mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-12 12:06:04 +00:00
1: rename vector db to store, remove external APIs
This commit is contained in:
parent
444f6c88f3
commit
375650c6b3
5 changed files with 25 additions and 85 deletions
|
|
@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
|
|||
class ResourceType(StrEnum):
|
||||
model = "model"
|
||||
shield = "shield"
|
||||
vector_db = "vector_db"
|
||||
vector_store = "vector_store"
|
||||
dataset = "dataset"
|
||||
scoring_function = "scoring_function"
|
||||
benchmark = "benchmark"
|
||||
|
|
@ -34,4 +34,4 @@ class Resource(BaseModel):
|
|||
|
||||
provider_id: str = Field(description="ID of the provider that owns this resource")
|
||||
|
||||
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)")
|
||||
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_store', etc.)")
|
||||
|
|
|
|||
|
|
@ -4,90 +4,47 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Literal, Protocol, runtime_checkable
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorDB(Resource):
|
||||
# Internal resource type for storing the vector store routing and other information
|
||||
class VectorStore(Resource):
|
||||
"""Vector database resource for storing and querying vector embeddings.
|
||||
|
||||
:param type: Type of resource, always 'vector_db' for vector databases
|
||||
:param type: Type of resource, always 'vector_store' for vector stores
|
||||
:param embedding_model: Name of the embedding model to use for vector generation
|
||||
:param embedding_dimension: Dimension of the embedding vectors
|
||||
"""
|
||||
|
||||
type: Literal[ResourceType.vector_db] = ResourceType.vector_db
|
||||
type: Literal[ResourceType.vector_store] = ResourceType.vector_store
|
||||
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
vector_db_name: str | None = None
|
||||
|
||||
@property
|
||||
def vector_db_id(self) -> str:
|
||||
def vector_store_id(self) -> str:
|
||||
return self.identifier
|
||||
|
||||
@property
|
||||
def provider_vector_db_id(self) -> str | None:
|
||||
def provider_vector_store_id(self) -> str | None:
|
||||
return self.provider_resource_id
|
||||
|
||||
|
||||
class VectorDBInput(BaseModel):
|
||||
class VectorStoreInput(BaseModel):
|
||||
"""Input parameters for creating or configuring a vector database.
|
||||
|
||||
:param vector_db_id: Unique identifier for the vector database
|
||||
:param vector_store_id: Unique identifier for the vector store
|
||||
:param embedding_model: Name of the embedding model to use for vector generation
|
||||
:param embedding_dimension: Dimension of the embedding vectors
|
||||
:param provider_vector_db_id: (Optional) Provider-specific identifier for the vector database
|
||||
:param provider_vector_store_id: (Optional) Provider-specific identifier for the vector store
|
||||
"""
|
||||
|
||||
vector_db_id: str
|
||||
vector_store_id: str
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
provider_id: str | None = None
|
||||
provider_vector_db_id: str | None = None
|
||||
|
||||
|
||||
class ListVectorDBsResponse(BaseModel):
|
||||
"""Response from listing vector databases.
|
||||
|
||||
:param data: List of vector databases
|
||||
"""
|
||||
|
||||
data: list[VectorDB]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class VectorDBs(Protocol):
|
||||
"""Internal protocol for vector_dbs routing - no public API endpoints."""
|
||||
|
||||
async def list_vector_dbs(self) -> ListVectorDBsResponse:
|
||||
"""Internal method to list vector databases."""
|
||||
...
|
||||
|
||||
async def get_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
) -> VectorDB:
|
||||
"""Internal method to get a vector database by ID."""
|
||||
...
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorDB:
|
||||
"""Internal method to register a vector database."""
|
||||
...
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
"""Internal method to unregister a vector database."""
|
||||
...
|
||||
provider_vector_store_id: str | None = None
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ from fastapi import Body
|
|||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_dbs import VectorStore
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
|
|
@ -517,17 +517,18 @@ class OpenAICreateVectorStoreFileBatchRequestWithExtraBody(BaseModel, extra="all
|
|||
chunking_strategy: VectorStoreChunkingStrategy | None = None
|
||||
|
||||
|
||||
class VectorDBStore(Protocol):
|
||||
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
|
||||
class VectorStoreTable(Protocol):
|
||||
def get_vector_store(self, vector_store_id: str) -> VectorStore | None: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class VectorIO(Protocol):
|
||||
vector_db_store: VectorDBStore | None = None
|
||||
vector_store_table: VectorStoreTable | None = None
|
||||
|
||||
# this will just block now until chunks are inserted, but it should
|
||||
# probably return a Job instance which can be polled for completion
|
||||
# TODO: rename vector_db_id to vector_store_id once Stainless is working
|
||||
@webmethod(route="/vector-io/insert", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def insert_chunks(
|
||||
self,
|
||||
|
|
@ -546,6 +547,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
# TODO: rename vector_db_id to vector_store_id once Stainless is working
|
||||
@webmethod(route="/vector-io/query", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def query_chunks(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ from llama_stack.apis.scoring import Scoring
|
|||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput
|
||||
from llama_stack.apis.shields import Shield, ShieldInput
|
||||
from llama_stack.apis.tools import ToolGroup, ToolGroupInput, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
|
||||
from llama_stack.apis.vector_dbs import VectorStore, VectorStoreInput
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.access_control.datatypes import AccessRule
|
||||
from llama_stack.core.storage.datatypes import (
|
||||
|
|
@ -71,7 +71,7 @@ class ShieldWithOwner(Shield, ResourceWithOwner):
|
|||
pass
|
||||
|
||||
|
||||
class VectorDBWithOwner(VectorDB, ResourceWithOwner):
|
||||
class VectorStoreWithOwner(VectorStore, ResourceWithOwner):
|
||||
pass
|
||||
|
||||
|
||||
|
|
@ -91,12 +91,12 @@ class ToolGroupWithOwner(ToolGroup, ResourceWithOwner):
|
|||
pass
|
||||
|
||||
|
||||
RoutableObject = Model | Shield | VectorDB | Dataset | ScoringFn | Benchmark | ToolGroup
|
||||
RoutableObject = Model | Shield | VectorStore | Dataset | ScoringFn | Benchmark | ToolGroup
|
||||
|
||||
RoutableObjectWithProvider = Annotated[
|
||||
ModelWithOwner
|
||||
| ShieldWithOwner
|
||||
| VectorDBWithOwner
|
||||
| VectorStoreWithOwner
|
||||
| DatasetWithOwner
|
||||
| ScoringFnWithOwner
|
||||
| BenchmarkWithOwner
|
||||
|
|
@ -427,7 +427,7 @@ class RegisteredResources(BaseModel):
|
|||
|
||||
models: list[ModelInput] = Field(default_factory=list)
|
||||
shields: list[ShieldInput] = Field(default_factory=list)
|
||||
vector_dbs: list[VectorDBInput] = Field(default_factory=list)
|
||||
vector_stores: list[VectorStoreInput] = Field(default_factory=list)
|
||||
datasets: list[DatasetInput] = Field(default_factory=list)
|
||||
scoring_fns: list[ScoringFnInput] = Field(default_factory=list)
|
||||
benchmarks: list[BenchmarkInput] = Field(default_factory=list)
|
||||
|
|
|
|||
|
|
@ -71,25 +71,6 @@ class VectorIORouter(VectorIO):
|
|||
|
||||
raise ValueError(f"Embedding model '{embedding_model_id}' not found or not an embedding model")
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> None:
|
||||
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
|
||||
await self.routing_table.register_vector_db(
|
||||
vector_db_id,
|
||||
embedding_model,
|
||||
embedding_dimension,
|
||||
provider_id,
|
||||
vector_db_name,
|
||||
provider_vector_db_id,
|
||||
)
|
||||
|
||||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue