mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-06 10:37:22 +00:00
Merge branch 'main' into routeur
This commit is contained in:
commit
3770963130
255 changed files with 18366 additions and 1909 deletions
|
|
@ -72,6 +72,7 @@ class Agents(Protocol):
|
|||
model: str,
|
||||
prompt: OpenAIResponsePrompt | None = None,
|
||||
instructions: str | None = None,
|
||||
parallel_tool_calls: bool | None = True,
|
||||
previous_response_id: str | None = None,
|
||||
conversation: str | None = None,
|
||||
store: bool | None = True,
|
||||
|
|
|
|||
9
src/llama_stack_api/internal/__init__.py
Normal file
9
src/llama_stack_api/internal/__init__.py
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Internal subpackage for shared interfaces that are not part of the public API.
|
||||
|
||||
__all__: list[str] = []
|
||||
26
src/llama_stack_api/internal/kvstore.py
Normal file
26
src/llama_stack_api/internal/kvstore.py
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from datetime import datetime
|
||||
from typing import Protocol
|
||||
|
||||
|
||||
class KVStore(Protocol):
|
||||
"""Protocol for simple key/value storage backends."""
|
||||
|
||||
# TODO: make the value type bytes instead of str
|
||||
async def set(self, key: str, value: str, expiration: datetime | None = None) -> None: ...
|
||||
|
||||
async def get(self, key: str) -> str | None: ...
|
||||
|
||||
async def delete(self, key: str) -> None: ...
|
||||
|
||||
async def values_in_range(self, start_key: str, end_key: str) -> list[str]: ...
|
||||
|
||||
async def keys_in_range(self, start_key: str, end_key: str) -> list[str]: ...
|
||||
|
||||
|
||||
__all__ = ["KVStore"]
|
||||
79
src/llama_stack_api/internal/sqlstore.py
Normal file
79
src/llama_stack_api/internal/sqlstore.py
Normal file
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Mapping, Sequence
|
||||
from enum import Enum
|
||||
from typing import Any, Literal, Protocol
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack_api import PaginatedResponse
|
||||
|
||||
|
||||
class ColumnType(Enum):
|
||||
INTEGER = "INTEGER"
|
||||
STRING = "STRING"
|
||||
TEXT = "TEXT"
|
||||
FLOAT = "FLOAT"
|
||||
BOOLEAN = "BOOLEAN"
|
||||
JSON = "JSON"
|
||||
DATETIME = "DATETIME"
|
||||
|
||||
|
||||
class ColumnDefinition(BaseModel):
|
||||
type: ColumnType
|
||||
primary_key: bool = False
|
||||
nullable: bool = True
|
||||
default: Any = None
|
||||
|
||||
|
||||
class SqlStore(Protocol):
|
||||
"""Protocol for common SQL-store functionality."""
|
||||
|
||||
async def create_table(self, table: str, schema: Mapping[str, ColumnType | ColumnDefinition]) -> None: ...
|
||||
|
||||
async def insert(self, table: str, data: Mapping[str, Any] | Sequence[Mapping[str, Any]]) -> None: ...
|
||||
|
||||
async def upsert(
|
||||
self,
|
||||
table: str,
|
||||
data: Mapping[str, Any],
|
||||
conflict_columns: list[str],
|
||||
update_columns: list[str] | None = None,
|
||||
) -> None: ...
|
||||
|
||||
async def fetch_all(
|
||||
self,
|
||||
table: str,
|
||||
where: Mapping[str, Any] | None = None,
|
||||
where_sql: str | None = None,
|
||||
limit: int | None = None,
|
||||
order_by: list[tuple[str, Literal["asc", "desc"]]] | None = None,
|
||||
cursor: tuple[str, str] | None = None,
|
||||
) -> PaginatedResponse: ...
|
||||
|
||||
async def fetch_one(
|
||||
self,
|
||||
table: str,
|
||||
where: Mapping[str, Any] | None = None,
|
||||
where_sql: str | None = None,
|
||||
order_by: list[tuple[str, Literal["asc", "desc"]]] | None = None,
|
||||
) -> dict[str, Any] | None: ...
|
||||
|
||||
async def update(self, table: str, data: Mapping[str, Any], where: Mapping[str, Any]) -> None: ...
|
||||
|
||||
async def delete(self, table: str, where: Mapping[str, Any]) -> None: ...
|
||||
|
||||
async def add_column_if_not_exists(
|
||||
self,
|
||||
table: str,
|
||||
column_name: str,
|
||||
column_type: ColumnType,
|
||||
nullable: bool = True,
|
||||
) -> None: ...
|
||||
|
||||
|
||||
__all__ = ["ColumnDefinition", "ColumnType", "SqlStore"]
|
||||
|
|
@ -585,7 +585,7 @@ class OpenAIResponseObject(BaseModel):
|
|||
:param model: Model identifier used for generation
|
||||
:param object: Object type identifier, always "response"
|
||||
:param output: List of generated output items (messages, tool calls, etc.)
|
||||
:param parallel_tool_calls: Whether tool calls can be executed in parallel
|
||||
:param parallel_tool_calls: (Optional) Whether to allow more than one function tool call generated per turn.
|
||||
:param previous_response_id: (Optional) ID of the previous response in a conversation
|
||||
:param prompt: (Optional) Reference to a prompt template and its variables.
|
||||
:param status: Current status of the response generation
|
||||
|
|
@ -605,7 +605,7 @@ class OpenAIResponseObject(BaseModel):
|
|||
model: str
|
||||
object: Literal["response"] = "response"
|
||||
output: Sequence[OpenAIResponseOutput]
|
||||
parallel_tool_calls: bool = False
|
||||
parallel_tool_calls: bool | None = True
|
||||
previous_response_id: str | None = None
|
||||
prompt: OpenAIResponsePrompt | None = None
|
||||
status: str
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@
|
|||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from fastapi import Body, Query
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from llama_stack_api.common.tracing import telemetry_traceable
|
||||
from llama_stack_api.inference import InterleavedContent
|
||||
|
|
@ -372,6 +372,65 @@ VectorStoreFileStatus = Literal["completed"] | Literal["in_progress"] | Literal[
|
|||
register_schema(VectorStoreFileStatus, name="VectorStoreFileStatus")
|
||||
|
||||
|
||||
# VectorStoreFileAttributes type with OpenAPI constraints
|
||||
VectorStoreFileAttributes = Annotated[
|
||||
dict[str, Annotated[str, Field(max_length=512)] | float | bool],
|
||||
Field(
|
||||
max_length=16,
|
||||
json_schema_extra={
|
||||
"propertyNames": {"type": "string", "maxLength": 64},
|
||||
"x-oaiTypeLabel": "map",
|
||||
},
|
||||
description=(
|
||||
"Set of 16 key-value pairs that can be attached to an object. This can be "
|
||||
"useful for storing additional information about the object in a structured "
|
||||
"format, and querying for objects via API or the dashboard. Keys are strings "
|
||||
"with a maximum length of 64 characters. Values are strings with a maximum "
|
||||
"length of 512 characters, booleans, or numbers."
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def _sanitize_vector_store_attributes(metadata: dict[str, Any] | None) -> dict[str, str | float | bool]:
|
||||
"""
|
||||
Sanitize metadata to VectorStoreFileAttributes spec (max 16 properties, primitives only).
|
||||
|
||||
Converts dict[str, Any] to dict[str, str | float | bool]:
|
||||
- Preserves: str (truncated to 512 chars), bool, int/float (as float)
|
||||
- Converts: list -> comma-separated string
|
||||
- Filters: dict, None, other types
|
||||
- Enforces: max 16 properties, max 64 char keys, max 512 char string values
|
||||
"""
|
||||
if not metadata:
|
||||
return {}
|
||||
|
||||
sanitized: dict[str, str | float | bool] = {}
|
||||
for key, value in metadata.items():
|
||||
# Enforce max 16 properties
|
||||
if len(sanitized) >= 16:
|
||||
break
|
||||
|
||||
# Enforce max 64 char keys
|
||||
if len(key) > 64:
|
||||
continue
|
||||
|
||||
# Convert to supported primitive types
|
||||
if isinstance(value, bool):
|
||||
sanitized[key] = value
|
||||
elif isinstance(value, int | float):
|
||||
sanitized[key] = float(value)
|
||||
elif isinstance(value, str):
|
||||
# Enforce max 512 char string values
|
||||
sanitized[key] = value[:512] if len(value) > 512 else value
|
||||
elif isinstance(value, list):
|
||||
# Convert lists to comma-separated strings (max 512 chars)
|
||||
list_str = ", ".join(str(item) for item in value)
|
||||
sanitized[key] = list_str[:512] if len(list_str) > 512 else list_str
|
||||
|
||||
return sanitized
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileObject(BaseModel):
|
||||
"""OpenAI Vector Store File object.
|
||||
|
|
@ -389,7 +448,7 @@ class VectorStoreFileObject(BaseModel):
|
|||
|
||||
id: str
|
||||
object: str = "vector_store.file"
|
||||
attributes: dict[str, Any] = Field(default_factory=dict)
|
||||
attributes: VectorStoreFileAttributes = Field(default_factory=dict)
|
||||
chunking_strategy: VectorStoreChunkingStrategy
|
||||
created_at: int
|
||||
last_error: VectorStoreFileLastError | None = None
|
||||
|
|
@ -397,6 +456,12 @@ class VectorStoreFileObject(BaseModel):
|
|||
usage_bytes: int = 0
|
||||
vector_store_id: str
|
||||
|
||||
@field_validator("attributes", mode="before")
|
||||
@classmethod
|
||||
def _validate_attributes(cls, v: dict[str, Any] | None) -> dict[str, str | float | bool]:
|
||||
"""Sanitize attributes to match VectorStoreFileAttributes OpenAPI spec."""
|
||||
return _sanitize_vector_store_attributes(v)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreListFilesResponse(BaseModel):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue