diff --git a/.coveragerc b/.coveragerc index e16c2e461..d4925275f 100644 --- a/.coveragerc +++ b/.coveragerc @@ -4,3 +4,9 @@ omit = */llama_stack/providers/* */llama_stack/templates/* .venv/* + */llama_stack/cli/scripts/* + */llama_stack/ui/* + */llama_stack/distribution/ui/* + */llama_stack/strong_typing/* + */llama_stack/env.py + */__init__.py diff --git a/.github/workflows/coverage-badge.yml b/.github/workflows/coverage-badge.yml new file mode 100644 index 000000000..6b2f133dd --- /dev/null +++ b/.github/workflows/coverage-badge.yml @@ -0,0 +1,57 @@ +name: Coverage Badge + +on: + push: + branches: [ main ] + paths: + - 'llama_stack/**' + - 'tests/unit/**' + - 'uv.lock' + - 'pyproject.toml' + - 'requirements.txt' + - '.github/workflows/unit-tests.yml' + - '.github/workflows/coverage-badge.yml' # This workflow + workflow_dispatch: + +jobs: + unit-tests: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - name: Install dependencies + uses: ./.github/actions/setup-runner + + - name: Run unit tests + run: | + ./scripts/unit-tests.sh + + - name: Coverage Badge + uses: tj-actions/coverage-badge-py@1788babcb24544eb5bbb6e0d374df5d1e54e670f # v2.0.4 + + - name: Verify Changed files + uses: tj-actions/verify-changed-files@a1c6acee9df209257a246f2cc6ae8cb6581c1edf # v20.0.4 + id: verify-changed-files + with: + files: coverage.svg + + - name: Commit files + if: steps.verify-changed-files.outputs.files_changed == 'true' + run: | + git config --local user.email "github-actions[bot]@users.noreply.github.com" + git config --local user.name "github-actions[bot]" + git add coverage.svg + git commit -m "Updated coverage.svg" + + - name: Create Pull Request + if: steps.verify-changed-files.outputs.files_changed == 'true' + uses: peter-evans/create-pull-request@271a8d0340265f705b14b6d32b9829c1cb33d45e # v7.0.8 + with: + token: ${{ secrets.GITHUB_TOKEN }} + title: "ci: [Automatic] Coverage Badge Update" + body: | + This PR updates the coverage badge based on the latest coverage report. + + Automatically generated by the [workflow coverage-badge.yaml](.github/workflows/coverage-badge.yaml) + delete-branch: true diff --git a/.github/workflows/integration-tests.yml b/.github/workflows/integration-tests.yml index a5883daf7..0b6c1be3b 100644 --- a/.github/workflows/integration-tests.yml +++ b/.github/workflows/integration-tests.yml @@ -7,7 +7,7 @@ on: branches: [ main ] paths: - 'llama_stack/**' - - 'tests/integration/**' + - 'tests/**' - 'uv.lock' - 'pyproject.toml' - 'requirements.txt' diff --git a/.github/workflows/unit-tests.yml b/.github/workflows/unit-tests.yml index e29045e52..41034b45f 100644 --- a/.github/workflows/unit-tests.yml +++ b/.github/workflows/unit-tests.yml @@ -36,7 +36,7 @@ jobs: - name: Run unit tests run: | - PYTHON_VERSION=${{ matrix.python }} ./scripts/unit-tests.sh --cov=llama_stack --junitxml=pytest-report-${{ matrix.python }}.xml --cov-report=html:htmlcov-${{ matrix.python }} + PYTHON_VERSION=${{ matrix.python }} ./scripts/unit-tests.sh --junitxml=pytest-report-${{ matrix.python }}.xml - name: Upload test results if: always() diff --git a/README.md b/README.md index 9148ce05d..7f0fed345 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,7 @@ [![Discord](https://img.shields.io/discord/1257833999603335178?color=6A7EC2&logo=discord&logoColor=ffffff)](https://discord.gg/llama-stack) [![Unit Tests](https://github.com/meta-llama/llama-stack/actions/workflows/unit-tests.yml/badge.svg?branch=main)](https://github.com/meta-llama/llama-stack/actions/workflows/unit-tests.yml?query=branch%3Amain) [![Integration Tests](https://github.com/meta-llama/llama-stack/actions/workflows/integration-tests.yml/badge.svg?branch=main)](https://github.com/meta-llama/llama-stack/actions/workflows/integration-tests.yml?query=branch%3Amain) +![coverage badge](./coverage.svg) [**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Colab Notebook**](./docs/getting_started.ipynb) | [**Discord**](https://discord.gg/llama-stack) diff --git a/coverage.svg b/coverage.svg new file mode 100644 index 000000000..636889bb0 --- /dev/null +++ b/coverage.svg @@ -0,0 +1,21 @@ + + + + + + + + + + + + + + + + coverage + coverage + 44% + 44% + + diff --git a/docs/source/distributions/self_hosted_distro/starter.md b/docs/source/distributions/self_hosted_distro/starter.md index 753746d84..56cdd5e73 100644 --- a/docs/source/distributions/self_hosted_distro/starter.md +++ b/docs/source/distributions/self_hosted_distro/starter.md @@ -167,7 +167,7 @@ When using the `:` pattern (like `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`), ## Running the Distribution -You can run the starter distribution via Docker or Conda. +You can run the starter distribution via Docker, Conda, or venv. ### Via Docker @@ -186,17 +186,12 @@ docker run \ --port $LLAMA_STACK_PORT ``` -### Via Conda +### Via Conda or venv -Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. +Ensure you have configured the starter distribution using the environment variables explained above. ```bash -llama stack build --template starter --image-type conda -llama stack run distributions/starter/run.yaml \ - --port 8321 \ - --env OPENAI_API_KEY=your_openai_key \ - --env FIREWORKS_API_KEY=your_fireworks_key \ - --env TOGETHER_API_KEY=your_together_key +uv run --with llama-stack llama stack build --template starter --image-type --run ``` ## Example Usage diff --git a/docs/source/getting_started/quickstart.md b/docs/source/getting_started/quickstart.md index 881ddd29b..59791643d 100644 --- a/docs/source/getting_started/quickstart.md +++ b/docs/source/getting_started/quickstart.md @@ -19,7 +19,7 @@ ollama run llama3.2:3b --keepalive 60m #### Step 2: Run the Llama Stack server We will use `uv` to run the Llama Stack server. ```bash -INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template starter --image-type venv --run +ENABLE_OLLAMA=ollama OLLAMA_INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template starter --image-type venv --run ``` #### Step 3: Run the demo Now open up a new terminal and copy the following script into a file named `demo_script.py`. @@ -111,6 +111,12 @@ Ultimately, great work is about making a meaningful contribution and leaving a l ``` Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳 +```{admonition} HuggingFace access +:class: tip + +If you are getting a **401 Client Error** from HuggingFace for the **all-MiniLM-L6-v2** model, try setting **HF_TOKEN** to a valid HuggingFace token in your environment +``` + ### Next Steps Now you're ready to dive deeper into Llama Stack! diff --git a/llama_stack/models/llama/llama3/chat_format.py b/llama_stack/models/llama/llama3/chat_format.py index 7bb05d8db..0a973cf0c 100644 --- a/llama_stack/models/llama/llama3/chat_format.py +++ b/llama_stack/models/llama/llama3/chat_format.py @@ -8,6 +8,7 @@ import io import json import uuid from dataclasses import dataclass +from typing import Any from PIL import Image as PIL_Image @@ -184,16 +185,26 @@ class ChatFormat: content = content[: -len("<|eom_id|>")] stop_reason = StopReason.end_of_message - tool_name = None - tool_arguments = {} + tool_name: str | BuiltinTool | None = None + tool_arguments: dict[str, Any] = {} custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content) if custom_tool_info is not None: - tool_name, tool_arguments = custom_tool_info + # Type guard: ensure custom_tool_info is a tuple of correct types + if isinstance(custom_tool_info, tuple) and len(custom_tool_info) == 2: + extracted_tool_name, extracted_tool_arguments = custom_tool_info + # Handle both dict and str return types from the function + if isinstance(extracted_tool_arguments, dict): + tool_name, tool_arguments = extracted_tool_name, extracted_tool_arguments + else: + # If it's a string, treat it as a query parameter + tool_name, tool_arguments = extracted_tool_name, {"query": extracted_tool_arguments} + else: + tool_name, tool_arguments = None, {} # Sometimes when agent has custom tools alongside builin tools # Agent responds for builtin tool calls in the format of the custom tools # This code tries to handle that case - if tool_name in BuiltinTool.__members__: + if tool_name is not None and tool_name in BuiltinTool.__members__: tool_name = BuiltinTool[tool_name] if isinstance(tool_arguments, dict): tool_arguments = { diff --git a/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py b/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py index 97e96b929..7ade75032 100644 --- a/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +++ b/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py @@ -98,7 +98,7 @@ class ProcessingMessageWrapper(BaseModel): def mp_rank_0() -> bool: - return get_model_parallel_rank() == 0 + return bool(get_model_parallel_rank() == 0) def encode_msg(msg: ProcessingMessage) -> bytes: @@ -125,7 +125,7 @@ def retrieve_requests(reply_socket_url: str): reply_socket.send_multipart([client_id, encode_msg(obj)]) while True: - tasks = [None] + tasks: list[ProcessingMessage | None] = [None] if mp_rank_0(): client_id, maybe_task_json = maybe_get_work(reply_socket) if maybe_task_json is not None: @@ -152,7 +152,7 @@ def retrieve_requests(reply_socket_url: str): break for obj in out: - updates = [None] + updates: list[ProcessingMessage | None] = [None] if mp_rank_0(): _, update_json = maybe_get_work(reply_socket) update = maybe_parse_message(update_json) diff --git a/pyproject.toml b/pyproject.toml index 72f3a323f..15e2e10b4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -91,6 +91,7 @@ unit = [ "pymilvus>=2.5.12", "litellm", "together", + "coverage", ] # These are the core dependencies required for running integration tests. They are shared across all # providers. If a provider requires additional dependencies, please add them to your environment @@ -242,7 +243,6 @@ exclude = [ "^llama_stack/distribution/store/registry\\.py$", "^llama_stack/distribution/utils/exec\\.py$", "^llama_stack/distribution/utils/prompt_for_config\\.py$", - "^llama_stack/models/llama/llama3/chat_format\\.py$", "^llama_stack/models/llama/llama3/interface\\.py$", "^llama_stack/models/llama/llama3/tokenizer\\.py$", "^llama_stack/models/llama/llama3/tool_utils\\.py$", @@ -255,7 +255,6 @@ exclude = [ "^llama_stack/models/llama/llama3/generation\\.py$", "^llama_stack/models/llama/llama3/multimodal/model\\.py$", "^llama_stack/models/llama/llama4/", - "^llama_stack/providers/inline/inference/meta_reference/parallel_utils\\.py$", "^llama_stack/providers/inline/inference/meta_reference/quantization/fp8_impls\\.py$", "^llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers\\.py$", "^llama_stack/providers/inline/inference/vllm/", diff --git a/scripts/unit-tests.sh b/scripts/unit-tests.sh index 68d6458fc..458cd383d 100755 --- a/scripts/unit-tests.sh +++ b/scripts/unit-tests.sh @@ -16,4 +16,9 @@ if [ $FOUND_PYTHON -ne 0 ]; then uv python install "$PYTHON_VERSION" fi -uv run --python "$PYTHON_VERSION" --with-editable . --group unit pytest -s -v tests/unit/ $@ +# Run unit tests with coverage +uv run --python "$PYTHON_VERSION" --with-editable . --group unit \ + coverage run --source=llama_stack -m pytest -s -v tests/unit/ "$@" + +# Generate HTML coverage report +uv run --python "$PYTHON_VERSION" coverage html -d htmlcov-$PYTHON_VERSION diff --git a/tests/integration/post_training/test_post_training.py b/tests/integration/post_training/test_post_training.py index bb4639d17..3d56b322f 100644 --- a/tests/integration/post_training/test_post_training.py +++ b/tests/integration/post_training/test_post_training.py @@ -123,14 +123,14 @@ class TestPostTraining: logger.info(f"Job artifacts: {artifacts}") # TODO: Fix these tests to properly represent the Jobs API in training - # @pytest.mark.asyncio + # # async def test_get_training_jobs(self, post_training_stack): # post_training_impl = post_training_stack # jobs_list = await post_training_impl.get_training_jobs() # assert isinstance(jobs_list, list) # assert jobs_list[0].job_uuid == "1234" - # @pytest.mark.asyncio + # # async def test_get_training_job_status(self, post_training_stack): # post_training_impl = post_training_stack # job_status = await post_training_impl.get_training_job_status("1234") @@ -139,7 +139,7 @@ class TestPostTraining: # assert job_status.status == JobStatus.completed # assert isinstance(job_status.checkpoints[0], Checkpoint) - # @pytest.mark.asyncio + # # async def test_get_training_job_artifacts(self, post_training_stack): # post_training_impl = post_training_stack # job_artifacts = await post_training_impl.get_training_job_artifacts("1234") diff --git a/tests/unit/README.md b/tests/unit/README.md index c95c3a0e7..06e22fb8c 100644 --- a/tests/unit/README.md +++ b/tests/unit/README.md @@ -1,9 +1,17 @@ # Llama Stack Unit Tests +## Unit Tests + +Unit tests verify individual components and functions in isolation. They are fast, reliable, and don't require external services. + +### Prerequisites + +1. **Python Environment**: Ensure you have Python 3.12+ installed +2. **uv Package Manager**: Install `uv` if not already installed + You can run the unit tests by running: ```bash -source .venv/bin/activate ./scripts/unit-tests.sh [PYTEST_ARGS] ``` @@ -19,3 +27,21 @@ If you'd like to run for a non-default version of Python (currently 3.12), pass source .venv/bin/activate PYTHON_VERSION=3.13 ./scripts/unit-tests.sh ``` + +### Test Configuration + +- **Test Discovery**: Tests are automatically discovered in the `tests/unit/` directory +- **Async Support**: Tests use `--asyncio-mode=auto` for automatic async test handling +- **Coverage**: Tests generate coverage reports in `htmlcov/` directory +- **Python Version**: Defaults to Python 3.12, but can be overridden with `PYTHON_VERSION` environment variable + +### Coverage Reports + +After running tests, you can view coverage reports: + +```bash +# Open HTML coverage report in browser +open htmlcov/index.html # macOS +xdg-open htmlcov/index.html # Linux +start htmlcov/index.html # Windows +``` diff --git a/tests/unit/models/test_prompt_adapter.py b/tests/unit/models/test_prompt_adapter.py index 577496cec..0362eb5dd 100644 --- a/tests/unit/models/test_prompt_adapter.py +++ b/tests/unit/models/test_prompt_adapter.py @@ -4,7 +4,6 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -import pytest from llama_stack.apis.inference import ( ChatCompletionRequest, @@ -32,7 +31,6 @@ MODEL = "Llama3.1-8B-Instruct" MODEL3_2 = "Llama3.2-3B-Instruct" -@pytest.mark.asyncio async def test_system_default(): content = "Hello !" request = ChatCompletionRequest( @@ -47,7 +45,6 @@ async def test_system_default(): assert "Cutting Knowledge Date: December 2023" in interleaved_content_as_str(messages[0].content) -@pytest.mark.asyncio async def test_system_builtin_only(): content = "Hello !" request = ChatCompletionRequest( @@ -67,7 +64,6 @@ async def test_system_builtin_only(): assert "Tools: brave_search" in interleaved_content_as_str(messages[0].content) -@pytest.mark.asyncio async def test_system_custom_only(): content = "Hello !" request = ChatCompletionRequest( @@ -98,7 +94,6 @@ async def test_system_custom_only(): assert messages[-1].content == content -@pytest.mark.asyncio async def test_system_custom_and_builtin(): content = "Hello !" request = ChatCompletionRequest( @@ -132,7 +127,6 @@ async def test_system_custom_and_builtin(): assert messages[-1].content == content -@pytest.mark.asyncio async def test_completion_message_encoding(): request = ChatCompletionRequest( model=MODEL3_2, @@ -174,7 +168,6 @@ async def test_completion_message_encoding(): assert '{"type": "function", "name": "custom1", "parameters": {"param1": "value1"}}' in prompt -@pytest.mark.asyncio async def test_user_provided_system_message(): content = "Hello !" system_prompt = "You are a pirate" @@ -195,7 +188,6 @@ async def test_user_provided_system_message(): assert messages[-1].content == content -@pytest.mark.asyncio async def test_replace_system_message_behavior_builtin_tools(): content = "Hello !" system_prompt = "You are a pirate" @@ -221,7 +213,6 @@ async def test_replace_system_message_behavior_builtin_tools(): assert messages[-1].content == content -@pytest.mark.asyncio async def test_replace_system_message_behavior_custom_tools(): content = "Hello !" system_prompt = "You are a pirate" @@ -259,7 +250,6 @@ async def test_replace_system_message_behavior_custom_tools(): assert messages[-1].content == content -@pytest.mark.asyncio async def test_replace_system_message_behavior_custom_tools_with_template(): content = "Hello !" system_prompt = "You are a pirate {{ function_description }}" diff --git a/tests/unit/models/test_system_prompts.py b/tests/unit/models/test_system_prompts.py index 1f4ccc7e3..f5580f4c5 100644 --- a/tests/unit/models/test_system_prompts.py +++ b/tests/unit/models/test_system_prompts.py @@ -12,7 +12,6 @@ # the top-level of this source tree. import textwrap -import unittest from datetime import datetime from llama_stack.models.llama.llama3.prompt_templates import ( @@ -24,59 +23,61 @@ from llama_stack.models.llama.llama3.prompt_templates import ( ) -class PromptTemplateTests(unittest.TestCase): - def check_generator_output(self, generator): - for example in generator.data_examples(): - pt = generator.gen(example) - text = pt.render() - # print(text) # debugging - if not example: - continue - for tool in example: - assert tool.tool_name in text - - def test_system_default(self): - generator = SystemDefaultGenerator() - today = datetime.now().strftime("%d %B %Y") - expected_text = f"Cutting Knowledge Date: December 2023\nToday Date: {today}" - assert expected_text.strip("\n") == generator.gen(generator.data_examples()[0]).render() - - def test_system_builtin_only(self): - generator = BuiltinToolGenerator() - expected_text = textwrap.dedent( - """ - Environment: ipython - Tools: brave_search, wolfram_alpha - """ - ) - assert expected_text.strip("\n") == generator.gen(generator.data_examples()[0]).render() - - def test_system_custom_only(self): - self.maxDiff = None - generator = JsonCustomToolGenerator() - self.check_generator_output(generator) - - def test_system_custom_function_tag(self): - self.maxDiff = None - generator = FunctionTagCustomToolGenerator() - self.check_generator_output(generator) - - def test_llama_3_2_system_zero_shot(self): - generator = PythonListCustomToolGenerator() - self.check_generator_output(generator) - - def test_llama_3_2_provided_system_prompt(self): - generator = PythonListCustomToolGenerator() - user_system_prompt = textwrap.dedent( - """ - Overriding message. - - {{ function_description }} - """ - ) - example = generator.data_examples()[0] - - pt = generator.gen(example, user_system_prompt) +def check_generator_output(generator): + for example in generator.data_examples(): + pt = generator.gen(example) text = pt.render() - assert "Overriding message." in text - assert '"name": "get_weather"' in text + if not example: + continue + for tool in example: + assert tool.tool_name in text + + +def test_system_default(): + generator = SystemDefaultGenerator() + today = datetime.now().strftime("%d %B %Y") + expected_text = f"Cutting Knowledge Date: December 2023\nToday Date: {today}" + assert expected_text.strip("\n") == generator.gen(generator.data_examples()[0]).render() + + +def test_system_builtin_only(): + generator = BuiltinToolGenerator() + expected_text = textwrap.dedent( + """ + Environment: ipython + Tools: brave_search, wolfram_alpha + """ + ) + assert expected_text.strip("\n") == generator.gen(generator.data_examples()[0]).render() + + +def test_system_custom_only(): + generator = JsonCustomToolGenerator() + check_generator_output(generator) + + +def test_system_custom_function_tag(): + generator = FunctionTagCustomToolGenerator() + check_generator_output(generator) + + +def test_llama_3_2_system_zero_shot(): + generator = PythonListCustomToolGenerator() + check_generator_output(generator) + + +def test_llama_3_2_provided_system_prompt(): + generator = PythonListCustomToolGenerator() + user_system_prompt = textwrap.dedent( + """ + Overriding message. + + {{ function_description }} + """ + ) + example = generator.data_examples()[0] + + pt = generator.gen(example, user_system_prompt) + text = pt.render() + assert "Overriding message." in text + assert '"name": "get_weather"' in text diff --git a/tests/unit/providers/nvidia/test_datastore.py b/tests/unit/providers/nvidia/test_datastore.py index a17e51a9c..b59636f7b 100644 --- a/tests/unit/providers/nvidia/test_datastore.py +++ b/tests/unit/providers/nvidia/test_datastore.py @@ -5,103 +5,110 @@ # the root directory of this source tree. import os -import unittest from unittest.mock import patch import pytest from llama_stack.apis.datasets import Dataset, DatasetPurpose, URIDataSource +from llama_stack.apis.resource import ResourceType from llama_stack.providers.remote.datasetio.nvidia.config import NvidiaDatasetIOConfig from llama_stack.providers.remote.datasetio.nvidia.datasetio import NvidiaDatasetIOAdapter -class TestNvidiaDatastore(unittest.TestCase): - def setUp(self): - os.environ["NVIDIA_DATASETS_URL"] = "http://nemo.test/datasets" +@pytest.fixture +def nvidia_adapter(): + """Fixture to set up NvidiaDatasetIOAdapter with mocked requests.""" + os.environ["NVIDIA_DATASETS_URL"] = "http://nemo.test/datasets" - config = NvidiaDatasetIOConfig( - datasets_url=os.environ["NVIDIA_DATASETS_URL"], dataset_namespace="default", project_id="default" - ) - self.adapter = NvidiaDatasetIOAdapter(config) - self.make_request_patcher = patch( - "llama_stack.providers.remote.datasetio.nvidia.datasetio.NvidiaDatasetIOAdapter._make_request" - ) - self.mock_make_request = self.make_request_patcher.start() + config = NvidiaDatasetIOConfig( + datasets_url=os.environ["NVIDIA_DATASETS_URL"], dataset_namespace="default", project_id="default" + ) + adapter = NvidiaDatasetIOAdapter(config) - def tearDown(self): - self.make_request_patcher.stop() + with patch( + "llama_stack.providers.remote.datasetio.nvidia.datasetio.NvidiaDatasetIOAdapter._make_request" + ) as mock_make_request: + yield adapter, mock_make_request - @pytest.fixture(autouse=True) - def inject_fixtures(self, run_async): - self.run_async = run_async - def _assert_request(self, mock_call, expected_method, expected_path, expected_json=None): - """Helper method to verify request details in mock calls.""" - call_args = mock_call.call_args +def _assert_request(mock_call, expected_method, expected_path, expected_json=None): + """Helper function to verify request details in mock calls.""" + call_args = mock_call.call_args - assert call_args[0][0] == expected_method - assert call_args[0][1] == expected_path + assert call_args[0][0] == expected_method + assert call_args[0][1] == expected_path - if expected_json: - for key, value in expected_json.items(): - assert call_args[1]["json"][key] == value + if expected_json: + for key, value in expected_json.items(): + assert call_args[1]["json"][key] == value - def test_register_dataset(self): - self.mock_make_request.return_value = { - "id": "dataset-123456", + +def test_register_dataset(nvidia_adapter, run_async): + adapter, mock_make_request = nvidia_adapter + mock_make_request.return_value = { + "id": "dataset-123456", + "name": "test-dataset", + "namespace": "default", + } + + dataset_def = Dataset( + identifier="test-dataset", + type=ResourceType.dataset, + provider_resource_id="", + provider_id="", + purpose=DatasetPurpose.post_training_messages, + source=URIDataSource(uri="https://example.com/data.jsonl"), + metadata={"provider_id": "nvidia", "format": "jsonl", "description": "Test dataset description"}, + ) + + run_async(adapter.register_dataset(dataset_def)) + + mock_make_request.assert_called_once() + _assert_request( + mock_make_request, + "POST", + "/v1/datasets", + expected_json={ "name": "test-dataset", "namespace": "default", - } + "files_url": "https://example.com/data.jsonl", + "project": "default", + "format": "jsonl", + "description": "Test dataset description", + }, + ) - dataset_def = Dataset( - identifier="test-dataset", - type="dataset", - provider_resource_id="", - provider_id="", - purpose=DatasetPurpose.post_training_messages, - source=URIDataSource(uri="https://example.com/data.jsonl"), - metadata={"provider_id": "nvidia", "format": "jsonl", "description": "Test dataset description"}, - ) - self.run_async(self.adapter.register_dataset(dataset_def)) +def test_unregister_dataset(nvidia_adapter, run_async): + adapter, mock_make_request = nvidia_adapter + mock_make_request.return_value = { + "message": "Resource deleted successfully.", + "id": "dataset-81RSQp7FKX3rdBtKvF9Skn", + "deleted_at": None, + } + dataset_id = "test-dataset" - self.mock_make_request.assert_called_once() - self._assert_request( - self.mock_make_request, - "POST", - "/v1/datasets", - expected_json={ - "name": "test-dataset", - "namespace": "default", - "files_url": "https://example.com/data.jsonl", - "project": "default", - "format": "jsonl", - "description": "Test dataset description", - }, - ) + run_async(adapter.unregister_dataset(dataset_id)) - def test_unregister_dataset(self): - self.mock_make_request.return_value = { - "message": "Resource deleted successfully.", - "id": "dataset-81RSQp7FKX3rdBtKvF9Skn", - "deleted_at": None, - } - dataset_id = "test-dataset" + mock_make_request.assert_called_once() + _assert_request(mock_make_request, "DELETE", "/v1/datasets/default/test-dataset") - self.run_async(self.adapter.unregister_dataset(dataset_id)) - self.mock_make_request.assert_called_once() - self._assert_request(self.mock_make_request, "DELETE", "/v1/datasets/default/test-dataset") +def test_register_dataset_with_custom_namespace_project(run_async): + """Test with custom namespace and project configuration.""" + os.environ["NVIDIA_DATASETS_URL"] = "http://nemo.test/datasets" - def test_register_dataset_with_custom_namespace_project(self): - custom_config = NvidiaDatasetIOConfig( - datasets_url=os.environ["NVIDIA_DATASETS_URL"], - dataset_namespace="custom-namespace", - project_id="custom-project", - ) - custom_adapter = NvidiaDatasetIOAdapter(custom_config) + custom_config = NvidiaDatasetIOConfig( + datasets_url=os.environ["NVIDIA_DATASETS_URL"], + dataset_namespace="custom-namespace", + project_id="custom-project", + ) + custom_adapter = NvidiaDatasetIOAdapter(custom_config) - self.mock_make_request.return_value = { + with patch( + "llama_stack.providers.remote.datasetio.nvidia.datasetio.NvidiaDatasetIOAdapter._make_request" + ) as mock_make_request: + mock_make_request.return_value = { "id": "dataset-123456", "name": "test-dataset", "namespace": "custom-namespace", @@ -109,7 +116,7 @@ class TestNvidiaDatastore(unittest.TestCase): dataset_def = Dataset( identifier="test-dataset", - type="dataset", + type=ResourceType.dataset, provider_resource_id="", provider_id="", purpose=DatasetPurpose.post_training_messages, @@ -117,11 +124,11 @@ class TestNvidiaDatastore(unittest.TestCase): metadata={"format": "jsonl"}, ) - self.run_async(custom_adapter.register_dataset(dataset_def)) + run_async(custom_adapter.register_dataset(dataset_def)) - self.mock_make_request.assert_called_once() - self._assert_request( - self.mock_make_request, + mock_make_request.assert_called_once() + _assert_request( + mock_make_request, "POST", "/v1/datasets", expected_json={ @@ -132,7 +139,3 @@ class TestNvidiaDatastore(unittest.TestCase): "format": "jsonl", }, ) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/unit/providers/nvidia/test_parameters.py b/tests/unit/providers/nvidia/test_parameters.py index cc33f7609..7e4323bd7 100644 --- a/tests/unit/providers/nvidia/test_parameters.py +++ b/tests/unit/providers/nvidia/test_parameters.py @@ -5,7 +5,6 @@ # the root directory of this source tree. import os -import unittest import warnings from unittest.mock import patch @@ -27,14 +26,13 @@ from llama_stack.providers.remote.post_training.nvidia.post_training import ( ) -class TestNvidiaParameters(unittest.TestCase): - def setUp(self): - os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" +class TestNvidiaParameters: + @pytest.fixture(autouse=True) + def setup_and_teardown(self): + """Setup and teardown for each test method.""" os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" - config = NvidiaPostTrainingConfig( - base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None - ) + config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None) self.adapter = NvidiaPostTrainingAdapter(config) self.make_request_patcher = patch( @@ -48,7 +46,8 @@ class TestNvidiaParameters(unittest.TestCase): "updated_at": "2025-03-04T13:07:47.543605", } - def tearDown(self): + yield + self.make_request_patcher.stop() def _assert_request_params(self, expected_json): @@ -166,8 +165,8 @@ class TestNvidiaParameters(unittest.TestCase): self.run_async( self.adapter.supervised_fine_tune( - job_uuid=required_job_uuid, # Required parameter - model=required_model, # Required parameter + job_uuid=required_job_uuid, + model=required_model, checkpoint_dir="", algorithm_config=algorithm_config, training_config=convert_pydantic_to_json_value(training_config), @@ -198,7 +197,6 @@ class TestNvidiaParameters(unittest.TestCase): data_config = DataConfig( dataset_id="test-dataset", batch_size=8, - # Unsupported parameters shuffle=True, data_format=DatasetFormat.instruct, validation_dataset_id="val-dataset", @@ -207,20 +205,16 @@ class TestNvidiaParameters(unittest.TestCase): optimizer_config = OptimizerConfig( lr=0.0001, weight_decay=0.01, - # Unsupported parameters optimizer_type=OptimizerType.adam, num_warmup_steps=100, ) - efficiency_config = EfficiencyConfig( - enable_activation_checkpointing=True # Unsupported parameter - ) + efficiency_config = EfficiencyConfig(enable_activation_checkpointing=True) training_config = TrainingConfig( n_epochs=1, data_config=data_config, optimizer_config=optimizer_config, - # Unsupported parameters efficiency_config=efficiency_config, max_steps_per_epoch=1000, gradient_accumulation_steps=4, @@ -228,7 +222,6 @@ class TestNvidiaParameters(unittest.TestCase): dtype="bf16", ) - # Capture warnings with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @@ -236,7 +229,7 @@ class TestNvidiaParameters(unittest.TestCase): self.adapter.supervised_fine_tune( job_uuid="test-job", model="meta-llama/Llama-3.1-8B-Instruct", - checkpoint_dir="test-dir", # Unsupported parameter + checkpoint_dir="test-dir", algorithm_config=LoraFinetuningConfig( type="LoRA", apply_lora_to_mlp=True, @@ -246,8 +239,8 @@ class TestNvidiaParameters(unittest.TestCase): lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"], ), training_config=convert_pydantic_to_json_value(training_config), - logger_config={"test": "value"}, # Unsupported parameter - hyperparam_search_config={"test": "value"}, # Unsupported parameter + logger_config={"test": "value"}, + hyperparam_search_config={"test": "value"}, ) ) @@ -265,7 +258,6 @@ class TestNvidiaParameters(unittest.TestCase): "gradient_accumulation_steps", "max_validation_steps", "dtype", - # required unsupported parameters "rank", "apply_lora_to_output", "lora_attn_modules", @@ -273,7 +265,3 @@ class TestNvidiaParameters(unittest.TestCase): ] for field in fields: assert any(field in text for text in warning_texts) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/unit/providers/nvidia/test_supervised_fine_tuning.py b/tests/unit/providers/nvidia/test_supervised_fine_tuning.py index bbbb60a30..bc474f3bc 100644 --- a/tests/unit/providers/nvidia/test_supervised_fine_tuning.py +++ b/tests/unit/providers/nvidia/test_supervised_fine_tuning.py @@ -5,13 +5,11 @@ # the root directory of this source tree. import os -import unittest import warnings -from unittest.mock import AsyncMock, patch +from unittest.mock import patch import pytest -from llama_stack.apis.models import Model, ModelType from llama_stack.apis.post_training.post_training import ( DataConfig, DatasetFormat, @@ -22,7 +20,6 @@ from llama_stack.apis.post_training.post_training import ( TrainingConfig, ) from llama_stack.distribution.library_client import convert_pydantic_to_json_value -from llama_stack.providers.remote.inference.nvidia.nvidia import NVIDIAConfig, NVIDIAInferenceAdapter from llama_stack.providers.remote.post_training.nvidia.post_training import ( ListNvidiaPostTrainingJobs, NvidiaPostTrainingAdapter, @@ -32,336 +29,297 @@ from llama_stack.providers.remote.post_training.nvidia.post_training import ( ) -class TestNvidiaPostTraining(unittest.TestCase): - def setUp(self): - os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference - os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer +@pytest.fixture +def nvidia_post_training_adapter(): + """Fixture to create and configure the NVIDIA post training adapter.""" + os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer - config = NvidiaPostTrainingConfig( - base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None + config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None) + adapter = NvidiaPostTrainingAdapter(config) + + with patch.object(adapter, "_make_request") as mock_make_request: + yield adapter, mock_make_request + + +def _assert_request(mock_call, expected_method, expected_path, expected_params=None, expected_json=None): + """Helper method to verify request details in mock calls.""" + call_args = mock_call.call_args + + if expected_method and expected_path: + if isinstance(call_args[0], tuple) and len(call_args[0]) == 2: + assert call_args[0] == (expected_method, expected_path) + else: + assert call_args[1]["method"] == expected_method + assert call_args[1]["path"] == expected_path + + if expected_params: + assert call_args[1]["params"] == expected_params + + if expected_json: + for key, value in expected_json.items(): + assert call_args[1]["json"][key] == value + + +async def test_supervised_fine_tune(nvidia_post_training_adapter): + """Test the supervised fine-tuning API call.""" + adapter, mock_make_request = nvidia_post_training_adapter + mock_make_request.return_value = { + "id": "cust-JGTaMbJMdqjJU8WbQdN9Q2", + "created_at": "2024-12-09T04:06:28.542884", + "updated_at": "2024-12-09T04:06:28.542884", + "config": { + "schema_version": "1.0", + "id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1", + "created_at": "2024-12-09T04:06:28.542657", + "updated_at": "2024-12-09T04:06:28.569837", + "custom_fields": {}, + "name": "meta-llama/Llama-3.1-8B-Instruct", + "base_model": "meta-llama/Llama-3.1-8B-Instruct", + "model_path": "llama-3_1-8b-instruct", + "training_types": [], + "finetuning_types": ["lora"], + "precision": "bf16", + "num_gpus": 4, + "num_nodes": 1, + "micro_batch_size": 1, + "tensor_parallel_size": 1, + "max_seq_length": 4096, + }, + "dataset": { + "schema_version": "1.0", + "id": "dataset-XU4pvGzr5tvawnbVxeJMTb", + "created_at": "2024-12-09T04:06:28.542657", + "updated_at": "2024-12-09T04:06:28.542660", + "custom_fields": {}, + "name": "sample-basic-test", + "version_id": "main", + "version_tags": [], + }, + "hyperparameters": { + "finetuning_type": "lora", + "training_type": "sft", + "batch_size": 16, + "epochs": 2, + "learning_rate": 0.0001, + "lora": {"alpha": 16}, + }, + "output_model": "default/job-1234", + "status": "created", + "project": "default", + "custom_fields": {}, + "ownership": {"created_by": "me", "access_policies": {}}, + } + + algorithm_config = LoraFinetuningConfig( + type="LoRA", + apply_lora_to_mlp=True, + apply_lora_to_output=True, + alpha=16, + rank=16, + lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"], + ) + + data_config = DataConfig( + dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct + ) + + optimizer_config = OptimizerConfig( + optimizer_type=OptimizerType.adam, + lr=0.0001, + weight_decay=0.01, + num_warmup_steps=100, + ) + + training_config = TrainingConfig( + n_epochs=2, + data_config=data_config, + optimizer_config=optimizer_config, + ) + + with warnings.catch_warnings(record=True): + warnings.simplefilter("always") + training_job = await adapter.supervised_fine_tune( + job_uuid="1234", + model="meta/llama-3.2-1b-instruct@v1.0.0+L40", + checkpoint_dir="", + algorithm_config=algorithm_config, + training_config=convert_pydantic_to_json_value(training_config), + logger_config={}, + hyperparam_search_config={}, ) - self.adapter = NvidiaPostTrainingAdapter(config) - self.make_request_patcher = patch( - "llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request" - ) - self.mock_make_request = self.make_request_patcher.start() - # Mock the inference client - inference_config = NVIDIAConfig(base_url=os.environ["NVIDIA_BASE_URL"], api_key=None) - self.inference_adapter = NVIDIAInferenceAdapter(inference_config) + # check the output is a PostTrainingJob + assert isinstance(training_job, NvidiaPostTrainingJob) + assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2" - self.mock_client = unittest.mock.MagicMock() - self.mock_client.chat.completions.create = unittest.mock.AsyncMock() - self.inference_mock_make_request = self.mock_client.chat.completions.create - self.inference_make_request_patcher = patch( - "llama_stack.providers.remote.inference.nvidia.nvidia.NVIDIAInferenceAdapter._client", - new_callable=unittest.mock.PropertyMock, - return_value=self.mock_client, - ) - self.inference_make_request_patcher.start() - - def tearDown(self): - self.make_request_patcher.stop() - self.inference_make_request_patcher.stop() - - @pytest.fixture(autouse=True) - def inject_fixtures(self, run_async): - self.run_async = run_async - - def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None): - """Helper method to verify request details in mock calls.""" - call_args = mock_call.call_args - - if expected_method and expected_path: - if isinstance(call_args[0], tuple) and len(call_args[0]) == 2: - assert call_args[0] == (expected_method, expected_path) - else: - assert call_args[1]["method"] == expected_method - assert call_args[1]["path"] == expected_path - - if expected_params: - assert call_args[1]["params"] == expected_params - - if expected_json: - for key, value in expected_json.items(): - assert call_args[1]["json"][key] == value - - def test_supervised_fine_tune(self): - """Test the supervised fine-tuning API call.""" - self.mock_make_request.return_value = { - "id": "cust-JGTaMbJMdqjJU8WbQdN9Q2", - "created_at": "2024-12-09T04:06:28.542884", - "updated_at": "2024-12-09T04:06:28.542884", - "config": { - "schema_version": "1.0", - "id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1", - "created_at": "2024-12-09T04:06:28.542657", - "updated_at": "2024-12-09T04:06:28.569837", - "custom_fields": {}, - "name": "meta-llama/Llama-3.1-8B-Instruct", - "base_model": "meta-llama/Llama-3.1-8B-Instruct", - "model_path": "llama-3_1-8b-instruct", - "training_types": [], - "finetuning_types": ["lora"], - "precision": "bf16", - "num_gpus": 4, - "num_nodes": 1, - "micro_batch_size": 1, - "tensor_parallel_size": 1, - "max_seq_length": 4096, - }, - "dataset": { - "schema_version": "1.0", - "id": "dataset-XU4pvGzr5tvawnbVxeJMTb", - "created_at": "2024-12-09T04:06:28.542657", - "updated_at": "2024-12-09T04:06:28.542660", - "custom_fields": {}, - "name": "sample-basic-test", - "version_id": "main", - "version_tags": [], - }, + mock_make_request.assert_called_once() + _assert_request( + mock_make_request, + "POST", + "/v1/customization/jobs", + expected_json={ + "config": "meta/llama-3.2-1b-instruct@v1.0.0+L40", + "dataset": {"name": "sample-basic-test", "namespace": "default"}, "hyperparameters": { - "finetuning_type": "lora", "training_type": "sft", - "batch_size": 16, + "finetuning_type": "lora", "epochs": 2, + "batch_size": 16, "learning_rate": 0.0001, + "weight_decay": 0.01, "lora": {"alpha": 16}, }, - "output_model": "default/job-1234", - "status": "created", - "project": "default", - "custom_fields": {}, - "ownership": {"created_by": "me", "access_policies": {}}, + }, + ) + + +async def test_supervised_fine_tune_with_qat(nvidia_post_training_adapter): + """Test that QAT configuration raises NotImplementedError.""" + adapter, mock_make_request = nvidia_post_training_adapter + + algorithm_config = QATFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1) + data_config = DataConfig( + dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct + ) + optimizer_config = OptimizerConfig( + optimizer_type=OptimizerType.adam, + lr=0.0001, + weight_decay=0.01, + num_warmup_steps=100, + ) + training_config = TrainingConfig( + n_epochs=2, + data_config=data_config, + optimizer_config=optimizer_config, + ) + + # This will raise NotImplementedError since QAT is not supported + with pytest.raises(NotImplementedError): + await adapter.supervised_fine_tune( + job_uuid="1234", + model="meta/llama-3.2-1b-instruct@v1.0.0+L40", + checkpoint_dir="", + algorithm_config=algorithm_config, + training_config=convert_pydantic_to_json_value(training_config), + logger_config={}, + hyperparam_search_config={}, + ) + + +async def test_get_training_job_status(nvidia_post_training_adapter): + """Test getting training job status with different statuses.""" + adapter, mock_make_request = nvidia_post_training_adapter + + customizer_status_to_job_status = [ + ("running", "in_progress"), + ("completed", "completed"), + ("failed", "failed"), + ("cancelled", "cancelled"), + ("pending", "scheduled"), + ("unknown", "scheduled"), + ] + + for customizer_status, expected_status in customizer_status_to_job_status: + mock_make_request.return_value = { + "created_at": "2024-12-09T04:06:28.580220", + "updated_at": "2024-12-09T04:21:19.852832", + "status": customizer_status, + "steps_completed": 1210, + "epochs_completed": 2, + "percentage_done": 100.0, + "best_epoch": 2, + "train_loss": 1.718016266822815, + "val_loss": 1.8661999702453613, } - algorithm_config = LoraFinetuningConfig( - type="LoRA", - apply_lora_to_mlp=True, - apply_lora_to_output=True, - alpha=16, - rank=16, - lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"], - ) - - data_config = DataConfig( - dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct - ) - - optimizer_config = OptimizerConfig( - optimizer_type=OptimizerType.adam, - lr=0.0001, - weight_decay=0.01, - num_warmup_steps=100, - ) - - training_config = TrainingConfig( - n_epochs=2, - data_config=data_config, - optimizer_config=optimizer_config, - ) - - with warnings.catch_warnings(record=True): - warnings.simplefilter("always") - training_job = self.run_async( - self.adapter.supervised_fine_tune( - job_uuid="1234", - model="meta/llama-3.2-1b-instruct@v1.0.0+L40", - checkpoint_dir="", - algorithm_config=algorithm_config, - training_config=convert_pydantic_to_json_value(training_config), - logger_config={}, - hyperparam_search_config={}, - ) - ) - - # check the output is a PostTrainingJob - assert isinstance(training_job, NvidiaPostTrainingJob) - assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2" - - self.mock_make_request.assert_called_once() - self._assert_request( - self.mock_make_request, - "POST", - "/v1/customization/jobs", - expected_json={ - "config": "meta/llama-3.2-1b-instruct@v1.0.0+L40", - "dataset": {"name": "sample-basic-test", "namespace": "default"}, - "hyperparameters": { - "training_type": "sft", - "finetuning_type": "lora", - "epochs": 2, - "batch_size": 16, - "learning_rate": 0.0001, - "weight_decay": 0.01, - "lora": {"alpha": 16}, - }, - }, - ) - - def test_supervised_fine_tune_with_qat(self): - algorithm_config = QATFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1) - data_config = DataConfig( - dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct - ) - optimizer_config = OptimizerConfig( - optimizer_type=OptimizerType.adam, - lr=0.0001, - weight_decay=0.01, - num_warmup_steps=100, - ) - training_config = TrainingConfig( - n_epochs=2, - data_config=data_config, - optimizer_config=optimizer_config, - ) - # This will raise NotImplementedError since QAT is not supported - with self.assertRaises(NotImplementedError): - self.run_async( - self.adapter.supervised_fine_tune( - job_uuid="1234", - model="meta/llama-3.2-1b-instruct@v1.0.0+L40", - checkpoint_dir="", - algorithm_config=algorithm_config, - training_config=convert_pydantic_to_json_value(training_config), - logger_config={}, - hyperparam_search_config={}, - ) - ) - - def test_get_training_job_status(self): - customizer_status_to_job_status = [ - ("running", "in_progress"), - ("completed", "completed"), - ("failed", "failed"), - ("cancelled", "cancelled"), - ("pending", "scheduled"), - ("unknown", "scheduled"), - ] - - for customizer_status, expected_status in customizer_status_to_job_status: - with self.subTest(customizer_status=customizer_status, expected_status=expected_status): - self.mock_make_request.return_value = { - "created_at": "2024-12-09T04:06:28.580220", - "updated_at": "2024-12-09T04:21:19.852832", - "status": customizer_status, - "steps_completed": 1210, - "epochs_completed": 2, - "percentage_done": 100.0, - "best_epoch": 2, - "train_loss": 1.718016266822815, - "val_loss": 1.8661999702453613, - } - - job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" - - status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id)) - - assert isinstance(status, NvidiaPostTrainingJobStatusResponse) - assert status.status.value == expected_status - assert status.steps_completed == 1210 - assert status.epochs_completed == 2 - assert status.percentage_done == 100.0 - assert status.best_epoch == 2 - assert status.train_loss == 1.718016266822815 - assert status.val_loss == 1.8661999702453613 - - self._assert_request( - self.mock_make_request, - "GET", - f"/v1/customization/jobs/{job_id}/status", - expected_params={"job_id": job_id}, - ) - - def test_get_training_jobs(self): job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" - self.mock_make_request.return_value = { - "data": [ - { - "id": job_id, - "created_at": "2024-12-09T04:06:28.542884", - "updated_at": "2024-12-09T04:21:19.852832", - "config": { - "name": "meta-llama/Llama-3.1-8B-Instruct", - "base_model": "meta-llama/Llama-3.1-8B-Instruct", - }, - "dataset": {"name": "default/sample-basic-test"}, - "hyperparameters": { - "finetuning_type": "lora", - "training_type": "sft", - "batch_size": 16, - "epochs": 2, - "learning_rate": 0.0001, - "lora": {"adapter_dim": 16, "adapter_dropout": 0.1}, - }, - "output_model": "default/job-1234", - "status": "completed", - "project": "default", - } - ] - } - jobs = self.run_async(self.adapter.get_training_jobs()) + status = await adapter.get_training_job_status(job_uuid=job_id) - assert isinstance(jobs, ListNvidiaPostTrainingJobs) - assert len(jobs.data) == 1 - job = jobs.data[0] - assert job.job_uuid == job_id - assert job.status.value == "completed" + assert isinstance(status, NvidiaPostTrainingJobStatusResponse) + assert status.status.value == expected_status + # Note: The response object inherits extra fields via ConfigDict(extra="allow") + # So these attributes should be accessible using getattr with defaults + assert getattr(status, "steps_completed", None) == 1210 + assert getattr(status, "epochs_completed", None) == 2 + assert getattr(status, "percentage_done", None) == 100.0 + assert getattr(status, "best_epoch", None) == 2 + assert getattr(status, "train_loss", None) == 1.718016266822815 + assert getattr(status, "val_loss", None) == 1.8661999702453613 - self.mock_make_request.assert_called_once() - self._assert_request( - self.mock_make_request, + _assert_request( + mock_make_request, "GET", - "/v1/customization/jobs", - expected_params={"page": 1, "page_size": 10, "sort": "created_at"}, - ) - - def test_cancel_training_job(self): - self.mock_make_request.return_value = {} # Empty response for successful cancellation - job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" - - result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id)) - - assert result is None - - self.mock_make_request.assert_called_once() - self._assert_request( - self.mock_make_request, - "POST", - f"/v1/customization/jobs/{job_id}/cancel", + f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}, ) - def test_inference_register_model(self): - model_id = "default/job-1234" - model_type = ModelType.llm - model = Model( - identifier=model_id, - provider_id="nvidia", - provider_model_id=model_id, - provider_resource_id=model_id, - model_type=model_type, - ) - - # simulate a NIM where default/job-1234 is an available model - with patch.object(self.inference_adapter, "check_model_availability", new_callable=AsyncMock) as mock_check: - mock_check.return_value = True - result = self.run_async(self.inference_adapter.register_model(model)) - assert result == model - assert len(self.inference_adapter.alias_to_provider_id_map) > 1 - assert self.inference_adapter.get_provider_model_id(model.provider_model_id) == model_id - - with patch.object(self.inference_adapter, "chat_completion") as mock_chat_completion: - self.run_async( - self.inference_adapter.chat_completion( - model_id=model_id, - messages=[{"role": "user", "content": "Hello, model"}], - ) - ) - - mock_chat_completion.assert_called() + mock_make_request.reset_mock() -if __name__ == "__main__": - unittest.main() +async def test_get_training_jobs(nvidia_post_training_adapter): + """Test getting list of training jobs.""" + adapter, mock_make_request = nvidia_post_training_adapter + + job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" + mock_make_request.return_value = { + "data": [ + { + "id": job_id, + "created_at": "2024-12-09T04:06:28.542884", + "updated_at": "2024-12-09T04:21:19.852832", + "config": { + "name": "meta-llama/Llama-3.1-8B-Instruct", + "base_model": "meta-llama/Llama-3.1-8B-Instruct", + }, + "dataset": {"name": "default/sample-basic-test"}, + "hyperparameters": { + "finetuning_type": "lora", + "training_type": "sft", + "batch_size": 16, + "epochs": 2, + "learning_rate": 0.0001, + "lora": {"adapter_dim": 16, "adapter_dropout": 0.1}, + }, + "output_model": "default/job-1234", + "status": "completed", + "project": "default", + } + ] + } + + jobs = await adapter.get_training_jobs() + + assert isinstance(jobs, ListNvidiaPostTrainingJobs) + assert len(jobs.data) == 1 + job = jobs.data[0] + assert job.job_uuid == job_id + assert job.status.value == "completed" + + mock_make_request.assert_called_once() + _assert_request( + mock_make_request, + "GET", + "/v1/customization/jobs", + expected_params={"page": 1, "page_size": 10, "sort": "created_at"}, + ) + + +async def test_cancel_training_job(nvidia_post_training_adapter): + """Test canceling a training job.""" + adapter, mock_make_request = nvidia_post_training_adapter + + mock_make_request.return_value = {} # Empty response for successful cancellation + job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" + + result = await adapter.cancel_training_job(job_uuid=job_id) + + assert result is None + + mock_make_request.assert_called_once() + _assert_request( + mock_make_request, + "POST", + f"/v1/customization/jobs/{job_id}/cancel", + expected_params={"job_id": job_id}, + ) diff --git a/tests/unit/providers/vector_io/remote/test_milvus.py b/tests/unit/providers/vector_io/remote/test_milvus.py index 2f212e374..145edf7fb 100644 --- a/tests/unit/providers/vector_io/remote/test_milvus.py +++ b/tests/unit/providers/vector_io/remote/test_milvus.py @@ -8,7 +8,6 @@ from unittest.mock import MagicMock, patch import numpy as np import pytest -import pytest_asyncio from llama_stack.apis.vector_io import QueryChunksResponse @@ -33,7 +32,7 @@ with patch.dict("sys.modules", {"pymilvus": pymilvus_mock}): MILVUS_PROVIDER = "milvus" -@pytest_asyncio.fixture +@pytest.fixture async def mock_milvus_client() -> MagicMock: """Create a mock Milvus client with common method behaviors.""" client = MagicMock() @@ -84,7 +83,7 @@ async def mock_milvus_client() -> MagicMock: return client -@pytest_asyncio.fixture +@pytest.fixture async def milvus_index(mock_milvus_client): """Create a MilvusIndex with mocked client.""" index = MilvusIndex(client=mock_milvus_client, collection_name="test_collection") @@ -92,7 +91,6 @@ async def milvus_index(mock_milvus_client): # No real cleanup needed since we're using mocks -@pytest.mark.asyncio async def test_add_chunks(milvus_index, sample_chunks, sample_embeddings, mock_milvus_client): # Setup: collection doesn't exist initially, then exists after creation mock_milvus_client.has_collection.side_effect = [False, True] @@ -108,7 +106,6 @@ async def test_add_chunks(milvus_index, sample_chunks, sample_embeddings, mock_m assert len(insert_call[1]["data"]) == len(sample_chunks) -@pytest.mark.asyncio async def test_query_chunks_vector( milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client ): @@ -125,7 +122,6 @@ async def test_query_chunks_vector( mock_milvus_client.search.assert_called_once() -@pytest.mark.asyncio async def test_query_chunks_keyword_search(milvus_index, sample_chunks, sample_embeddings, mock_milvus_client): mock_milvus_client.has_collection.return_value = True await milvus_index.add_chunks(sample_chunks, sample_embeddings) @@ -138,7 +134,6 @@ async def test_query_chunks_keyword_search(milvus_index, sample_chunks, sample_e assert len(response.chunks) == 2 -@pytest.mark.asyncio async def test_bm25_fallback_to_simple_search(milvus_index, sample_chunks, sample_embeddings, mock_milvus_client): """Test that when BM25 search fails, the system falls back to simple text search.""" mock_milvus_client.has_collection.return_value = True @@ -181,7 +176,6 @@ async def test_bm25_fallback_to_simple_search(milvus_index, sample_chunks, sampl assert all(score == 1.0 for score in response.scores), "Simple text search should use binary scoring" -@pytest.mark.asyncio async def test_delete_collection(milvus_index, mock_milvus_client): # Test collection deletion mock_milvus_client.has_collection.return_value = True diff --git a/tests/unit/rag/test_rag_query.py b/tests/unit/rag/test_rag_query.py index ad155c205..a9149541a 100644 --- a/tests/unit/rag/test_rag_query.py +++ b/tests/unit/rag/test_rag_query.py @@ -64,7 +64,6 @@ class TestRagQuery: with pytest.raises(ValueError): RAGQueryConfig(mode="invalid_mode") - @pytest.mark.asyncio async def test_query_accepts_valid_modes(self): RAGQueryConfig() # Test default (vector) RAGQueryConfig(mode="vector") # Test vector diff --git a/uv.lock b/uv.lock index 7a9c5cab0..2c5197988 100644 --- a/uv.lock +++ b/uv.lock @@ -1390,6 +1390,7 @@ unit = [ { name = "aiosqlite" }, { name = "blobfile" }, { name = "chardet" }, + { name = "coverage" }, { name = "faiss-cpu" }, { name = "litellm" }, { name = "mcp" }, @@ -1499,6 +1500,7 @@ unit = [ { name = "aiosqlite" }, { name = "blobfile" }, { name = "chardet" }, + { name = "coverage" }, { name = "faiss-cpu" }, { name = "litellm" }, { name = "mcp" },