1: rename vector db to store, remove external APIs

This commit is contained in:
Ashwin Bharambe 2025-10-20 19:16:01 -07:00
parent 444f6c88f3
commit 375650c6b3
5 changed files with 25 additions and 85 deletions

View file

@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
class ResourceType(StrEnum):
model = "model"
shield = "shield"
vector_db = "vector_db"
vector_store = "vector_store"
dataset = "dataset"
scoring_function = "scoring_function"
benchmark = "benchmark"
@ -34,4 +34,4 @@ class Resource(BaseModel):
provider_id: str = Field(description="ID of the provider that owns this resource")
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)")
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_store', etc.)")

View file

@ -4,90 +4,47 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Literal, Protocol, runtime_checkable
from typing import Literal
from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class VectorDB(Resource):
# Internal resource type for storing the vector store routing and other information
class VectorStore(Resource):
"""Vector database resource for storing and querying vector embeddings.
:param type: Type of resource, always 'vector_db' for vector databases
:param type: Type of resource, always 'vector_store' for vector stores
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
"""
type: Literal[ResourceType.vector_db] = ResourceType.vector_db
type: Literal[ResourceType.vector_store] = ResourceType.vector_store
embedding_model: str
embedding_dimension: int
vector_db_name: str | None = None
@property
def vector_db_id(self) -> str:
def vector_store_id(self) -> str:
return self.identifier
@property
def provider_vector_db_id(self) -> str | None:
def provider_vector_store_id(self) -> str | None:
return self.provider_resource_id
class VectorDBInput(BaseModel):
class VectorStoreInput(BaseModel):
"""Input parameters for creating or configuring a vector database.
:param vector_db_id: Unique identifier for the vector database
:param vector_store_id: Unique identifier for the vector store
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
:param provider_vector_db_id: (Optional) Provider-specific identifier for the vector database
:param provider_vector_store_id: (Optional) Provider-specific identifier for the vector store
"""
vector_db_id: str
vector_store_id: str
embedding_model: str
embedding_dimension: int
provider_id: str | None = None
provider_vector_db_id: str | None = None
class ListVectorDBsResponse(BaseModel):
"""Response from listing vector databases.
:param data: List of vector databases
"""
data: list[VectorDB]
@runtime_checkable
class VectorDBs(Protocol):
"""Internal protocol for vector_dbs routing - no public API endpoints."""
async def list_vector_dbs(self) -> ListVectorDBsResponse:
"""Internal method to list vector databases."""
...
async def get_vector_db(
self,
vector_db_id: str,
) -> VectorDB:
"""Internal method to get a vector database by ID."""
...
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
vector_db_name: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorDB:
"""Internal method to register a vector database."""
...
async def unregister_vector_db(self, vector_db_id: str) -> None:
"""Internal method to unregister a vector database."""
...
provider_vector_store_id: str | None = None

View file

@ -15,7 +15,7 @@ from fastapi import Body
from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_dbs import VectorStore
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
@ -517,17 +517,18 @@ class OpenAICreateVectorStoreFileBatchRequestWithExtraBody(BaseModel, extra="all
chunking_strategy: VectorStoreChunkingStrategy | None = None
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
class VectorStoreTable(Protocol):
def get_vector_store(self, vector_store_id: str) -> VectorStore | None: ...
@runtime_checkable
@trace_protocol
class VectorIO(Protocol):
vector_db_store: VectorDBStore | None = None
vector_store_table: VectorStoreTable | None = None
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion
# TODO: rename vector_db_id to vector_store_id once Stainless is working
@webmethod(route="/vector-io/insert", method="POST", level=LLAMA_STACK_API_V1)
async def insert_chunks(
self,
@ -546,6 +547,7 @@ class VectorIO(Protocol):
"""
...
# TODO: rename vector_db_id to vector_store_id once Stainless is working
@webmethod(route="/vector-io/query", method="POST", level=LLAMA_STACK_API_V1)
async def query_chunks(
self,

View file

@ -23,7 +23,7 @@ from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput
from llama_stack.apis.shields import Shield, ShieldInput
from llama_stack.apis.tools import ToolGroup, ToolGroupInput, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
from llama_stack.apis.vector_dbs import VectorStore, VectorStoreInput
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.access_control.datatypes import AccessRule
from llama_stack.core.storage.datatypes import (
@ -71,7 +71,7 @@ class ShieldWithOwner(Shield, ResourceWithOwner):
pass
class VectorDBWithOwner(VectorDB, ResourceWithOwner):
class VectorStoreWithOwner(VectorStore, ResourceWithOwner):
pass
@ -91,12 +91,12 @@ class ToolGroupWithOwner(ToolGroup, ResourceWithOwner):
pass
RoutableObject = Model | Shield | VectorDB | Dataset | ScoringFn | Benchmark | ToolGroup
RoutableObject = Model | Shield | VectorStore | Dataset | ScoringFn | Benchmark | ToolGroup
RoutableObjectWithProvider = Annotated[
ModelWithOwner
| ShieldWithOwner
| VectorDBWithOwner
| VectorStoreWithOwner
| DatasetWithOwner
| ScoringFnWithOwner
| BenchmarkWithOwner
@ -427,7 +427,7 @@ class RegisteredResources(BaseModel):
models: list[ModelInput] = Field(default_factory=list)
shields: list[ShieldInput] = Field(default_factory=list)
vector_dbs: list[VectorDBInput] = Field(default_factory=list)
vector_stores: list[VectorStoreInput] = Field(default_factory=list)
datasets: list[DatasetInput] = Field(default_factory=list)
scoring_fns: list[ScoringFnInput] = Field(default_factory=list)
benchmarks: list[BenchmarkInput] = Field(default_factory=list)

View file

@ -71,25 +71,6 @@ class VectorIORouter(VectorIO):
raise ValueError(f"Embedding model '{embedding_model_id}' not found or not an embedding model")
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
vector_db_name: str | None = None,
provider_vector_db_id: str | None = None,
) -> None:
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
await self.routing_table.register_vector_db(
vector_db_id,
embedding_model,
embedding_dimension,
provider_id,
vector_db_name,
provider_vector_db_id,
)
async def insert_chunks(
self,
vector_db_id: str,