Add Groq provider - chat completions

This commit is contained in:
Aidan Do 2024-12-12 21:15:09 +11:00
parent c294a01c4b
commit 378150e23c
10 changed files with 727 additions and 31 deletions

View file

@ -19,6 +19,7 @@ from llama_stack.providers.remote.inference.bedrock import BedrockConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.groq import GroqConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
@ -150,6 +151,22 @@ def inference_together() -> ProviderFixture:
)
@pytest.fixture(scope="session")
def inference_groq() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="groq",
provider_type="remote::groq",
config=GroqConfig().model_dump(),
)
],
provider_data=dict(
groq_api_key=get_env_or_fail("GROQ_API_KEY"),
),
)
@pytest.fixture(scope="session")
def inference_bedrock() -> ProviderFixture:
return ProviderFixture(
@ -222,6 +239,7 @@ INFERENCE_FIXTURES = [
"ollama",
"fireworks",
"together",
"groq",
"vllm_remote",
"remote",
"bedrock",

View file

@ -0,0 +1,278 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from groq.types.chat.chat_completion import ChatCompletion, Choice
from groq.types.chat.chat_completion_chunk import (
ChatCompletionChunk,
Choice as StreamChoice,
ChoiceDelta,
)
from groq.types.chat.chat_completion_message import ChatCompletionMessage
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponseEventType,
CompletionMessage,
StopReason,
SystemMessage,
UserMessage,
)
from llama_stack.providers.remote.inference.groq.groq_utils import (
convert_chat_completion_request,
convert_chat_completion_response,
convert_chat_completion_response_stream,
)
class TestConvertChatCompletionRequest:
def test_sets_model(self):
request = self._dummy_chat_completion_request()
request.model = "Llama-3.2-3B"
converted = convert_chat_completion_request(request)
assert converted["model"] == "Llama-3.2-3B"
def test_converts_user_message(self):
request = self._dummy_chat_completion_request()
request.messages = [UserMessage(content="Hello World")]
converted = convert_chat_completion_request(request)
assert converted["messages"] == [
{"role": "user", "content": "Hello World"},
]
def test_converts_system_message(self):
request = self._dummy_chat_completion_request()
request.messages = [SystemMessage(content="You are a helpful assistant.")]
converted = convert_chat_completion_request(request)
assert converted["messages"] == [
{"role": "system", "content": "You are a helpful assistant."},
]
def test_converts_completion_message(self):
request = self._dummy_chat_completion_request()
request.messages = [
UserMessage(content="Hello World"),
CompletionMessage(
content="Hello World! How can I help you today?",
stop_reason=StopReason.end_of_message,
),
]
converted = convert_chat_completion_request(request)
assert converted["messages"] == [
{"role": "user", "content": "Hello World"},
{"role": "assistant", "content": "Hello World! How can I help you today?"},
]
def test_does_not_include_logprobs(self):
request = self._dummy_chat_completion_request()
request.logprobs = True
with pytest.warns(Warning) as warnings:
converted = convert_chat_completion_request(request)
assert "logprobs are not supported yet" in warnings[0].message.args[0]
assert converted.get("logprobs") is None
def test_does_not_include_response_format(self):
request = self._dummy_chat_completion_request()
request.response_format = {
"type": "json_object",
"json_schema": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number"},
},
},
}
with pytest.warns(Warning) as warnings:
converted = convert_chat_completion_request(request)
assert "response_format is not supported yet" in warnings[0].message.args[0]
assert converted.get("response_format") is None
def test_does_not_include_repetition_penalty(self):
request = self._dummy_chat_completion_request()
request.sampling_params.repetition_penalty = 1.5
with pytest.warns(Warning) as warnings:
converted = convert_chat_completion_request(request)
assert "repetition_penalty is not supported" in warnings[0].message.args[0]
assert converted.get("repetition_penalty") is None
assert converted.get("frequency_penalty") is None
def test_includes_stream(self):
request = self._dummy_chat_completion_request()
request.stream = True
converted = convert_chat_completion_request(request)
assert converted["stream"] is True
def test_n_is_1(self):
request = self._dummy_chat_completion_request()
converted = convert_chat_completion_request(request)
assert converted["n"] == 1
def test_if_max_tokens_is_0_then_it_is_not_included(self):
request = self._dummy_chat_completion_request()
# 0 is the default value for max_tokens
# So we assume that if it's 0, the user didn't set it
request.sampling_params.max_tokens = 0
converted = convert_chat_completion_request(request)
assert converted.get("max_tokens") is None
def test_includes_max_tokens_if_set(self):
request = self._dummy_chat_completion_request()
request.sampling_params.max_tokens = 100
converted = convert_chat_completion_request(request)
assert converted["max_tokens"] == 100
def _dummy_chat_completion_request(self):
return ChatCompletionRequest(
model="Llama-3.2-3B",
messages=[UserMessage(content="Hello World")],
)
def test_includes_temperature(self):
request = self._dummy_chat_completion_request()
request.sampling_params.temperature = 0.5
converted = convert_chat_completion_request(request)
assert converted["temperature"] == 0.5
def test_includes_top_p(self):
request = self._dummy_chat_completion_request()
request.sampling_params.top_p = 0.95
converted = convert_chat_completion_request(request)
assert converted["top_p"] == 0.95
class TestConvertNonStreamChatCompletionResponse:
def test_returns_response(self):
response = self._dummy_chat_completion_response()
response.choices[0].message.content = "Hello World"
converted = convert_chat_completion_response(response)
assert converted.completion_message.content == "Hello World"
def test_maps_stop_to_end_of_message(self):
response = self._dummy_chat_completion_response()
response.choices[0].finish_reason = "stop"
converted = convert_chat_completion_response(response)
assert converted.completion_message.stop_reason == StopReason.end_of_turn
def test_maps_length_to_end_of_message(self):
response = self._dummy_chat_completion_response()
response.choices[0].finish_reason = "length"
converted = convert_chat_completion_response(response)
assert converted.completion_message.stop_reason == StopReason.end_of_message
def _dummy_chat_completion_response(self):
return ChatCompletion(
id="chatcmpl-123",
model="Llama-3.2-3B",
choices=[
Choice(
index=0,
message=ChatCompletionMessage(
role="assistant", content="Hello World"
),
finish_reason="stop",
)
],
created=1729382400,
object="chat.completion",
)
class TestConvertStreamChatCompletionResponse:
@pytest.mark.asyncio
async def test_returns_stream(self):
def chat_completion_stream():
messages = ["Hello ", "World ", " !"]
for i, message in enumerate(messages):
chunk = self._dummy_chat_completion_chunk()
chunk.choices[0].delta.content = message
if i == len(messages) - 1:
chunk.choices[0].finish_reason = "stop"
else:
chunk.choices[0].finish_reason = None
yield chunk
chunk = self._dummy_chat_completion_chunk()
chunk.choices[0].delta.content = None
chunk.choices[0].finish_reason = "stop"
yield chunk
stream = chat_completion_stream()
converted = convert_chat_completion_response_stream(stream)
iter = converted.__aiter__()
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.start
assert chunk.event.delta == "Hello "
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.progress
assert chunk.event.delta == "World "
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.progress
assert chunk.event.delta == " !"
# Dummy chunk to ensure the last chunk is really the end of the stream
# This one technically maps to Groq's final "stop" chunk
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.progress
assert chunk.event.delta == ""
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.complete
assert chunk.event.delta == ""
assert chunk.event.stop_reason == StopReason.end_of_turn
with pytest.raises(StopAsyncIteration):
await iter.__anext__()
def _dummy_chat_completion_chunk(self):
return ChatCompletionChunk(
id="chatcmpl-123",
model="Llama-3.2-3B",
choices=[
StreamChoice(
index=0,
delta=ChoiceDelta(role="assistant", content="Hello World"),
)
],
created=1729382400,
object="chat.completion.chunk",
x_groq=None,
)

View file

@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack.apis.inference import Inference
from llama_stack.providers.remote.inference.groq import get_adapter_impl
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.remote.inference.groq.groq import GroqInferenceAdapter
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
class TestGroqInit:
@pytest.mark.asyncio
async def test_raises_runtime_error_if_config_is_not_groq_config(self):
config = OllamaImplConfig(model="llama3.1-8b-8192")
with pytest.raises(RuntimeError):
await get_adapter_impl(config, None)
@pytest.mark.asyncio
async def test_returns_groq_adapter(self):
config = GroqConfig()
adapter = await get_adapter_impl(config, None)
assert type(adapter) is GroqInferenceAdapter
assert isinstance(adapter, Inference)

View file

@ -350,6 +350,14 @@ class TestInference:
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type in ("remote::groq",):
pytest.skip(
provider.__provider_spec__.provider_type
+ " doesn't support tool calling yet"
)
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
@ -390,6 +398,13 @@ class TestInference:
sample_tool_definition,
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type in ("remote::groq",):
pytest.skip(
provider.__provider_spec__.provider_type
+ " doesn't support tool calling yet"
)
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",