[docs] Fix misc typos and formatting issues in intro docs

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
Ihar Hrachyshka 2025-02-04 18:25:01 -05:00
parent 753a1aa7bc
commit 3672e120ff
3 changed files with 5 additions and 3 deletions

View file

@ -23,7 +23,7 @@ Which templates / distributions to choose depends on the hardware you have for r
- {dockerhub}`distribution-together` ([Guide](self_hosted_distro/together))
- {dockerhub}`distribution-fireworks` ([Guide](self_hosted_distro/fireworks))
- **Do you want to run Llama Stack inference on your iOS / Android device** Lastly, we also provide templates for running Llama Stack inference on your iOS / Android device:
- **Do you want to run Llama Stack inference on your iOS / Android device?** Lastly, we also provide templates for running Llama Stack inference on your iOS / Android device:
- [iOS SDK](ondevice_distro/ios_sdk)
- [Android](ondevice_distro/android_sdk)

View file

@ -25,7 +25,9 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
### Environment Variables
The following environment variables can be configured:

View file

@ -1,6 +1,6 @@
# Quick Start
In this guide, we'll walk through how you can use the Llama Stack (server and client SDK ) to test a simple RAG agent.
In this guide, we'll walk through how you can use the Llama Stack (server and client SDK) to test a simple RAG agent.
A Llama Stack agent is a simple integrated system that can perform tasks by combining a Llama model for reasoning with tools (e.g., RAG, web search, code execution, etc.) for taking actions.