordingMode.REPLAY, storage_dir="./recordings"):
response = await client.chat.completions.create(...)
# No API call made, cached response returned instantly
```

View file

@ -10,7 +10,7 @@ import TabItem from '@theme/TabItem';
# Kubernetes Deployment Guide
Deploy Llama Stack and vLLM servers in a Kubernetes cluster instead of running them locally. This guide covers both local development with Kind and production deployment on AWS EKS.
Deploy Llama Stack and vLLM servers in a Kubernetes cluster instead of running them locally. This guide covers deployment using the Kubernetes operator to manage the Llama Stack server with Kind. The vLLM inference server is deployed manually.
## Prerequisites
@ -110,115 +110,176 @@ spec:
EOF
```
### Step 3: Configure Llama Stack
### Step 3: Install Kubernetes Operator
Update your run configuration:
```yaml
providers:
inference:
- provider_id: vllm
provider_type: remote::vllm
config:
url: http://vllm-server.default.svc.cluster.local:8000/v1
max_tokens: 4096
api_token: fake
```
Build container image:
Install the Llama Stack Kubernetes operator to manage Llama Stack deployments:
```bash
tmp_dir=$(mktemp -d) && cat >$tmp_dir/Containerfile.llama-stack-run-k8s <<EOF
FROM distribution-myenv:dev
RUN apt-get update && apt-get install -y git
RUN git clone https://github.com/meta-llama/llama-stack.git /app/llama-stack-source
ADD ./vllm-llama-stack-run-k8s.yaml /app/config.yaml
EOF
podman build -f $tmp_dir/Containerfile.llama-stack-run-k8s -t llama-stack-run-k8s $tmp_dir
# Install from the latest main branch
kubectl apply -f https://raw.githubusercontent.com/llamastack/llama-stack-k8s-operator/main/release/operator.yaml
# Or install a specific version (e.g., v0.4.0)
# kubectl apply -f https://raw.githubusercontent.com/llamastack/llama-stack-k8s-operator/v0.4.0/release/operator.yaml
```
### Step 4: Deploy Llama Stack Server
Verify the operator is running:
```bash
kubectl get pods -n llama-stack-operator-system
```
For more information about the operator, see the [llama-stack-k8s-operator repository](https://github.com/llamastack/llama-stack-k8s-operator).
### Step 4: Deploy Llama Stack Server using Operator
Create a `LlamaStackDistribution` custom resource to deploy the Llama Stack server. The operator will automatically create the necessary Deployment, Service, and other resources.
You can optionally override the default `run.yaml` using `spec.server.userConfig` with a ConfigMap (see [userConfig spec](https://github.com/llamastack/llama-stack-k8s-operator/blob/main/docs/api-overview.md#userconfigspec)).
```yaml
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
apiVersion: llamastack.io/v1alpha1
kind: LlamaStackDistribution
metadata:
name: llama-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: llama-stack-server
name: llamastack-vllm
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: llama-stack
template:
metadata:
labels:
app.kubernetes.io/name: llama-stack
spec:
containers:
- name: llama-stack
image: localhost/llama-stack-run-k8s:latest
imagePullPolicy: IfNotPresent
command: ["llama", "stack", "run", "/app/config.yaml"]
ports:
- containerPort: 5000
volumeMounts:
- name: llama-storage
mountPath: /root/.llama
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: llama-pvc
---
apiVersion: v1
kind: Service
metadata:
name: llama-stack-service
spec:
selector:
app.kubernetes.io/name: llama-stack
ports:
- protocol: TCP
port: 5000
targetPort: 5000
type: ClusterIP
server:
distribution:
name: starter
containerSpec:
port: 8321
env:
- name: VLLM_URL
value: "http://vllm-server.default.svc.cluster.local:8000/v1"
- name: VLLM_MAX_TOKENS
value: "4096"
- name: VLLM_API_TOKEN
value: "fake"
# Optional: override run.yaml from a ConfigMap using userConfig
userConfig:
configMap:
name: llama-stack-config
storage:
size: "20Gi"
mountPath: "/home/lls/.lls"
EOF
```
**Configuration Options:**
- `replicas`: Number of Llama Stack server instances to run
- `server.distribution.name`: The distribution to use (e.g., `starter` for the starter distribution). See the [list of supported distributions](https://github.com/llamastack/llama-stack-k8s-operator/blob/main/distributions.json) in the operator repository.
- `server.distribution.image`: (Optional) Custom container image for non-supported distributions. Use this field when deploying a distribution that is not in the supported list. If specified, this takes precedence over `name`.
- `server.containerSpec.port`: Port on which the Llama Stack server listens (default: 8321)
- `server.containerSpec.env`: Environment variables to configure providers:
- `server.userConfig`: (Optional) Override the default `run.yaml` using a ConfigMap. See [userConfig spec](https://github.com/llamastack/llama-stack-k8s-operator/blob/main/docs/api-overview.md#userconfigspec).
- `server.storage.size`: Size of the persistent volume for model and data storage
- `server.storage.mountPath`: Where to mount the storage in the container
**Note:** For a complete list of supported distributions, see [distributions.json](https://github.com/llamastack/llama-stack-k8s-operator/blob/main/distributions.json) in the operator repository. To use a custom or non-supported distribution, set the `server.distribution.image` field with your container image instead of `server.distribution.name`.
The operator automatically creates:
- A Deployment for the Llama Stack server
- A Service to access the server
- A PersistentVolumeClaim for storage
- All necessary RBAC resources
Check the status of your deployment:
```bash
kubectl get llamastackdistribution
kubectl describe llamastackdistribution llamastack-vllm
```
### Step 5: Test Deployment
Wait for the Llama Stack server pod to be ready:
```bash
# Port forward and test
kubectl port-forward service/llama-stack-service 5000:5000
llama-stack-client --endpoint http://localhost:5000 inference chat-completion --message "hello, what model are you?"
# Check the status of the LlamaStackDistribution
kubectl get llamastackdistribution llamastack-vllm
# Check the pods created by the operator
kubectl get pods -l app.kubernetes.io/name=llama-stack
# Wait for the pod to be ready
kubectl wait --for=condition=ready pod -l app.kubernetes.io/name=llama-stack --timeout=300s
```
Get the service name created by the operator (it typically follows the pattern `<llamastackdistribution-name>-service`):
```bash
# List services to find the service name
kubectl get services | grep llamastack
# Port forward and test (replace SERVICE_NAME with the actual service name)
kubectl port-forward service/llamastack-vllm-service 8321:8321
```
In another terminal, test the deployment:
```bash
llama-stack-client --endpoint http://localhost:8321 inference chat-completion --message "hello, what model are you?"
```
## Troubleshooting
**Check pod status:**
### vLLM Server Issues
**Check vLLM pod status:**
```bash
kubectl get pods -l app.kubernetes.io/name=vllm
kubectl logs -l app.kubernetes.io/name=vllm
```
**Test service connectivity:**
**Test vLLM service connectivity:**
```bash
kubectl run -it --rm debug --image=curlimages/curl --restart=Never -- curl http://vllm-server:8000/v1/models
```
### Llama Stack Server Issues
**Check LlamaStackDistribution status:**
```bash
# Get detailed status
kubectl describe llamastackdistribution llamastack-vllm
# Check for events
kubectl get events --sort-by='.lastTimestamp' | grep llamastack-vllm
```
**Check operator-managed pods:**
```bash
# List all pods managed by the operator
kubectl get pods -l app.kubernetes.io/name=llama-stack
# Check pod logs (replace POD_NAME with actual pod name)
kubectl logs -l app.kubernetes.io/name=llama-stack
```
**Check operator status:**
```bash
# Verify the operator is running
kubectl get pods -n llama-stack-operator-system
# Check operator logs if issues persist
kubectl logs -n llama-stack-operator-system -l control-plane=controller-manager
```
**Verify service connectivity:**
```bash
# Get the service endpoint
kubectl get svc llamastack-vllm-service
# Test connectivity from within the cluster
kubectl run -it --rm debug --image=curlimages/curl --restart=Never -- curl http://llamastack-vllm-service:8321/health
```
## Related Resources
- **[Deployment Overview](/docs/deploying/)** - Overview of deployment options
- **[Distributions](/docs/distributions)** - Understanding Llama Stack distributions
- **[Configuration](/docs/distributions/configuration)** - Detailed configuration options
- **[LlamaStack Operator](https://github.com/llamastack/llama-stack-k8s-operator)** - Overview of llama-stack kubernetes operator
- **[LlamaStackDistribution](https://github.com/llamastack/llama-stack-k8s-operator/blob/main/docs/api-overview.md)** - API Spec of the llama-stack operator Custom Resource.

View file

@ -5,225 +5,80 @@ sidebar_label: Build your own Distribution
sidebar_position: 3
---
This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers.
This guide walks you through inspecting existing distributions, customising their configuration, and building runnable artefacts for your own deployment.
### Explore existing distributions
### Setting your log level
All first-party distributions live under `llama_stack/distributions/`. Each directory contains:
In order to specify the proper logging level users can apply the following environment variable `LLAMA_STACK_LOGGING` with the following format:
- `build.yaml` the distribution specification (providers, additional dependencies, optional external provider directories).
- `run.yaml` sample run configuration (when provided).
- Documentation fragments that power this site.
`LLAMA_STACK_LOGGING=server=debug;core=info`
Where each category in the following list:
- all
- core
- server
- router
- inference
- agents
- safety
- eval
- tools
- client
Can be set to any of the following log levels:
- debug
- info
- warning
- error
- critical
The default global log level is `info`. `all` sets the log level for all components.
A user can also set `LLAMA_STACK_LOG_FILE` which will pipe the logs to the specified path as well as to the terminal. An example would be: `export LLAMA_STACK_LOG_FILE=server.log`
### Llama Stack Build
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
```
git clone git@github.com:meta-llama/llama-stack.git
cd llama-stack
pip install -e .
```
Use the CLI to build your distribution.
The main points to consider are:
1. **Image Type** - Do you want a venv environment or a Container (eg. Docker)
2. **Template** - Do you want to use a template to build your distribution? or start from scratch ?
3. **Config** - Do you want to use a pre-existing config file to build your distribution?
```
llama stack build -h
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--distro DISTRIBUTION] [--list-distros] [--image-type {container,venv}] [--image-name IMAGE_NAME] [--print-deps-only]
[--run] [--providers PROVIDERS]
Build a Llama stack container
options:
-h, --help show this help message and exit
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to
enter information interactively (default: None)
--template TEMPLATE (deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default:
None)
--distro DISTRIBUTION, --distribution DISTRIBUTION
Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default: None)
--list-distros, --list-distributions
Show the available distributions for building a Llama Stack distribution (default: False)
--image-type {container,venv}
Image Type to use for the build. If not specified, will use the image type from the template config. (default: None)
--image-name IMAGE_NAME
[for image-type=container|venv] Name of the virtual environment to use for the build. If not specified, currently active environment will be used if found. (default:
None)
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
--providers PROVIDERS
Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per
API. (default: None)
```
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
Browse that folder to understand available providers and copy a distribution to use as a starting point. When creating a new stack, duplicate an existing directory, rename it, and adjust the `build.yaml` file to match your requirements.
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
<Tabs>
<TabItem value="template" label="Building from a template">
To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
<TabItem value="container" label="Building a container">
The following command will allow you to see the available templates and their corresponding providers.
```
llama stack build --list-templates
Use the Containerfile at `containers/Containerfile`, which installs `llama-stack`, resolves distribution dependencies via `llama stack list-deps`, and sets the entrypoint to `llama stack run`.
```bash
docker build . \
-f containers/Containerfile \
--build-arg DISTRO_NAME=starter \
--tag llama-stack:starter
```
```
------------------------------+-----------------------------------------------------------------------------+
| Template Name | Description |
+------------------------------+-----------------------------------------------------------------------------+
| watsonx | Use watsonx for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| vllm-gpu | Use a built-in vLLM engine for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| together | Use Together.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| tgi | Use (an external) TGI server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| starter | Quick start template for running Llama Stack with several popular providers |
+------------------------------+-----------------------------------------------------------------------------+
| sambanova | Use SambaNova for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
| remote-vllm | Use (an external) vLLM server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| postgres-demo | Quick start template for running Llama Stack with several popular providers |
+------------------------------+-----------------------------------------------------------------------------+
| passthrough | Use Passthrough hosted llama-stack endpoint for LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| open-benchmark | Distribution for running open benchmarks |
+------------------------------+-----------------------------------------------------------------------------+
| ollama | Use (an external) Ollama server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| nvidia | Use NVIDIA NIM for running LLM inference, evaluation and safety |
+------------------------------+-----------------------------------------------------------------------------+
| meta-reference-gpu | Use Meta Reference for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| llama_api | Distribution for running e2e tests in CI |
+------------------------------+-----------------------------------------------------------------------------+
| hf-serverless | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| hf-endpoint | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| groq | Use Groq for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| fireworks | Use Fireworks.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| experimental-post-training | Experimental template for post training |
+------------------------------+-----------------------------------------------------------------------------+
| dell | Dell's distribution of Llama Stack. TGI inference via Dell's custom |
| | container |
+------------------------------+-----------------------------------------------------------------------------+
| ci-tests | Distribution for running e2e tests in CI |
+------------------------------+-----------------------------------------------------------------------------+
| cerebras | Use Cerebras for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| bedrock | Use AWS Bedrock for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
```
Handy build arguments:
You may then pick a template to build your distribution with providers fitted to your liking.
- `DISTRO_NAME` distribution directory name (defaults to `starter`).
- `RUN_CONFIG_PATH` absolute path inside the build context for a run config that should be baked into the image (e.g. `/workspace/run.yaml`).
- `INSTALL_MODE=editable` install the repository copied into `/workspace` with `uv pip install -e`. Pair it with `--build-arg LLAMA_STACK_DIR=/workspace`.
- `LLAMA_STACK_CLIENT_DIR` optional editable install of the Python client.
- `PYPI_VERSION` / `TEST_PYPI_VERSION` pin specific releases when not using editable installs.
- `KEEP_WORKSPACE=1` retain `/workspace` in the final image if you need to access additional files (such as sample configs or provider bundles).
For example, to build a distribution with TGI as the inference provider, you can run:
```
$ llama stack build --distro starter
...
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
Make sure any custom `build.yaml`, run configs, or provider directories you reference are included in the Docker build context so the Containerfile can read them.
```{tip}
The generated `run.yaml` file is a starting point for your configuration. For comprehensive guidance on customizing it for your specific needs, infrastructure, and deployment scenarios, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
</TabItem>
<TabItem value="scratch" label="Building from Scratch">
<TabItem value="external" label="Building with external providers">
If the provided templates do not fit your use case, you could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
External providers live outside the main repository but can be bundled by pointing `external_providers_dir` to a directory that contains your provider packages.
It would be best to start with a template and understand the structure of the config file and the various concepts ( APIS, providers, resources, etc.) before starting from scratch.
```
llama stack build
1. Copy providers into the build context, for example `cp -R path/to/providers providers.d`.
2. Update `build.yaml` with the directory and provider entries.
3. Adjust run configs to use the in-container path (usually `/.llama/providers.d`). Pass `--build-arg RUN_CONFIG_PATH=/workspace/run.yaml` if you want to bake the config.
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
> Enter the image type you want your Llama Stack to be built as (container or venv): venv
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
Tip: use <TAB> to see options for the providers.
> Enter provider for API inference: inline::meta-reference
> Enter provider for API safety: inline::llama-guard
> Enter provider for API agents: inline::meta-reference
> Enter provider for API memory: inline::faiss
> Enter provider for API datasetio: inline::meta-reference
> Enter provider for API scoring: inline::meta-reference
> Enter provider for API eval: inline::meta-reference
> Enter provider for API telemetry: inline::meta-reference
> (Optional) Enter a short description for your Llama Stack:
You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml`
```
</TabItem>
<TabItem value="config" label="Building from a pre-existing build config file">
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/distributions/*build.yaml`.
```
llama stack build --config llama_stack/distributions/starter/build.yaml
```
</TabItem>
<TabItem value="external" label="Building with External Providers">
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently or use community-provided providers.
To build a distribution with external providers, you need to:
1. Configure the `external_providers_dir` in your build configuration file:
Example `build.yaml` excerpt for a custom Ollama provider:
```yaml
# Example my-external-stack.yaml with external providers
version: '2'
distribution_spec:
description: Custom distro for CI tests
providers:
inference:
- remote::custom_ollama
# Add more providers as needed
image_type: container
image_name: ci-test
# Path to external provider implementations
external_providers_dir: ~/.llama/providers.d
external_providers_dir: /workspace/providers.d
```
Inside `providers.d/custom_ollama/provider.py`, define `get_provider_spec()` so the CLI can discover dependencies:
```python
from llama_stack_api.providers.datatypes import ProviderSpec
def get_provider_spec() -> ProviderSpec:
return ProviderSpec(
provider_type="remote::custom_ollama",
module="llama_stack_ollama_provider",
config_class="llama_stack_ollama_provider.config.OllamaImplConfig",
pip_packages=[
"ollama",
"aiohttp",
"llama-stack-provider-ollama",
],
)
```
Here's an example for a custom Ollama provider:
@ -245,53 +100,22 @@ The `pip_packages` section lists the Python packages required by the provider, a
provider package itself. The package must be available on PyPI or can be provided from a local
directory or a git repository (git must be installed on the build environment).
2. Build your distribution using the config file:
For deeper guidance, see the [External Providers documentation](../providers/external/).
```
llama stack build --config my-external-stack.yaml
```
For more information on external providers, including directory structure, provider types, and implementation requirements, see the [External Providers documentation](../providers/external/).
</TabItem>
<TabItem value="container" label="Building Container">
</Tabs>
:::tip Podman Alternative
Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
:::
### Run your stack server
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
```
llama stack build --distro starter --image-type container
```
```
$ llama stack build --distro starter --image-type container
...
Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM python:3.10-slim
...
```
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
```
Now set some environment variables for the inference model ID and Llama Stack Port and create a local directory to mount into the container's file system.
After building the image, launch it directly with Docker or Podman—the entrypoint calls `llama stack run` using the baked distribution or the bundled run config:
```bash
export INFERENCE_MODEL="llama3.2:3b"
export LLAMA_STACK_PORT=8321
mkdir -p ~/.llama
```
After this step is successful, you should be able to find the built container image and test it with the below Docker command:
```
docker run -d \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-e INFERENCE_MODEL=$INFERENCE_MODEL \
-e OLLAMA_URL=http://host.docker.internal:11434 \
localhost/distribution-ollama:dev \
llama-stack:starter \
--port $LLAMA_STACK_PORT
```
@ -311,131 +135,14 @@ Here are the docker flags and their uses:
* `--port $LLAMA_STACK_PORT`: Port number for the server to listen on
</TabItem>
</Tabs>
### Running your Stack server
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step.
If you prepared a custom run config, mount it into the container and reference it explicitly:
```bash
docker run \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $(pwd)/run.yaml:/app/run.yaml \
llama-stack:starter \
/app/run.yaml
```
llama stack run -h
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME]
[--image-type {venv}] [--enable-ui]
[config | distro]
Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
positional arguments:
config | distro Path to config file to use for the run or name of known distro (`llama stack list` for a list). (default: None)
options:
-h, --help show this help message and exit
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321)
--image-name IMAGE_NAME
[DEPRECATED] This flag is no longer supported. Please activate your virtual environment before running. (default: None)
--image-type {venv}
[DEPRECATED] This flag is no longer supported. Please activate your virtual environment before running. (default: None)
--enable-ui Start the UI server (default: False)
```
**Note:** Container images built with `llama stack build --image-type container` cannot be run using `llama stack run`. Instead, they must be run directly using Docker or Podman commands as shown in the container building section above.
```
# Start using template name
llama stack run tgi
# Start using config file
llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
```
```
$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
Serving API inspect
GET /health
GET /providers/list
GET /routes/list
Serving API inference
POST /inference/chat_completion
POST /inference/completion
POST /inference/embeddings
...
Serving API agents
POST /agents/create
POST /agents/session/create
POST /agents/turn/create
POST /agents/delete
POST /agents/session/delete
POST /agents/session/get
POST /agents/step/get
POST /agents/turn/get
Listening on ['::', '0.0.0.0']:8321
INFO: Started server process [2935911]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
```
### Listing Distributions
Using the list command, you can view all existing Llama Stack distributions, including stacks built from templates, from scratch, or using custom configuration files.
```
llama stack list -h
usage: llama stack list [-h]
list the build stacks
options:
-h, --help show this help message and exit
```
Example Usage
```
llama stack list
```
```
------------------------------+-----------------------------------------------------------------+--------------+------------+
| Stack Name | Path | Build Config | Run Config |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| together | ~/.llama/distributions/together | Yes | No |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| bedrock | ~/.llama/distributions/bedrock | Yes | No |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| starter | ~/.llama/distributions/starter | Yes | Yes |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| remote-vllm | ~/.llama/distributions/remote-vllm | Yes | Yes |
+------------------------------+-----------------------------------------------------------------------------+--------------+
```
### Removing a Distribution
Use the remove command to delete a distribution you've previously built.
```
llama stack rm -h
usage: llama stack rm [-h] [--all] [name]
Remove the build stack
positional arguments:
name Name of the stack to delete (default: None)
options:
-h, --help show this help message and exit
--all, -a Delete all stacks (use with caution) (default: False)
```
Example
```
llama stack rm llamastack-test
```
To keep your environment organized and avoid clutter, consider using `llama stack list` to review old or unused distributions and `llama stack rm <name>` to delete them when they're no longer needed.
### Troubleshooting
If you encounter any issues, ask questions in our discord or search through our [GitHub Issues](https://github.com/meta-llama/llama-stack/issues), or file an new issue.

View file

@ -21,7 +21,6 @@ apis:
- inference
- vector_io
- safety
- telemetry
providers:
inference:
- provider_id: ollama
@ -44,18 +43,36 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/registry.db
persistence:
agent_state:
backend: kv_default
namespace: agents
responses:
backend: sql_default
table_name: responses
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/sqlstore.db
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
prompts:
backend: kv_default
namespace: prompts
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
@ -78,7 +95,6 @@ apis:
- inference
- vector_io
- safety
- telemetry
```
## Providers
@ -205,7 +221,15 @@ models:
```
A Model is an instance of a "Resource" (see [Concepts](../concepts/)) and is associated with a specific inference provider (in this case, the provider with identifier `ollama`). This is an instance of a "pre-registered" model. While we always encourage the clients to register models before using them, some Stack servers may come up a list of "already known and available" models.
What's with the `provider_model_id` field? This is an identifier for the model inside the provider's model catalog. Contrast it with `model_id` which is the identifier for the same model for Llama Stack's purposes. For example, you may want to name "llama3.2:vision-11b" as "image_captioning_model" when you use it in your Stack interactions. When omitted, the server will set `provider_model_id` to be the same as `model_id`.
What's with the `provider_model_id` field? This is an identifier for the model inside the provider's model catalog. The `model_id` field is provided for configuration purposes but is not used as part of the model identifier.
**Important:** Models are identified as `provider_id/provider_model_id` in the system and when making API calls. When `provider_model_id` is omitted, the server will set it to be the same as `model_id`.
Examples:
- Config: `model_id: llama3.2`, `provider_id: ollama`, `provider_model_id: null`
→ Access as: `ollama/llama3.2`
- Config: `model_id: my-llama`, `provider_id: vllm-inference`, `provider_model_id: llama-3-2-3b`
→ Access as: `vllm-inference/llama-3-2-3b` (the `model_id` is not used in the identifier)
If you need to conditionally register a model in the configuration, such as only when specific environment variable(s) are set, this can be accomplished by utilizing a special `__disabled__` string as the default value of an environment variable substitution, as shown below:
@ -575,24 +599,13 @@ created by users sharing a team with them:
In addition to resource-based access control, Llama Stack supports endpoint-level authorization using OAuth 2.0 style scopes. When authentication is enabled, specific API endpoints require users to have particular scopes in their authentication token.
**Scope-Gated APIs:**
The following APIs are currently gated by scopes:
- **Telemetry API** (scope: `telemetry.read`):
- `POST /telemetry/traces` - Query traces
- `GET /telemetry/traces/{trace_id}` - Get trace by ID
- `GET /telemetry/traces/{trace_id}/spans/{span_id}` - Get span by ID
- `POST /telemetry/spans/{span_id}/tree` - Get span tree
- `POST /telemetry/spans` - Query spans
- `POST /telemetry/metrics/{metric_name}` - Query metrics
**Authentication Configuration:**
For **JWT/OAuth2 providers**, scopes should be included in the JWT's claims:
```json
{
"sub": "user123",
"scope": "telemetry.read",
"scope": "<scope>",
"aud": "llama-stack"
}
```
@ -602,7 +615,7 @@ For **custom authentication providers**, the endpoint must return user attribute
{
"principal": "user123",
"attributes": {
"scopes": ["telemetry.read"]
"scopes": ["<scope>"]
}
}
```

View file

@ -11,8 +11,8 @@ If you are planning to use an external service for Inference (even Ollama or TGI
This avoids the overhead of setting up a server.
```bash
# setup
uv pip install llama-stack
llama stack build --distro starter --image-type venv
uv pip install llama-stack llama-stack-client
llama stack list-deps starter | xargs -L1 uv pip install
```
```python

View file

@ -19,3 +19,4 @@ This section provides an overview of the distributions available in Llama Stack.
- **[Starting Llama Stack Server](./starting_llama_stack_server.mdx)** - How to run distributions
- **[Importing as Library](./importing_as_library.mdx)** - Use distributions in your code
- **[Configuration Reference](./configuration.mdx)** - Configuration file format details
- **[Llama Stack UI](./llama_stack_ui.mdx)** - Web-based user interface for interacting with Llama Stack servers

View file

@ -1,56 +1,163 @@
apiVersion: v1
data:
stack_run_config.yaml: "version: '2'\nimage_name: kubernetes-demo\napis:\n- agents\n-
inference\n- files\n- safety\n- telemetry\n- tool_runtime\n- vector_io\nproviders:\n
\ inference:\n - provider_id: vllm-inference\n provider_type: remote::vllm\n
\ config:\n url: ${env.VLLM_URL:=http://localhost:8000/v1}\n max_tokens:
${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n tls_verify:
${env.VLLM_TLS_VERIFY:=true}\n - provider_id: vllm-safety\n provider_type:
remote::vllm\n config:\n url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}\n
\ max_tokens: ${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n
\ tls_verify: ${env.VLLM_TLS_VERIFY:=true}\n - provider_id: sentence-transformers\n
\ provider_type: inline::sentence-transformers\n config: {}\n vector_io:\n
\ - provider_id: ${env.ENABLE_CHROMADB:+chromadb}\n provider_type: remote::chromadb\n
\ config:\n url: ${env.CHROMADB_URL:=}\n kvstore:\n type: postgres\n
\ host: ${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n
\ db: ${env.POSTGRES_DB:=llamastack}\n user: ${env.POSTGRES_USER:=llamastack}\n
\ password: ${env.POSTGRES_PASSWORD:=llamastack}\n files:\n - provider_id:
meta-reference-files\n provider_type: inline::localfs\n config:\n storage_dir:
${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}\n metadata_store:\n
\ type: sqlite\n db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
\ \n safety:\n - provider_id: llama-guard\n provider_type: inline::llama-guard\n
\ config:\n excluded_categories: []\n agents:\n - provider_id: meta-reference\n
\ provider_type: inline::meta-reference\n config:\n persistence_store:\n
\ type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n port:
${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user:
${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n
\ responses_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n
\ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n
\ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n
\ telemetry:\n - provider_id: meta-reference\n provider_type: inline::meta-reference\n
\ config:\n service_name: \"${env.OTEL_SERVICE_NAME:=\\u200B}\"\n sinks:
${env.TELEMETRY_SINKS:=console}\n tool_runtime:\n - provider_id: brave-search\n
\ provider_type: remote::brave-search\n config:\n api_key: ${env.BRAVE_SEARCH_API_KEY:+}\n
\ max_results: 3\n - provider_id: tavily-search\n provider_type: remote::tavily-search\n
\ config:\n api_key: ${env.TAVILY_SEARCH_API_KEY:+}\n max_results:
3\n - provider_id: rag-runtime\n provider_type: inline::rag-runtime\n config:
{}\n - provider_id: model-context-protocol\n provider_type: remote::model-context-protocol\n
\ config: {}\nmetadata_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n
\ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user:
${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n
\ table_name: llamastack_kvstore\ninference_store:\n type: postgres\n host:
${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n
\ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\nmodels:\n-
metadata:\n embedding_dimension: 384\n model_id: all-MiniLM-L6-v2\n provider_id:
sentence-transformers\n model_type: embedding\n- metadata: {}\n model_id: ${env.INFERENCE_MODEL}\n
\ provider_id: vllm-inference\n model_type: llm\n- metadata: {}\n model_id:
${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\n provider_id: vllm-safety\n
\ model_type: llm\nshields:\n- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\nvector_dbs:
[]\ndatasets: []\nscoring_fns: []\nbenchmarks: []\ntool_groups:\n- toolgroup_id:
builtin::websearch\n provider_id: tavily-search\n- toolgroup_id: builtin::rag\n
\ provider_id: rag-runtime\nserver:\n port: 8321\n auth:\n provider_config:\n
\ type: github_token\n"
stack_run_config.yaml: |
version: '2'
image_name: kubernetes-demo
apis:
- agents
- inference
- files
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: vllm-safety
provider_type: remote::vllm
config:
url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:+}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
prompts:
backend: kv_default
namespace: prompts
models:
- metadata:
embedding_dimension: 768
model_id: nomic-embed-text-v1.5
provider_id: sentence-transformers
model_type: embedding
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
- metadata: {}
model_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
provider_id: vllm-safety
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321
auth:
provider_config:
type: github_token
kind: ConfigMap
metadata:
creationTimestamp: null
name: llama-stack-config

View file

@ -5,7 +5,6 @@ apis:
- inference
- files
- safety
- telemetry
- tool_runtime
- vector_io
providers:
@ -32,21 +31,17 @@ providers:
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -56,26 +51,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
@ -93,48 +77,73 @@ providers:
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
namespace: prompts
backend: kv_default
registered_resources:
models:
- metadata:
embedding_dimension: 768
model_id: nomic-embed-text-v1.5
provider_id: sentence-transformers
model_type: embedding
- metadata: {}
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
- metadata: {}
- metadata: {}
model_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
provider_id: vllm-safety
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321
auth:
provider_config:
type: github_token
telemetry:
enabled: true
vector_stores:
default_provider_id: chromadb
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5

View file

@ -44,7 +44,7 @@ spec:
# Navigate to the UI directory
echo "Navigating to UI directory..."
cd /app/llama_stack/ui
cd /app/llama_stack_ui
# Check if package.json exists
if [ ! -f "package.json" ]; then

View file

@ -0,0 +1,109 @@
---
title: Llama Stack UI
description: Web-based user interface for interacting with Llama Stack servers
sidebar_label: Llama Stack UI
sidebar_position: 8
---
# Llama Stack UI
The Llama Stack UI is a web-based interface for interacting with Llama Stack servers. Built with Next.js and React, it provides a visual way to work with agents, manage resources, and view logs.
## Features
- **Logs & Monitoring**: View chat completions, agent responses, and vector store activity
- **Vector Stores**: Create and manage vector databases for RAG (Retrieval-Augmented Generation) workflows
- **Prompt Management**: Create and manage reusable prompts
## Prerequisites
You need a running Llama Stack server. The UI is a client that connects to the Llama Stack backend.
If you don't have a Llama Stack server running yet, see the [Starting Llama Stack Server](../getting_started/starting_llama_stack_server.mdx) guide.
## Running the UI
### Option 1: Using npx (Recommended for Quick Start)
The fastest way to get started is using `npx`:
```bash
npx llama-stack-ui
```
This will start the UI server on `http://localhost:8322` (default port).
### Option 2: Using Docker
Run the UI in a container:
```bash
docker run -p 8322:8322 llamastack/ui
```
Access the UI at `http://localhost:8322`.
## Environment Variables
The UI can be configured using the following environment variables:
| Variable | Description | Default |
|----------|-------------|---------|
| `LLAMA_STACK_BACKEND_URL` | URL of your Llama Stack server | `http://localhost:8321` |
| `LLAMA_STACK_UI_PORT` | Port for the UI server | `8322` |
If the Llama Stack server is running with authentication enabled, you can configure the UI to use it by setting the following environment variables:
| Variable | Description | Default |
|----------|-------------|---------|
| `NEXTAUTH_URL` | NextAuth URL for authentication | `http://localhost:8322` |
| `GITHUB_CLIENT_ID` | GitHub OAuth client ID (optional, for authentication) | - |
| `GITHUB_CLIENT_SECRET` | GitHub OAuth client secret (optional, for authentication) | - |
### Setting Environment Variables
#### For npx:
```bash
LLAMA_STACK_BACKEND_URL=http://localhost:8321 \
LLAMA_STACK_UI_PORT=8080 \
npx llama-stack-ui
```
#### For Docker:
```bash
docker run -p 8080:8080 \
-e LLAMA_STACK_BACKEND_URL=http://localhost:8321 \
-e LLAMA_STACK_UI_PORT=8080 \
llamastack/ui
```
## Using the UI
### Managing Resources
- **Vector Stores**: Create vector databases for RAG workflows, view stored documents and embeddings
- **Prompts**: Create and manage reusable prompt templates
- **Chat Completions**: View history of chat interactions
- **Responses**: Browse detailed agent responses and tool calls
## Development
If you want to run the UI from source for development:
```bash
# From the project root
cd src/llama_stack_ui
# Install dependencies
npm install
# Set environment variables
export LLAMA_STACK_BACKEND_URL=http://localhost:8321
# Start the development server
npm run dev
```
The development server will start on `http://localhost:8322` with hot reloading enabled.

View file

@ -59,7 +59,7 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th
uv venv starter --python 3.12
source starter/bin/activate # On Windows: starter\Scripts\activate
pip install --no-cache llama-stack==0.2.2
llama stack build --distro starter --image-type venv
llama stack list-deps starter | xargs -L1 uv pip install
export FIREWORKS_API_KEY=<SOME_KEY>
llama stack run starter --port 5050
```

View file

@ -2,10 +2,10 @@
Remote-Hosted distributions are available endpoints serving Llama Stack API that you can directly connect to.
| Distribution | Endpoint | Inference | Agents | Memory | Safety | Telemetry |
| Distribution | Endpoint | Inference | Agents | Memory | Safety |
|-------------|----------|-----------|---------|---------|---------|------------|
| Together | [https://llama-stack.together.ai](https://llama-stack.together.ai) | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
| Fireworks | [https://llamastack-preview.fireworks.ai](https://llamastack-preview.fireworks.ai) | remote::fireworks | meta-reference | remote::weaviate | meta-reference | meta-reference |
| Together | [https://llama-stack.together.ai](https://llama-stack.together.ai) | remote::together | meta-reference | remote::weaviate | meta-reference |
| Fireworks | [https://llamastack-preview.fireworks.ai](https://llamastack-preview.fireworks.ai) | remote::fireworks | meta-reference | remote::weaviate | meta-reference |
## Connecting to Remote-Hosted Distributions

View file

@ -0,0 +1,143 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# OCI Distribution
The `llamastack/distribution-oci` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| files | `inline::localfs` |
| inference | `remote::oci` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `OCI_AUTH_TYPE`: OCI authentication type (instance_principal or config_file) (default: `instance_principal`)
- `OCI_REGION`: OCI region (e.g., us-ashburn-1, us-chicago-1, us-phoenix-1, eu-frankfurt-1) (default: ``)
- `OCI_COMPARTMENT_OCID`: OCI compartment ID for the Generative AI service (default: ``)
- `OCI_CONFIG_FILE_PATH`: OCI config file path (required if OCI_AUTH_TYPE is config_file) (default: `~/.oci/config`)
- `OCI_CLI_PROFILE`: OCI CLI profile name to use from config file (default: `DEFAULT`)
## Prerequisites
### Oracle Cloud Infrastructure Setup
Before using the OCI Generative AI distribution, ensure you have:
1. **Oracle Cloud Infrastructure Account**: Sign up at [Oracle Cloud Infrastructure](https://cloud.oracle.com/)
2. **Generative AI Service Access**: Enable the Generative AI service in your OCI tenancy
3. **Compartment**: Create or identify a compartment where you'll deploy Generative AI models
4. **Authentication**: Configure authentication using either:
- **Instance Principal** (recommended for cloud-hosted deployments)
- **API Key** (for on-premises or development environments)
### Authentication Methods
#### Instance Principal Authentication (Recommended)
Instance Principal authentication allows OCI resources to authenticate using the identity of the compute instance they're running on. This is the most secure method for production deployments.
Requirements:
- Instance must be running in an Oracle Cloud Infrastructure compartment
- Instance must have appropriate IAM policies to access Generative AI services
#### API Key Authentication
For development or on-premises deployments, follow [this doc](https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm) to learn how to create your API signing key for your config file.
### Required IAM Policies
Ensure your OCI user or instance has the following policy statements:
```
Allow group <group_name> to use generative-ai-inference-endpoints in compartment <compartment_name>
Allow group <group_name> to manage generative-ai-inference-endpoints in compartment <compartment_name>
```
## Supported Services
### Inference: OCI Generative AI
Oracle Cloud Infrastructure Generative AI provides access to high-performance AI models through OCI's Platform-as-a-Service offering. The service supports:
- **Chat Completions**: Conversational AI with context awareness
- **Text Generation**: Complete prompts and generate text content
#### Available Models
Common OCI Generative AI models include access to Meta, Cohere, OpenAI, Grok, and more models.
### Safety: Llama Guard
For content safety and moderation, this distribution uses Meta's LlamaGuard model through the OCI Generative AI service to provide:
- Content filtering and moderation
- Policy compliance checking
- Harmful content detection
### Vector Storage: Multiple Options
The distribution supports several vector storage providers:
- **FAISS**: Local in-memory vector search
- **ChromaDB**: Distributed vector database
- **PGVector**: PostgreSQL with vector extensions
### Additional Services
- **Dataset I/O**: Local filesystem and Hugging Face integration
- **Tool Runtime**: Web search (Brave, Tavily) and RAG capabilities
- **Evaluation**: Meta reference evaluation framework
## Running Llama Stack with OCI
You can run the OCI distribution via Docker or local virtual environment.
### Via venv
If you've set up your local development environment, you can also build the image using your local virtual environment.
```bash
OCI_AUTH=$OCI_AUTH_TYPE OCI_REGION=$OCI_REGION OCI_COMPARTMENT_OCID=$OCI_COMPARTMENT_OCID llama stack run --port 8321 oci
```
### Configuration Examples
#### Using Instance Principal (Recommended for Production)
```bash
export OCI_AUTH_TYPE=instance_principal
export OCI_REGION=us-chicago-1
export OCI_COMPARTMENT_OCID=ocid1.compartment.oc1..<your-compartment-id>
```
#### Using API Key Authentication (Development)
```bash
export OCI_AUTH_TYPE=config_file
export OCI_CONFIG_FILE_PATH=~/.oci/config
export OCI_CLI_PROFILE=DEFAULT
export OCI_REGION=us-chicago-1
export OCI_COMPARTMENT_OCID=ocid1.compartment.oc1..your-compartment-id
```
## Regional Endpoints
OCI Generative AI is available in multiple regions. The service automatically routes to the appropriate regional endpoint based on your configuration. For a full list of regional model availability, visit:
https://docs.oracle.com/en-us/iaas/Content/generative-ai/overview.htm#regions
## Troubleshooting
### Common Issues
1. **Authentication Errors**: Verify your OCI credentials and IAM policies
2. **Model Not Found**: Ensure the model OCID is correct and the model is available in your region
3. **Permission Denied**: Check compartment permissions and Generative AI service access
4. **Region Unavailable**: Verify the specified region supports Generative AI services
### Getting Help
For additional support:
- [OCI Generative AI Documentation](https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm)
- [Llama Stack Issues](https://github.com/meta-llama/llama-stack/issues)

View file

@ -21,7 +21,6 @@ The `llamastack/distribution-watsonx` distribution consists of the following pro
| inference | `remote::watsonx`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss` |

View file

@ -13,9 +13,9 @@ self
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
| **API** | **Inference** | **Agents** | **Memory** | **Safety** |
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference |
The only difference vs. the `tgi` distribution is that it runs the Dell-TGI server for inference.

View file

@ -22,7 +22,6 @@ The `llamastack/distribution-dell` distribution consists of the following provid
| inference | `remote::tgi`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
@ -166,10 +165,10 @@ docker run \
### Via venv
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
Install the distribution dependencies before launching:
```bash
llama stack build --distro dell --image-type venv
llama stack list-deps dell | xargs -L1 uv pip install
INFERENCE_MODEL=$INFERENCE_MODEL \
DEH_URL=$DEH_URL \
CHROMA_URL=$CHROMA_URL \

View file

@ -21,7 +21,6 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
| inference | `inline::meta-reference` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
@ -41,31 +40,7 @@ The following environment variables can be configured:
## Prerequisite: Downloading Models
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](../../references/llama_cli_reference/download_models.md) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
```
$ llama model list --downloaded
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model ┃ Size ┃ Modified Time ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘
Please check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](../../references/llama_cli_reference/download_models.md) here to download the models using the Hugging Face CLI.
```
## Running the Distribution
@ -104,12 +79,39 @@ docker run \
--port $LLAMA_STACK_PORT
```
### Via venv
### Via Docker with Custom Run Configuration
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
You can also run the Docker container with a custom run configuration file by mounting it into the container:
```bash
llama stack build --distro meta-reference-gpu --image-type venv
# Set the path to your custom run.yaml file
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
--gpu all \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
llamastack/distribution-meta-reference-gpu \
--port $LLAMA_STACK_PORT
```
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
Available run configurations for this distribution:
- `run.yaml`
- `run-with-safety.yaml`
### Via venv
Make sure you have the Llama Stack CLI available.
```bash
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
llama stack run distributions/meta-reference-gpu/run.yaml \
--port 8321

View file

@ -16,7 +16,6 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
| post_training | `remote::nvidia` |
| safety | `remote::nvidia` |
| scoring | `inline::basic` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `inline::rag-runtime` |
| vector_io | `inline::faiss` |
@ -128,20 +127,46 @@ docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
-v ~/.llama:/root/.llama \
-e NVIDIA_API_KEY=$NVIDIA_API_KEY \
llamastack/distribution-nvidia \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT
```
### Via Docker with Custom Run Configuration
You can also run the Docker container with a custom run configuration file by mounting it into the container:
```bash
# Set the path to your custom run.yaml file
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
-e NVIDIA_API_KEY=$NVIDIA_API_KEY \
llamastack/distribution-nvidia \
--port $LLAMA_STACK_PORT
```
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
Available run configurations for this distribution:
- `run.yaml`
- `run-with-safety.yaml`
### Via venv
If you've set up your local development environment, you can also build the image using your local virtual environment.
If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
llama stack build --distro nvidia --image-type venv
llama stack list-deps nvidia | xargs -L1 uv pip install
NVIDIA_API_KEY=$NVIDIA_API_KEY \
INFERENCE_MODEL=$INFERENCE_MODEL \
llama stack run ./run.yaml \

View file

@ -21,7 +21,6 @@ The `llamastack/distribution-passthrough` distribution consists of the following
| inference | `remote::passthrough`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |

View file

@ -26,7 +26,6 @@ The starter distribution consists of the following provider configurations:
| inference | `remote::openai`, `remote::fireworks`, `remote::together`, `remote::ollama`, `remote::anthropic`, `remote::gemini`, `remote::groq`, `remote::sambanova`, `remote::vllm`, `remote::tgi`, `remote::cerebras`, `remote::llama-openai-compat`, `remote::nvidia`, `remote::hf::serverless`, `remote::hf::endpoint`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `inline::sqlite-vec`, `inline::milvus`, `remote::chromadb`, `remote::pgvector` |
@ -119,7 +118,7 @@ The following environment variables can be configured:
### Telemetry Configuration
- `OTEL_SERVICE_NAME`: OpenTelemetry service name
- `TELEMETRY_SINKS`: Telemetry sinks (default: `console,sqlite`)
- `OTEL_EXPORTER_OTLP_ENDPOINT`: OpenTelemetry collector endpoint URL
## Enabling Providers
@ -164,12 +163,53 @@ docker run \
--port $LLAMA_STACK_PORT
```
### Via venv
The container will run the distribution with a SQLite store by default. This store is used for the following components:
- Metadata store: store metadata about the models, providers, etc.
- Inference store: collect of responses from the inference provider
- Agents store: store agent configurations (sessions, turns, etc.)
- Agents Responses store: store responses from the agents
However, you can use PostgreSQL instead by running the `starter::run-with-postgres-store.yaml` configuration:
```bash
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-e OPENAI_API_KEY=your_openai_key \
-e FIREWORKS_API_KEY=your_fireworks_key \
-e TOGETHER_API_KEY=your_together_key \
-e POSTGRES_HOST=your_postgres_host \
-e POSTGRES_PORT=your_postgres_port \
-e POSTGRES_DB=your_postgres_db \
-e POSTGRES_USER=your_postgres_user \
-e POSTGRES_PASSWORD=your_postgres_password \
llamastack/distribution-starter \
starter::run-with-postgres-store.yaml
```
Postgres environment variables:
- `POSTGRES_HOST`: Postgres host (default: `localhost`)
- `POSTGRES_PORT`: Postgres port (default: `5432`)
- `POSTGRES_DB`: Postgres database name (default: `llamastack`)
- `POSTGRES_USER`: Postgres username (default: `llamastack`)
- `POSTGRES_PASSWORD`: Postgres password (default: `llamastack`)
### Via Conda or venv
Ensure you have configured the starter distribution using the environment variables explained above.
```bash
uv run --with llama-stack llama stack build --distro starter --image-type venv --run
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server (with SQLite - default)
uv run --with llama-stack llama stack run starter
# Or run with PostgreSQL
uv run --with llama-stack llama stack run starter::run-with-postgres-store.yaml
```
## Example Usage
@ -216,7 +256,6 @@ The starter distribution uses SQLite for local storage of various components:
- **Files metadata**: `~/.llama/distributions/starter/files_metadata.db`
- **Agents store**: `~/.llama/distributions/starter/agents_store.db`
- **Responses store**: `~/.llama/distributions/starter/responses_store.db`
- **Trace store**: `~/.llama/distributions/starter/trace_store.db`
- **Evaluation store**: `~/.llama/distributions/starter/meta_reference_eval.db`
- **Dataset I/O stores**: Various HuggingFace and local filesystem stores

View file

@ -23,6 +23,17 @@ Another simple way to start interacting with Llama Stack is to just spin up a co
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](../deploying/kubernetes_deployment) for more details.
## Configure logging
Control log output via environment variables before starting the server.
- `LLAMA_STACK_LOGGING` sets per-component levels, e.g. `LLAMA_STACK_LOGGING=server=debug;core=info`.
- Supported categories: `all`, `core`, `server`, `router`, `inference`, `agents`, `safety`, `eval`, `tools`, `client`.
- Levels: `debug`, `info`, `warning`, `error`, `critical` (default is `info`). Use `all=<level>` to apply globally.
- `LLAMA_STACK_LOG_FILE=/path/to/log` mirrors logs to a file while still printing to stdout.
Export these variables prior to running `llama stack run`, launching a container, or starting the server through any other pathway.
```{toctree}
:maxdepth: 1
:hidden:

View file

@ -4,65 +4,24 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
vector_db_id = "my_demo_vector_db"
client = LlamaStackClient(base_url="http://localhost:8321")
import io, requests
from openai import OpenAI
models = client.models.list()
url="https://www.paulgraham.com/greatwork.html"
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
# Select the first LLM and first embedding models
model_id = next(m for m in models if m.model_type == "llm").identifier
embedding_model_id = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = em.metadata["embedding_dimension"]
vs = client.vector_stores.create()
response = requests.get(url)
pseudo_file = io.BytesIO(str(response.content).encode('utf-8'))
uploaded_file = client.files.create(file=(url, pseudo_file, "text/html"), purpose="assistants")
client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
vector_db = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
vector_db_id = vector_db.identifier
source = "https://www.paulgraham.com/greatwork.html"
print("rag_tool> Ingesting document:", source)
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={},
)
client.tool_runtime.rag_tool.insert(
documents=[document],
vector_db_id=vector_db_id,
chunk_size_in_tokens=100,
)
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": [vector_db_id]},
}
],
resp = client.responses.create(
model="openai/gpt-4o",
input="How do you do great work? Use the existing knowledge_search tool.",
tools=[{"type": "file_search", "vector_store_ids": [vs.id]}],
include=["file_search_call.results"],
)
prompt = "How do you do great work?"
print("prompt>", prompt)
use_stream = True
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=agent.create_session("rag_session"),
stream=use_stream,
)
# Only call `AgentEventLogger().log(response)` for streaming responses.
if use_stream:
for log in AgentEventLogger().log(response):
log.print()
else:
print(response)
print(resp)

View file

@ -58,15 +58,19 @@ Llama Stack is a server that exposes multiple APIs, you connect with it using th
<Tabs>
<TabItem value="venv" label="Using venv">
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
You can use Python to install dependencies and run the Llama Stack server, which is useful for testing and development.
Llama Stack uses a [YAML configuration file](../distributions/configuration) to specify the stack setup,
which defines the providers and their settings. The generated configuration serves as a starting point that you can [customize for your specific needs](../distributions/customizing_run_yaml).
Now let's build and run the Llama Stack config for Ollama.
Now let's install dependencies and run the Llama Stack config for Ollama.
We use `starter` as template. By default all providers are disabled, this requires enable ollama by passing environment variables.
```bash
llama stack build --distro starter --image-type venv --run
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server
llama stack run starter
```
</TabItem>
<TabItem value="container" label="Using a Container">
@ -140,7 +144,7 @@ source .venv/bin/activate
```bash
uv venv client --python 3.12
source client/bin/activate
pip install llama-stack-client
uv pip install llama-stack-client
```
</TabItem>
</Tabs>
@ -164,7 +168,7 @@ Available Models
┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┓
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━┩
│ embedding │ ollama/all-minilm:l6-v2 │ all-minilm:l6-v2 │ {'embedding_dimension': 384.0} │ ollama │
│ embedding │ ollama/nomic-embed-text:v1.5 │ nomic-embed-text:v1.5 │ {'embedding_dimension': 768.0} │ ollama │
├─────────────────┼─────────────────────────────────────┼─────────────────────────────────────┼───────────────────────────────────────────┼───────────────────────┤
│ ... │ ... │ ... │ │ ... │
├─────────────────┼─────────────────────────────────────┼─────────────────────────────────────┼───────────────────────────────────────────┼───────────────────────┤
@ -235,8 +239,13 @@ client = LlamaStackClient(base_url="http://localhost:8321")
models = client.models.list()
# Select the first LLM
llm = next(m for m in models if m.model_type == "llm" and m.provider_id == "ollama")
model_id = llm.identifier
llm = next(
m for m in models
if m.custom_metadata
and m.custom_metadata.get("model_type") == "llm"
and m.custom_metadata.get("provider_id") == "ollama"
)
model_id = llm.id
print("Model:", model_id)
@ -275,8 +284,13 @@ import uuid
client = LlamaStackClient(base_url=f"http://localhost:8321")
models = client.models.list()
llm = next(m for m in models if m.model_type == "llm" and m.provider_id == "ollama")
model_id = llm.identifier
llm = next(
m for m in models
if m.custom_metadata
and m.custom_metadata.get("model_type") == "llm"
and m.custom_metadata.get("provider_id") == "ollama"
)
model_id = llm.id
agent = Agent(client, model=model_id, instructions="You are a helpful assistant.")
@ -304,7 +318,7 @@ stream = agent.create_turn(
for event in AgentEventLogger().log(stream):
event.print()
```
### ii. Run the Script
#### ii. Run the Script
Let's run the script using `uv`
```bash
uv run python agent.py
@ -446,8 +460,11 @@ import uuid
client = LlamaStackClient(base_url="http://localhost:8321")
# Create a vector database instance
embed_lm = next(m for m in client.models.list() if m.model_type == "embedding")
embedding_model = embed_lm.identifier
embed_lm = next(
m for m in client.models.list()
if m.custom_metadata and m.custom_metadata.get("model_type") == "embedding"
)
embedding_model = embed_lm.id
vector_db_id = f"v{uuid.uuid4().hex}"
# The VectorDB API is deprecated; the server now returns its own authoritative ID.
# We capture the correct ID from the response's .identifier attribute.
@ -485,9 +502,11 @@ client.tool_runtime.rag_tool.insert(
llm = next(
m
for m in client.models.list()
if m.model_type == "llm" and m.provider_id == "ollama"
if m.custom_metadata
and m.custom_metadata.get("model_type") == "llm"
and m.custom_metadata.get("provider_id") == "ollama"
)
model = llm.identifier
model = llm.id
# Create the RAG agent
rag_agent = Agent(

View file

@ -24,111 +24,44 @@ ollama run llama3.2:3b --keepalive 60m
#### Step 2: Run the Llama Stack server
We will use `uv` to run the Llama Stack server.
```python file=./demo_script.py title="demo_script.py"
```
We will use `uv` to install dependencies and run the Llama Stack server.
```bash
OLLAMA_URL=http://localhost:11434 \
uv run --with llama-stack llama stack build --distro starter --image-type venv --run
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server
OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter
```
#### Step 3: Run the demo
Now open up a new terminal and copy the following script into a file named `demo_script.py`.
```python title="demo_script.py"
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
vector_db_id = "my_demo_vector_db"
client = LlamaStackClient(base_url="http://localhost:8321")
models = client.models.list()
# Select the first LLM and first embedding models
model_id = next(m for m in models if m.model_type == "llm").identifier
embedding_model_id = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = em.metadata["embedding_dimension"]
vector_db = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
vector_db_id = vector_db.identifier
source = "https://www.paulgraham.com/greatwork.html"
print("rag_tool> Ingesting document:", source)
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={},
)
client.tool_runtime.rag_tool.insert(
documents=[document],
vector_db_id=vector_db_id,
chunk_size_in_tokens=100,
)
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": [vector_db_id]},
}
],
)
prompt = "How do you do great work?"
print("prompt>", prompt)
use_stream = True
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=agent.create_session("rag_session"),
stream=use_stream,
)
# Only call `AgentEventLogger().log(response)` for streaming responses.
if use_stream:
for log in AgentEventLogger().log(response):
log.print()
else:
print(response)
```
We will use `uv` to run the script
```
uv run --with llama-stack-client,fire,requests demo_script.py
```
And you should see output like below.
```python
>print(resp.output[1].content[0].text)
To do great work, consider the following principles:
1. **Follow Your Interests**: Engage in work that genuinely excites you. If you find an area intriguing, pursue it without being overly concerned about external pressures or norms. You should create things that you would want for yourself, as this often aligns with what others in your circle might want too.
2. **Work Hard on Ambitious Projects**: Ambition is vital, but it should be tempered by genuine interest. Instead of detailed planning for the future, focus on exciting projects that keep your options open. This approach, known as "staying upwind," allows for adaptability and can lead to unforeseen achievements.
3. **Choose Quality Colleagues**: Collaborating with talented colleagues can significantly affect your own work. Seek out individuals who offer surprising insights and whom you admire. The presence of good colleagues can elevate the quality of your work and inspire you.
4. **Maintain High Morale**: Your attitude towards work and life affects your performance. Cultivating optimism and viewing yourself as lucky rather than victimized can boost your productivity. Its essential to care for your physical health as well since it directly impacts your mental faculties and morale.
5. **Be Consistent**: Great work often comes from cumulative effort. Daily progress, even in small amounts, can result in substantial achievements over time. Emphasize consistency and make the work engaging, as this reduces the perceived burden of hard labor.
6. **Embrace Curiosity**: Curiosity is a driving force that can guide you in selecting fields of interest, pushing you to explore uncharted territories. Allow it to shape your work and continually seek knowledge and insights.
By focusing on these aspects, you can create an environment conducive to great work and personal fulfillment.
```
rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html
prompt> How do you do great work?
inference> [knowledge_search(query="What is the key to doing great work")]
tool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text="Result 1:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 2:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 3:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 4:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 5:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
inference> Based on the search results, it seems that doing great work means doing something important so well that you expand people's ideas of what's possible. However, there is no clear threshold for importance, and it can be difficult to judge at the time.
To further clarify, I would suggest that doing great work involves:
* Completing tasks with high quality and attention to detail
* Expanding on existing knowledge or ideas
* Making a positive impact on others through your work
* Striving for excellence and continuous improvement
Ultimately, great work is about making a meaningful contribution and leaving a lasting impression.
```
Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳
:::tip HuggingFace access

View file

@ -29,7 +29,7 @@ Llama Stack is now available! See the [release notes](https://github.com/llamast
Llama Stack defines and standardizes the core building blocks needed to bring generative AI applications to market. It provides a unified set of APIs with implementations from leading service providers, enabling seamless transitions between development and production environments. More specifically, it provides:
- **Unified API layer** for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- **Unified API layer** for Inference, RAG, Agents, Tools, Safety, Evals.
- **Plugin architecture** to support the rich ecosystem of implementations of the different APIs in different environments like local development, on-premises, cloud, and mobile.
- **Prepackaged verified distributions** which offer a one-stop solution for developers to get started quickly and reliably in any environment
- **Multiple developer interfaces** like CLI and SDKs for Python, Node, iOS, and Android

View file

@ -1,7 +1,8 @@
---
description: "Agents
description: |
Agents
APIs for creating and interacting with agentic systems."
APIs for creating and interacting with agentic systems.
sidebar_label: Agents
title: Agents
---

View file

@ -14,16 +14,18 @@ Meta's reference implementation of an agent system that can use tools, access ve
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence_store` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
| `responses_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | |
| `persistence` | `AgentPersistenceConfig` | No | | |
## Sample Configuration
```yaml
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
```

View file

@ -1,5 +1,6 @@
---
description: "The Batches API enables efficient processing of multiple requests in a single operation,
description: |
The Batches API enables efficient processing of multiple requests in a single operation,
particularly useful for processing large datasets, batch evaluation workflows, and
cost-effective inference at scale.
@ -8,7 +9,7 @@ description: "The Batches API enables efficient processing of multiple requests
This API provides the following extensions:
- idempotent batch creation
Note: This API is currently under active development and may undergo changes."
Note: This API is currently under active development and may undergo changes.
sidebar_label: Batches
title: Batches
---

View file

@ -14,14 +14,14 @@ Reference implementation of batches API with KVStore persistence.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Configuration for the key-value store backend. |
| `max_concurrent_batches` | `<class 'int'>` | No | 1 | Maximum number of concurrent batches to process simultaneously. |
| `max_concurrent_requests_per_batch` | `<class 'int'>` | No | 10 | Maximum number of concurrent requests to process per batch. |
| `kvstore` | `KVStoreReference` | No | | Configuration for the key-value store backend. |
| `max_concurrent_batches` | `int` | No | 1 | Maximum number of concurrent batches to process simultaneously. |
| `max_concurrent_requests_per_batch` | `int` | No | 10 | Maximum number of concurrent requests to process per batch. |
## Sample Configuration
```yaml
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/batches.db
namespace: batches
backend: kv_default
```

View file

@ -14,12 +14,12 @@ Local filesystem-based dataset I/O provider for reading and writing datasets to
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
| `kvstore` | `KVStoreReference` | No | | |
## Sample Configuration
```yaml
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
```

View file

@ -14,12 +14,12 @@ HuggingFace datasets provider for accessing and managing datasets from the Huggi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
| `kvstore` | `KVStoreReference` | No | | |
## Sample Configuration
```yaml
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
```

View file

@ -17,7 +17,7 @@ NVIDIA's dataset I/O provider for accessing datasets from NVIDIA's data platform
| `api_key` | `str \| None` | No | | The NVIDIA API key. |
| `dataset_namespace` | `str \| None` | No | default | The NVIDIA dataset namespace. |
| `project_id` | `str \| None` | No | test-project | The NVIDIA project ID. |
| `datasets_url` | `<class 'str'>` | No | http://nemo.test | Base URL for the NeMo Dataset API |
| `datasets_url` | `str` | No | http://nemo.test | Base URL for the NeMo Dataset API |
## Sample Configuration

View file

@ -1,5 +1,8 @@
---
description: "Llama Stack Evaluation API for running evaluations on model and agent candidates."
description: |
Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates.
sidebar_label: Eval
title: Eval
---
@ -8,6 +11,8 @@ title: Eval
## Overview
Llama Stack Evaluation API for running evaluations on model and agent candidates.
Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates.
This section contains documentation for all available providers for the **eval** API.

View file

@ -14,12 +14,12 @@ Meta's reference implementation of evaluation tasks with support for multiple la
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
| `kvstore` | `KVStoreReference` | No | | |
## Sample Configuration
```yaml
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/meta_reference_eval.db
namespace: eval
backend: kv_default
```

View file

@ -14,7 +14,7 @@ NVIDIA's evaluation provider for running evaluation tasks on NVIDIA's platform.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `evaluator_url` | `<class 'str'>` | No | http://0.0.0.0:7331 | The url for accessing the evaluator service |
| `evaluator_url` | `str` | No | http://0.0.0.0:7331 | The url for accessing the evaluator service |
## Sample Configuration

View file

@ -80,7 +80,7 @@ container_image: custom-vector-store:latest # optional
All providers must contain a `get_provider_spec` function in their `provider` module. This is a standardized structure that Llama Stack expects and is necessary for getting things such as the config class. The `get_provider_spec` method returns a structure identical to the `adapter`. An example function may look like:
```python
from llama_stack.providers.datatypes import (
from llama_stack_api.providers.datatypes import (
ProviderSpec,
Api,
RemoteProviderSpec,
@ -240,6 +240,6 @@ additional_pip_packages:
- sqlalchemy[asyncio]
```
No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc.
No other steps are required beyond installing dependencies with `llama stack list-deps <distro> | xargs -L1 uv pip install` and then running `llama stack run`. The CLI will use `module` to install the provider dependencies, retrieve the spec, etc.
The provider will now be available in Llama Stack with the type `remote::ramalama`.

View file

@ -0,0 +1,290 @@
---
sidebar_label: Files
title: Files
---
## Overview
The Files API provides file management capabilities for Llama Stack. It allows you to upload, store, retrieve, and manage files that can be used across various endpoints in your application.
## Features
- **File Upload**: Upload files with metadata and purpose classification
- **File Management**: List, retrieve, and delete files
- **Content Retrieval**: Access raw file content for processing
- **API Compatibility**: Full compatibility with OpenAI Files API endpoints
- **Flexible Storage**: Support for local filesystem and cloud storage backends
## API Endpoints
### Upload File
**POST** `/v1/openai/v1/files`
Upload a file that can be used across various endpoints.
**Request Body:**
- `file`: The file object to be uploaded (multipart form data)
- `purpose`: The intended purpose of the uploaded file
**Supported Purposes:**
- `batch`: Files for batch operations
**Response:**
```json
{
"id": "file-abc123",
"object": "file",
"bytes": 140,
"created_at": 1613779121,
"filename": "mydata.jsonl",
"purpose": "batch"
}
```
**Example:**
```python
import requests
with open("data.jsonl", "rb") as f:
files = {"file": f}
data = {"purpose": "batch"}
response = requests.post(
"http://localhost:8000/v1/openai/v1/files", files=files, data=data
)
file_info = response.json()
```
### List Files
**GET** `/v1/openai/v1/files`
Returns a list of files that belong to the user's organization.
**Query Parameters:**
- `after` (optional): A cursor for pagination
- `limit` (optional): Limit on number of objects (1-10,000, default: 10,000)
- `order` (optional): Sort order by created_at timestamp (`asc` or `desc`, default: `desc`)
- `purpose` (optional): Filter files by purpose
**Response:**
```json
{
"object": "list",
"data": [
{
"id": "file-abc123",
"object": "file",
"bytes": 140,
"created_at": 1613779121,
"filename": "mydata.jsonl",
"purpose": "fine-tune"
}
],
"has_more": false
}
```
**Example:**
```python
import requests
# List all files
response = requests.get("http://localhost:8000/v1/openai/v1/files")
files = response.json()
# List files with pagination
response = requests.get(
"http://localhost:8000/v1/openAi/v1/files",
params={"limit": 10, "after": "file-abc123"},
)
files = response.json()
# Filter by purpose
response = requests.get(
"http://localhost:8000/v1/openAi/v1/files", params={"purpose": "fine-tune"}
)
files = response.json()
```
### Retrieve File
**GET** `/v1/openAi/v1/files/{file_id}`
Returns information about a specific file.
**Path Parameters:**
- `file_id`: The ID of the file to retrieve
**Response:**
```json
{
"id": "file-abc123",
"object": "file",
"bytes": 140,
"created_at": 1613779121,
"filename": "mydata.jsonl",
"purpose": "fine-tune"
}
```
**Example:**
```python
import requests
file_id = "file-abc123"
response = requests.get(f"http://localhost:8000/v1/openAi/v1/files/{file_id}")
file_info = response.json()
```
### Delete File
**DELETE** `/v1/openAi/v1/files/{file_id}`
Delete a file.
**Path Parameters:**
- `file_id`: The ID of the file to delete
**Response:**
```json
{
"id": "file-abc123",
"object": "file",
"deleted": true
}
```
**Example:**
```python
import requests
file_id = "file-abc123"
response = requests.delete(f"http://localhost:8000/v1/openAi/v1/files/{file_id}")
result = response.json()
```
### Retrieve File Content
**GET** `/v1/openAi/v1/files/{file_id}/content`
Returns the raw file content as a binary response.
**Path Parameters:**
- `file_id`: The ID of the file to retrieve content from
**Response:**
Binary file content with appropriate headers:
- `Content-Type`: `application/octet-stream`
- `Content-Disposition`: `attachment; filename="filename"`
**Example:**
```python
import requests
file_id = "file-abc123"
response = requests.get(f"http://localhost:8000/v1/openAi/v1/files/{file_id}/content")
# Save content to file
with open("downloaded_file.jsonl", "wb") as f:
f.write(response.content)
# Or process content directly
content = response.content
```
## Vector Store Integration
The Files API integrates with Vector Stores to enable document processing and search. For detailed information about this integration, see [File Operations and Vector Store Integration](../concepts/file_operations_vector_stores.md).
### Vector Store File Operations
**List Vector Store Files:**
- **GET** `/v1/openAi/v1/vector_stores/{vector_store_id}/files`
**Retrieve Vector Store File Content:**
- **GET** `/v1/openAi/v1/vector_stores/{vector_store_id}/files/{file_id}/content`
**Attach File to Vector Store:**
- **POST** `/v1/openAi/v1/vector_stores/{vector_store_id}/files`
## Error Handling
The Files API returns standard HTTP status codes and error responses:
- `400 Bad Request`: Invalid request parameters
- `404 Not Found`: File not found
- `429 Too Many Requests`: Rate limit exceeded
- `500 Internal Server Error`: Server error
**Error Response Format:**
```json
{
"error": {
"message": "Error description",
"type": "invalid_request_error",
"code": "file_not_found"
}
}
```
## Rate Limits
The Files API implements rate limiting to ensure fair usage:
- File uploads: 100 files per minute
- File retrievals: 1000 requests per minute
- File deletions: 100 requests per minute
## Best Practices
1. **File Organization**: Use descriptive filenames and appropriate purpose classifications
2. **Batch Operations**: For multiple files, consider using batch endpoints when available
3. **Error Handling**: Always check response status codes and handle errors gracefully
4. **Content Types**: Ensure files are uploaded with appropriate content types
5. **Cleanup**: Regularly delete unused files to manage storage costs
## Integration Examples
### With Python Client
```python
from llama_stack import LlamaStackClient
client = LlamaStackClient("http://localhost:8000")
# Upload a file
with open("data.jsonl", "rb") as f:
file_info = await client.files.upload(file=f, purpose="fine-tune")
# List files
files = await client.files.list(purpose="fine-tune")
# Retrieve file content
content = await client.files.retrieve_content(file_info.id)
```
### With cURL
```bash
# Upload file
curl -X POST http://localhost:8000/v1/openAi/v1/files \
-F "file=@data.jsonl" \
-F "purpose=fine-tune"
# List files
curl http://localhost:8000/v1/openAi/v1/files
# Download file content
curl http://localhost:8000/v1/openAi/v1/files/file-abc123/content \
-o downloaded_file.jsonl
```
## Provider Support
The Files API supports multiple storage backends:
- **Local Filesystem**: Store files on local disk (inline provider)
- **S3**: Store files in AWS S3 or S3-compatible services (remote provider)
- **Custom Backends**: Extensible architecture for custom storage providers
See the [Files Providers](index.md) documentation for detailed configuration options.

View file

@ -1,7 +1,8 @@
---
description: "Files
description: |
Files
This API is used to upload documents that can be used with other Llama Stack APIs."
This API is used to upload documents that can be used with other Llama Stack APIs.
sidebar_label: Files
title: Files
---

Some files were not shown because too many files have changed in this diff Show more