Merge branch 'main' into opengauss-add

This commit is contained in:
windy 2025-08-08 20:58:48 +08:00 committed by GitHub
commit 39e49ab97a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
807 changed files with 79555 additions and 26772 deletions

View file

@ -0,0 +1,6 @@
# Eval Providers
This section contains documentation for all available providers for the **eval** API.
- [inline::meta-reference](inline_meta-reference.md)
- [remote::nvidia](remote_nvidia.md)

View file

@ -0,0 +1,25 @@
---
orphan: true
---
# inline::meta-reference
## Description
Meta's reference implementation of evaluation tasks with support for multiple languages and evaluation metrics.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/meta_reference_eval.db
```

View file

@ -0,0 +1,23 @@
---
orphan: true
---
# remote::nvidia
## Description
NVIDIA's evaluation provider for running evaluation tasks on NVIDIA's platform.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `evaluator_url` | `<class 'str'>` | No | http://0.0.0.0:7331 | The url for accessing the evaluator service |
## Sample Configuration
```yaml
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:=http://localhost:7331}
```

View file

@ -43,7 +43,7 @@ We have built-in functionality to run the supported open-benckmarks using llama-
Spin up llama stack server with 'open-benchmark' template
```
llama stack run llama_stack/templates/open-benchmark/run.yaml
llama stack run llama_stack/distributions/open-benchmark/run.yaml
```

View file

@ -0,0 +1,33 @@
# Advanced APIs
## Post-training
Fine-tunes a model.
```{toctree}
:maxdepth: 1
post_training/index
```
## Eval
Generates outputs (via Inference or Agents) and perform scoring.
```{toctree}
:maxdepth: 1
eval/index
```
```{include} evaluation_concepts.md
:start-after: ## Evaluation Concepts
```
## Scoring
Evaluates the outputs of the system.
```{toctree}
:maxdepth: 1
scoring/index
```

View file

@ -23,7 +23,7 @@ To use the HF SFTTrainer in your Llama Stack project, follow these steps:
You can access the HuggingFace trainer via the `ollama` distribution:
```bash
llama stack build --template starter --image-type venv
llama stack build --distro starter --image-type venv
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
```

View file

@ -0,0 +1,7 @@
# Post_Training Providers
This section contains documentation for all available providers for the **post_training** API.
- [inline::huggingface](inline_huggingface.md)
- [inline::torchtune](inline_torchtune.md)
- [remote::nvidia](remote_nvidia.md)

View file

@ -0,0 +1,37 @@
---
orphan: true
---
# inline::huggingface
## Description
HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `device` | `<class 'str'>` | No | cuda | |
| `distributed_backend` | `Literal['fsdp', 'deepspeed'` | No | | |
| `checkpoint_format` | `Literal['full_state', 'huggingface'` | No | huggingface | |
| `chat_template` | `<class 'str'>` | No | |
| `model_specific_config` | `<class 'dict'>` | No | {'trust_remote_code': True, 'attn_implementation': 'sdpa'} | |
| `max_seq_length` | `<class 'int'>` | No | 2048 | |
| `gradient_checkpointing` | `<class 'bool'>` | No | False | |
| `save_total_limit` | `<class 'int'>` | No | 3 | |
| `logging_steps` | `<class 'int'>` | No | 10 | |
| `warmup_ratio` | `<class 'float'>` | No | 0.1 | |
| `weight_decay` | `<class 'float'>` | No | 0.01 | |
| `dataloader_num_workers` | `<class 'int'>` | No | 4 | |
| `dataloader_pin_memory` | `<class 'bool'>` | No | True | |
## Sample Configuration
```yaml
checkpoint_format: huggingface
distributed_backend: null
device: cpu
```

View file

@ -0,0 +1,24 @@
---
orphan: true
---
# inline::torchtune
## Description
TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `torch_seed` | `int \| None` | No | | |
| `checkpoint_format` | `Literal['meta', 'huggingface'` | No | meta | |
## Sample Configuration
```yaml
checkpoint_format: meta
```

View file

@ -0,0 +1,32 @@
---
orphan: true
---
# remote::nvidia
## Description
NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The NVIDIA API key. |
| `dataset_namespace` | `str \| None` | No | default | The NVIDIA dataset namespace. |
| `project_id` | `str \| None` | No | test-example-model@v1 | The NVIDIA project ID. |
| `customizer_url` | `str \| None` | No | | Base URL for the NeMo Customizer API |
| `timeout` | `<class 'int'>` | No | 300 | Timeout for the NVIDIA Post Training API |
| `max_retries` | `<class 'int'>` | No | 3 | Maximum number of retries for the NVIDIA Post Training API |
| `output_model_dir` | `<class 'str'>` | No | test-example-model@v1 | Directory to save the output model |
## Sample Configuration
```yaml
api_key: ${env.NVIDIA_API_KEY:=}
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
customizer_url: ${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}
```

View file

@ -0,0 +1,7 @@
# Scoring Providers
This section contains documentation for all available providers for the **scoring** API.
- [inline::basic](inline_basic.md)
- [inline::braintrust](inline_braintrust.md)
- [inline::llm-as-judge](inline_llm-as-judge.md)

View file

@ -0,0 +1,17 @@
---
orphan: true
---
# inline::basic
## Description
Basic scoring provider for simple evaluation metrics and scoring functions.
## Sample Configuration
```yaml
{}
```

View file

@ -0,0 +1,23 @@
---
orphan: true
---
# inline::braintrust
## Description
Braintrust scoring provider for evaluation and scoring using the Braintrust platform.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `openai_api_key` | `str \| None` | No | | The OpenAI API Key |
## Sample Configuration
```yaml
openai_api_key: ${env.OPENAI_API_KEY:=}
```

View file

@ -0,0 +1,17 @@
---
orphan: true
---
# inline::llm-as-judge
## Description
LLM-as-judge scoring provider that uses language models to evaluate and score responses.
## Sample Configuration
```yaml
{}
```

View file

@ -0,0 +1,392 @@
# External APIs
Llama Stack supports external APIs that live outside of the main codebase. This allows you to:
- Create and maintain your own APIs independently
- Share APIs with others without contributing to the main codebase
- Keep API-specific code separate from the core Llama Stack code
## Configuration
To enable external APIs, you need to configure the `external_apis_dir` in your Llama Stack configuration. This directory should contain your external API specifications:
```yaml
external_apis_dir: ~/.llama/apis.d/
```
## Directory Structure
The external APIs directory should follow this structure:
```
apis.d/
custom_api1.yaml
custom_api2.yaml
```
Each YAML file in these directories defines an API specification.
## API Specification
Here's an example of an external API specification for a weather API:
```yaml
module: weather
api_dependencies:
- inference
protocol: WeatherAPI
name: weather
pip_packages:
- llama-stack-api-weather
```
### API Specification Fields
- `module`: Python module containing the API implementation
- `protocol`: Name of the protocol class for the API
- `name`: Name of the API
- `pip_packages`: List of pip packages to install the API, typically a single package
## Required Implementation
External APIs must expose a `available_providers()` function in their module that returns a list of provider names:
```python
# llama_stack_api_weather/api.py
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.weather,
provider_type="inline::darksky",
pip_packages=[],
module="llama_stack_provider_darksky",
config_class="llama_stack_provider_darksky.DarkSkyWeatherImplConfig",
),
]
```
A Protocol class like so:
```python
# llama_stack_api_weather/api.py
from typing import Protocol
from llama_stack.schema_utils import webmethod
class WeatherAPI(Protocol):
"""
A protocol for the Weather API.
"""
@webmethod(route="/locations", method="GET")
async def get_available_locations() -> dict[str, list[str]]:
"""
Get the available locations.
"""
...
```
## Example: Custom API
Here's a complete example of creating and using a custom API:
1. First, create the API package:
```bash
mkdir -p llama-stack-api-weather
cd llama-stack-api-weather
mkdir src/llama_stack_api_weather
git init
uv init
```
2. Edit `pyproject.toml`:
```toml
[project]
name = "llama-stack-api-weather"
version = "0.1.0"
description = "Weather API for Llama Stack"
readme = "README.md"
requires-python = ">=3.10"
dependencies = ["llama-stack", "pydantic"]
[build-system]
requires = ["setuptools"]
build-backend = "setuptools.build_meta"
[tool.setuptools.packages.find]
where = ["src"]
include = ["llama_stack_api_weather", "llama_stack_api_weather.*"]
```
3. Create the initial files:
```bash
touch src/llama_stack_api_weather/__init__.py
touch src/llama_stack_api_weather/api.py
```
```python
# llama-stack-api-weather/src/llama_stack_api_weather/__init__.py
"""Weather API for Llama Stack."""
from .api import WeatherAPI, available_providers
__all__ = ["WeatherAPI", "available_providers"]
```
4. Create the API implementation:
```python
# llama-stack-api-weather/src/llama_stack_api_weather/weather.py
from typing import Protocol
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
ProviderSpec,
RemoteProviderSpec,
)
from llama_stack.schema_utils import webmethod
def available_providers() -> list[ProviderSpec]:
return [
RemoteProviderSpec(
api=Api.weather,
provider_type="remote::kaze",
config_class="llama_stack_provider_kaze.KazeProviderConfig",
adapter=AdapterSpec(
adapter_type="kaze",
module="llama_stack_provider_kaze",
pip_packages=["llama_stack_provider_kaze"],
config_class="llama_stack_provider_kaze.KazeProviderConfig",
),
),
]
class WeatherProvider(Protocol):
"""
A protocol for the Weather API.
"""
@webmethod(route="/weather/locations", method="GET")
async def get_available_locations() -> dict[str, list[str]]:
"""
Get the available locations.
"""
...
```
5. Create the API specification:
```yaml
# ~/.llama/apis.d/weather.yaml
module: llama_stack_api_weather
name: weather
pip_packages: ["llama-stack-api-weather"]
protocol: WeatherProvider
```
6. Install the API package:
```bash
uv pip install -e .
```
7. Configure Llama Stack to use external APIs:
```yaml
version: "2"
image_name: "llama-stack-api-weather"
apis:
- weather
providers: {}
external_apis_dir: ~/.llama/apis.d
```
The API will now be available at `/v1/weather/locations`.
## Example: custom provider for the weather API
1. Create the provider package:
```bash
mkdir -p llama-stack-provider-kaze
cd llama-stack-provider-kaze
uv init
```
2. Edit `pyproject.toml`:
```toml
[project]
name = "llama-stack-provider-kaze"
version = "0.1.0"
description = "Kaze weather provider for Llama Stack"
readme = "README.md"
requires-python = ">=3.10"
dependencies = ["llama-stack", "pydantic", "aiohttp"]
[build-system]
requires = ["setuptools"]
build-backend = "setuptools.build_meta"
[tool.setuptools.packages.find]
where = ["src"]
include = ["llama_stack_provider_kaze", "llama_stack_provider_kaze.*"]
```
3. Create the initial files:
```bash
touch src/llama_stack_provider_kaze/__init__.py
touch src/llama_stack_provider_kaze/kaze.py
```
4. Create the provider implementation:
Initialization function:
```python
# llama-stack-provider-kaze/src/llama_stack_provider_kaze/__init__.py
"""Kaze weather provider for Llama Stack."""
from .config import KazeProviderConfig
from .kaze import WeatherKazeAdapter
__all__ = ["KazeProviderConfig", "WeatherKazeAdapter"]
async def get_adapter_impl(config: KazeProviderConfig, _deps):
from .kaze import WeatherKazeAdapter
impl = WeatherKazeAdapter(config)
await impl.initialize()
return impl
```
Configuration:
```python
# llama-stack-provider-kaze/src/llama_stack_provider_kaze/config.py
from pydantic import BaseModel, Field
class KazeProviderConfig(BaseModel):
"""Configuration for the Kaze weather provider."""
base_url: str = Field(
"https://api.kaze.io/v1",
description="Base URL for the Kaze weather API",
)
```
Main implementation:
```python
# llama-stack-provider-kaze/src/llama_stack_provider_kaze/kaze.py
from llama_stack_api_weather.api import WeatherProvider
from .config import KazeProviderConfig
class WeatherKazeAdapter(WeatherProvider):
"""Kaze weather provider implementation."""
def __init__(
self,
config: KazeProviderConfig,
) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def get_available_locations(self) -> dict[str, list[str]]:
"""Get available weather locations."""
return {"locations": ["Paris", "Tokyo"]}
```
5. Create the provider specification:
```yaml
# ~/.llama/providers.d/remote/weather/kaze.yaml
adapter:
adapter_type: kaze
pip_packages: ["llama_stack_provider_kaze"]
config_class: llama_stack_provider_kaze.config.KazeProviderConfig
module: llama_stack_provider_kaze
optional_api_dependencies: []
```
6. Install the provider package:
```bash
uv pip install -e .
```
7. Configure Llama Stack to use the provider:
```yaml
# ~/.llama/run-byoa.yaml
version: "2"
image_name: "llama-stack-api-weather"
apis:
- weather
providers:
weather:
- provider_id: kaze
provider_type: remote::kaze
config: {}
external_apis_dir: ~/.llama/apis.d
external_providers_dir: ~/.llama/providers.d
server:
port: 8321
```
8. Run the server:
```bash
python -m llama_stack.core.server.server --yaml-config ~/.llama/run-byoa.yaml
```
9. Test the API:
```bash
curl -sSf http://127.0.0.1:8321/v1/weather/locations
{"locations":["Paris","Tokyo"]}%
```
## Best Practices
1. **Package Naming**: Use a clear and descriptive name for your API package.
2. **Version Management**: Keep your API package versioned and compatible with the Llama Stack version you're using.
3. **Dependencies**: Only include the minimum required dependencies in your API package.
4. **Documentation**: Include clear documentation in your API package about:
- Installation requirements
- Configuration options
- API endpoints and usage
- Any limitations or known issues
5. **Testing**: Include tests in your API package to ensure it works correctly with Llama Stack.
## Troubleshooting
If your external API isn't being loaded:
1. Check that the `external_apis_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the API package is installed in your Python environment.

View file

@ -1,4 +1,4 @@
# Building AI Applications (Examples)
# AI Application Examples
Llama Stack provides all the building blocks needed to create sophisticated AI applications.
@ -11,6 +11,7 @@ Here are some key topics that will help you build effective agents:
- **[RAG (Retrieval-Augmented Generation)](rag)**: Learn how to enhance your agents with external knowledge through retrieval mechanisms.
- **[Agent](agent)**: Understand the components and design patterns of the Llama Stack agent framework.
- **[Agent Execution Loop](agent_execution_loop)**: Understand how agents process information, make decisions, and execute actions in a continuous loop.
- **[Agents vs Responses API](responses_vs_agents)**: Learn the differences between the Agents API and Responses API, and when to use each one.
- **[Tools](tools)**: Extend your agents' capabilities by integrating with external tools and APIs.
- **[Evals](evals)**: Evaluate your agents' effectiveness and identify areas for improvement.
- **[Telemetry](telemetry)**: Monitor and analyze your agents' performance and behavior.
@ -23,8 +24,10 @@ Here are some key topics that will help you build effective agents:
rag
agent
agent_execution_loop
responses_vs_agents
tools
evals
telemetry
safety
```
playground/index
```

View file

@ -1,4 +1,4 @@
# Llama Stack Playground
## Llama Stack Playground
```{note}
The Llama Stack Playground is currently experimental and subject to change. We welcome feedback and contributions to help improve it.
@ -9,7 +9,7 @@ The Llama Stack Playground is an simple interface which aims to:
- Demo **end-to-end** application code to help users get started to build their own applications
- Provide an **UI** to help users inspect and understand Llama Stack API providers and resources
## Key Features
### Key Features
#### Playground
Interactive pages for users to play with and explore Llama Stack API capabilities.
@ -90,18 +90,18 @@ Interactive pages for users to play with and explore Llama Stack API capabilitie
- Under the hood, it uses Llama Stack's `/<resources>/list` API to get information about each resources.
- Please visit [Core Concepts](https://llama-stack.readthedocs.io/en/latest/concepts/index.html) for more details about the resources.
## Starting the Llama Stack Playground
### Starting the Llama Stack Playground
To start the Llama Stack Playground, run the following commands:
1. Start up the Llama Stack API server
```bash
llama stack build --template together --image-type conda
llama stack build --distro together --image-type venv
llama stack run together
```
2. Start Streamlit UI
```bash
uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py
uv run --with ".[ui]" streamlit run llama_stack.core/ui/app.py
```

View file

@ -0,0 +1,177 @@
# Agents vs OpenAI Responses API
Llama Stack (LLS) provides two different APIs for building AI applications with tool calling capabilities: the **Agents API** and the **OpenAI Responses API**. While both enable AI systems to use tools, and maintain full conversation history, they serve different use cases and have distinct characteristics.
> **Note:** For simple and basic inferencing, you may want to use the [Chat Completions API](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions) directly, before progressing to Agents or Responses API.
## Overview
### LLS Agents API
The Agents API is a full-featured, stateful system designed for complex, multi-turn conversations. It maintains conversation state through persistent sessions identified by a unique session ID. The API supports comprehensive agent lifecycle management, detailed execution tracking, and rich metadata about each interaction through a structured session/turn/step hierarchy. The API can orchestrate multiple tool calls within a single turn.
### OpenAI Responses API
The OpenAI Responses API is a full-featured, stateful system designed for complex, multi-turn conversations, with direct compatibility with OpenAI's conversational patterns enhanced by LLama Stack's tool calling capabilities. It maintains conversation state by chaining responses through a `previous_response_id`, allowing interactions to branch or continue from any prior point. Each response can perform multiple tool calls within a single turn.
### Key Differences
The LLS Agents API uses the Chat Completions API on the backend for inference as it's the industry standard for building AI applications and most LLM providers are compatible with this API. For a detailed comparison between Responses and Chat Completions, see [OpenAI's documentation](https://platform.openai.com/docs/guides/responses-vs-chat-completions).
Additionally, Agents let you specify input/output shields whereas Responses do not (though support is planned). Agents use a linear conversation model referenced by a single session ID. Responses, on the other hand, support branching, where each response can serve as a fork point, and conversations are tracked by the latest response ID. Responses also lets you dynamically choose the model, vector store, files, MCP servers, and more on each inference call, enabling more complex workflows. Agents require a static configuration for these components at the start of the session.
Today the Agents and Responses APIs can be used independently depending on the use case. But, it is also productive to treat the APIs as complementary. It is not currently supported, but it is planned for the LLS Agents API to alternatively use the Responses API as its backend instead of the default Chat Completions API, i.e., enabling a combination of the safety features of Agents with the dynamic configuration and branching capabilities of Responses.
| Feature | LLS Agents API | OpenAI Responses API |
|---------|------------|---------------------|
| **Conversation Management** | Linear persistent sessions | Can branch from any previous response ID |
| **Input/Output Safety Shields** | Supported | Not yet supported |
| **Per-call Flexibility** | Static per-session configuration | Dynamic per-call configuration |
## Use Case Example: Research with Multiple Search Methods
Let's compare how both APIs handle a research task where we need to:
1. Search for current information and examples
2. Access different information sources dynamically
3. Continue the conversation based on search results
### Agents API: Session-based configuration with safety shields
```python
# Create agent with static session configuration
agent = Agent(
client,
model="Llama3.2-3B-Instruct",
instructions="You are a helpful coding assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": ["code_docs"]},
},
"builtin::code_interpreter",
],
input_shields=["llama_guard"],
output_shields=["llama_guard"],
)
session_id = agent.create_session("code_session")
# First turn: Search and execute
response1 = agent.create_turn(
messages=[
{
"role": "user",
"content": "Find examples of sorting algorithms and run a bubble sort on [3,1,4,1,5]",
},
],
session_id=session_id,
)
# Continue conversation in same session
response2 = agent.create_turn(
messages=[
{
"role": "user",
"content": "Now optimize that code and test it with a larger dataset",
},
],
session_id=session_id, # Same session, maintains full context
)
# Agents API benefits:
# ✅ Safety shields protect against malicious code execution
# ✅ Session maintains context between code executions
# ✅ Consistent tool configuration throughout conversation
print(f"First result: {response1.output_message.content}")
print(f"Optimization: {response2.output_message.content}")
```
### Responses API: Dynamic per-call configuration with branching
```python
# First response: Use web search for latest algorithms
response1 = client.responses.create(
model="Llama3.2-3B-Instruct",
input="Search for the latest efficient sorting algorithms and their performance comparisons",
tools=[
{
"type": "web_search",
},
], # Web search for current information
)
# Continue conversation: Switch to file search for local docs
response2 = client.responses.create(
model="Llama3.2-1B-Instruct", # Switch to faster model
input="Now search my uploaded files for existing sorting implementations",
tools=[
{ # Using Responses API built-in tools
"type": "file_search",
"vector_store_ids": ["vs_abc123"], # Vector store containing uploaded files
},
],
previous_response_id=response1.id,
)
# Branch from first response: Try different search approach
response3 = client.responses.create(
model="Llama3.2-3B-Instruct",
input="Instead, search the web for Python-specific sorting best practices",
tools=[{"type": "web_search"}], # Different web search query
previous_response_id=response1.id, # Branch from response1
)
# Responses API benefits:
# ✅ Dynamic tool switching (web search ↔ file search per call)
# ✅ OpenAI-compatible tool patterns (web_search, file_search)
# ✅ Branch conversations to explore different information sources
# ✅ Model flexibility per search type
print(f"Web search results: {response1.output_message.content}")
print(f"File search results: {response2.output_message.content}")
print(f"Alternative web search: {response3.output_message.content}")
```
Both APIs demonstrate distinct strengths that make them valuable on their own for different scenarios. The Agents API excels in providing structured, safety-conscious workflows with persistent session management, while the Responses API offers flexibility through dynamic configuration and OpenAI compatible tool patterns.
## Use Case Examples
### 1. **Research and Analysis with Safety Controls**
**Best Choice: Agents API**
**Scenario:** You're building a research assistant for a financial institution that needs to analyze market data, execute code to process financial models, and search through internal compliance documents. The system must ensure all interactions are logged for regulatory compliance and protected by safety shields to prevent malicious code execution or data leaks.
**Why Agents API?** The Agents API provides persistent session management for iterative research workflows, built-in safety shields to protect against malicious code in financial models, and structured execution logs (session/turn/step) required for regulatory compliance. The static tool configuration ensures consistent access to your knowledge base and code interpreter throughout the entire research session.
### 2. **Dynamic Information Gathering with Branching Exploration**
**Best Choice: Responses API**
**Scenario:** You're building a competitive intelligence tool that helps businesses research market trends. Users need to dynamically switch between web search for current market data and file search through uploaded industry reports. They also want to branch conversations to explore different market segments simultaneously and experiment with different models for various analysis types.
**Why Responses API?** The Responses API's branching capability lets users explore multiple market segments from any research point. Dynamic per-call configuration allows switching between web search and file search as needed, while experimenting with different models (faster models for quick searches, more powerful models for deep analysis). The OpenAI-compatible tool patterns make integration straightforward.
### 3. **OpenAI Migration with Advanced Tool Capabilities**
**Best Choice: Responses API**
**Scenario:** You have an existing application built with OpenAI's Assistants API that uses file search and web search capabilities. You want to migrate to Llama Stack for better performance and cost control while maintaining the same tool calling patterns and adding new capabilities like dynamic vector store selection.
**Why Responses API?** The Responses API provides full OpenAI tool compatibility (`web_search`, `file_search`) with identical syntax, making migration seamless. The dynamic per-call configuration enables advanced features like switching vector stores per query or changing models based on query complexity - capabilities that extend beyond basic OpenAI functionality while maintaining compatibility.
### 4. **Educational Programming Tutor**
**Best Choice: Agents API**
**Scenario:** You're building a programming tutor that maintains student context across multiple sessions, safely executes code exercises, and tracks learning progress with audit trails for educators.
**Why Agents API?** Persistent sessions remember student progress across multiple interactions, safety shields prevent malicious code execution while allowing legitimate programming exercises, and structured execution logs help educators track learning patterns.
### 5. **Advanced Software Debugging Assistant**
**Best Choice: Agents API with Responses Backend**
**Scenario:** You're building a debugging assistant that helps developers troubleshoot complex issues. It needs to maintain context throughout a debugging session, safely execute diagnostic code, switch between different analysis tools dynamically, and branch conversations to explore multiple potential causes simultaneously.
**Why Agents + Responses?** The Agent provides safety shields for code execution and session management for the overall debugging workflow. The underlying Responses API enables dynamic model selection and flexible tool configuration per query, while branching lets you explore different theories (memory leak vs. concurrency issue) from the same debugging point and compare results.
> **Note:** The ability to use Responses API as the backend for Agents is not yet implemented but is planned for a future release. Currently, Agents use Chat Completions API as their backend by default.
## For More Information
- **LLS Agents API**: For detailed information on creating and managing agents, see the [Agents documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html)
- **OpenAI Responses API**: For information on using the OpenAI-compatible responses API, see the [OpenAI API documentation](https://platform.openai.com/docs/api-reference/responses)
- **Chat Completions API**: For the default backend API used by Agents, see the [Chat Completions providers documentation](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions)
- **Agent Execution Loop**: For understanding how agents process turns and steps in their execution, see the [Agent Execution Loop documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent_execution_loop.html)

View file

@ -10,9 +10,11 @@ A Llama Stack API is described as a collection of REST endpoints. We currently s
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
- **VectorIO**: perform operations on vector stores, such as adding documents, searching, and deleting documents
- **Telemetry**: collect telemetry data from the system
- **Post Training**: fine-tune a model
- **Tool Runtime**: interact with various tools and protocols
- **Responses**: generate responses from an LLM using this OpenAI compatible API.
We are working on adding a few more APIs to complete the application lifecycle. These will include:
- **Batch Inference**: run inference on a dataset of inputs
- **Batch Agents**: run agents on a dataset of inputs
- **Post Training**: fine-tune a model
- **Synthetic Data Generation**: generate synthetic data for model development

View file

@ -1,31 +1,39 @@
# Why Llama Stack?
## Llama Stack architecture
Building production AI applications today requires solving multiple challenges:
**Infrastructure Complexity**
- Running large language models efficiently requires specialized infrastructure.
- Different deployment scenarios (local development, cloud, edge) need different solutions.
- Moving from development to production often requires significant rework.
**Essential Capabilities**
- Safety guardrails and content filtering are necessary in an enterprise setting.
- Just model inference is not enough - Knowledge retrieval and RAG capabilities are required.
- Nearly any application needs composable multi-step workflows.
- Finally, without monitoring, observability and evaluation, you end up operating in the dark.
**Lack of Flexibility and Choice**
- Directly integrating with multiple providers creates tight coupling.
- Different providers have different APIs and abstractions.
- Changing providers requires significant code changes.
### Our Solution: A Universal Stack
Llama Stack allows you to build different layers of distributions for your AI workloads using various SDKs and API providers.
```{image} ../../_static/llama-stack.png
:alt: Llama Stack
:width: 400px
```
### Benefits of Llama stack
#### Current challenges in custom AI applications
Building production AI applications today requires solving multiple challenges:
**Infrastructure Complexity**
- Running large language models efficiently requires specialized infrastructure.
- Different deployment scenarios (local development, cloud, edge) need different solutions.
- Moving from development to production often requires significant rework.
**Essential Capabilities**
- Safety guardrails and content filtering are necessary in an enterprise setting.
- Just model inference is not enough - Knowledge retrieval and RAG capabilities are required.
- Nearly any application needs composable multi-step workflows.
- Without monitoring, observability and evaluation, you end up operating in the dark.
**Lack of Flexibility and Choice**
- Directly integrating with multiple providers creates tight coupling.
- Different providers have different APIs and abstractions.
- Changing providers requires significant code changes.
#### Our Solution: A Universal Stack
Llama Stack addresses these challenges through a service-oriented, API-first approach:
**Develop Anywhere, Deploy Everywhere**
@ -59,4 +67,4 @@ Llama Stack addresses these challenges through a service-oriented, API-first app
- **Turnkey Solutions**: Easy to deploy built in solutions for popular deployment scenarios
With Llama Stack, you can focus on building your application while we handle the infrastructure complexity, essential capabilities, and provider integrations.
With Llama Stack, you can focus on building your application while we handle the infrastructure complexity, essential capabilities, and provider integrations.

View file

@ -2,6 +2,10 @@
Given Llama Stack's service-oriented philosophy, a few concepts and workflows arise which may not feel completely natural in the LLM landscape, especially if you are coming with a background in other frameworks.
```{include} architecture.md
:start-after: ## Llama Stack architecture
```
```{include} apis.md
:start-after: ## APIs
```
@ -10,14 +14,10 @@ Given Llama Stack's service-oriented philosophy, a few concepts and workflows ar
:start-after: ## API Providers
```
```{include} resources.md
:start-after: ## Resources
```
```{include} distributions.md
:start-after: ## Distributions
```
```{include} evaluation_concepts.md
:start-after: ## Evaluation Concepts
```{include} resources.md
:start-after: ## Resources
```

View file

@ -52,7 +52,18 @@ extensions = [
"sphinxcontrib.redoc",
"sphinxcontrib.mermaid",
"sphinxcontrib.video",
"sphinx_reredirects"
]
redirects = {
"providers/post_training/index": "../../advanced_apis/post_training/index.html",
"providers/eval/index": "../../advanced_apis/eval/index.html",
"providers/scoring/index": "../../advanced_apis/scoring/index.html",
"playground/index": "../../building_applications/playground/index.html",
"openai/index": "../../providers/index.html#openai-api-compatibility",
"introduction/index": "../concepts/index.html#llama-stack-architecture"
}
myst_enable_extensions = ["colon_fence"]
html_theme = "sphinx_rtd_theme"

View file

@ -11,4 +11,5 @@ See the [Adding a New API Provider](new_api_provider.md) which describes how to
:hidden:
new_api_provider
testing
```

View file

@ -6,7 +6,7 @@ This guide will walk you through the process of adding a new API provider to Lla
- Begin by reviewing the [core concepts](../concepts/index.md) of Llama Stack and choose the API your provider belongs to (Inference, Safety, VectorIO, etc.)
- Determine the provider type ({repopath}`Remote::llama_stack/providers/remote` or {repopath}`Inline::llama_stack/providers/inline`). Remote providers make requests to external services, while inline providers execute implementation locally.
- Add your provider to the appropriate {repopath}`Registry::llama_stack/providers/registry/`. Specify pip dependencies necessary.
- Update any distribution {repopath}`Templates::llama_stack/templates/` `build.yaml` and `run.yaml` files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
- Update any distribution {repopath}`Templates::llama_stack/distributions/` `build.yaml` and `run.yaml` files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
Here are some example PRs to help you get started:
@ -14,10 +14,45 @@ Here are some example PRs to help you get started:
- [Nvidia Inference Implementation](https://github.com/meta-llama/llama-stack/pull/355)
- [Model context protocol Tool Runtime](https://github.com/meta-llama/llama-stack/pull/665)
## Inference Provider Patterns
When implementing Inference providers for OpenAI-compatible APIs, Llama Stack provides several mixin classes to simplify development and ensure consistent behavior across providers.
### OpenAIMixin
The `OpenAIMixin` class provides direct OpenAI API functionality for providers that work with OpenAI-compatible endpoints. It includes:
#### Direct API Methods
- **`openai_completion()`**: Legacy text completion API with full parameter support
- **`openai_chat_completion()`**: Chat completion API supporting streaming, tools, and function calling
- **`openai_embeddings()`**: Text embeddings generation with customizable encoding and dimensions
#### Model Management
- **`check_model_availability()`**: Queries the API endpoint to verify if a model exists and is accessible
#### Client Management
- **`client` property**: Automatically creates and configures AsyncOpenAI client instances using your provider's credentials
#### Required Implementation
To use `OpenAIMixin`, your provider must implement these abstract methods:
```python
@abstractmethod
def get_api_key(self) -> str:
"""Return the API key for authentication"""
pass
@abstractmethod
def get_base_url(self) -> str:
"""Return the OpenAI-compatible API base URL"""
pass
```
## Testing the Provider
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --template together`.
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --distro together`.
### 1. Integration Testing

View file

@ -0,0 +1,4 @@
# Deployment Examples
```{include} kubernetes_deployment.md
```

View file

@ -1,4 +1,4 @@
# Kubernetes Deployment Guide
## Kubernetes Deployment Guide
Instead of starting the Llama Stack and vLLM servers locally. We can deploy them in a Kubernetes cluster.
@ -174,7 +174,7 @@ spec:
- name: llama-stack
image: localhost/llama-stack-run-k8s:latest
imagePullPolicy: IfNotPresent
command: ["python", "-m", "llama_stack.distribution.server.server", "--config", "/app/config.yaml"]
command: ["python", "-m", "llama_stack.core.server.server", "--config", "/app/config.yaml"]
ports:
- containerPort: 5000
volumeMounts:
@ -222,10 +222,21 @@ llama-stack-client --endpoint http://localhost:5000 inference chat-completion --
## Deploying Llama Stack Server in AWS EKS
We've also provided a script to deploy the Llama Stack server in an AWS EKS cluster. Once you have an [EKS cluster](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html), you can run the following script to deploy the Llama Stack server.
We've also provided a script to deploy the Llama Stack server in an AWS EKS cluster.
Prerequisites:
- Set up an [EKS cluster](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html).
- Create a [Github OAuth app](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app) and get the client ID and client secret.
- Set the `Authorization callback URL` to `http://<your-llama-stack-ui-url>/api/auth/callback/`
Run the following script to deploy the Llama Stack server:
```
export HF_TOKEN=<your-huggingface-token>
export GITHUB_CLIENT_ID=<your-github-client-id>
export GITHUB_CLIENT_SECRET=<your-github-client-secret>
export LLAMA_STACK_UI_URL=<your-llama-stack-ui-url>
cd docs/source/distributions/eks
./apply.sh
```

View file

@ -47,30 +47,37 @@ pip install -e .
```
Use the CLI to build your distribution.
The main points to consider are:
1. **Image Type** - Do you want a Conda / venv environment or a Container (eg. Docker)
1. **Image Type** - Do you want a venv environment or a Container (eg. Docker)
2. **Template** - Do you want to use a template to build your distribution? or start from scratch ?
3. **Config** - Do you want to use a pre-existing config file to build your distribution?
```
llama stack build -h
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--list-templates] [--image-type {conda,container,venv}] [--image-name IMAGE_NAME] [--print-deps-only] [--run]
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--distro DISTRIBUTION] [--list-distros] [--image-type {container,venv}] [--image-name IMAGE_NAME] [--print-deps-only]
[--run] [--providers PROVIDERS]
Build a Llama stack container
options:
-h, --help show this help message and exit
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distributions/**/build.yaml. If this argument is not provided, you will
be prompted to enter information interactively (default: None)
--template TEMPLATE Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates (default: None)
--list-templates Show the available templates for building a Llama Stack distribution (default: False)
--image-type {conda,container,venv}
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to
enter information interactively (default: None)
--template TEMPLATE (deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default:
None)
--distro DISTRIBUTION, --distribution DISTRIBUTION
Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default: None)
--list-distros, --list-distributions
Show the available distributions for building a Llama Stack distribution (default: False)
--image-type {container,venv}
Image Type to use for the build. If not specified, will use the image type from the template config. (default: None)
--image-name IMAGE_NAME
[for image-type=conda|container|venv] Name of the conda or virtual environment to use for the build. If not specified, currently active environment will be used if
found. (default: None)
[for image-type=container|venv] Name of the virtual environment to use for the build. If not specified, currently active environment will be used if found. (default:
None)
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
--providers PROVIDERS
Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per
API. (default: None)
```
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
@ -141,10 +148,14 @@ You may then pick a template to build your distribution with providers fitted to
For example, to build a distribution with TGI as the inference provider, you can run:
```
$ llama stack build --template starter
$ llama stack build --distro starter
...
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
```{tip}
The generated `run.yaml` file is a starting point for your configuration. For comprehensive guidance on customizing it for your specific needs, infrastructure, and deployment scenarios, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
:::
:::{tab-item} Building from Scratch
@ -155,7 +166,7 @@ It would be best to start with a template and understand the structure of the co
llama stack build
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
> Enter the image type you want your Llama Stack to be built as (container or conda or venv): conda
> Enter the image type you want your Llama Stack to be built as (container or venv): venv
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
@ -180,10 +191,10 @@ You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack
:::{tab-item} Building from a pre-existing build config file
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
- The config file will be of contents like the ones in `llama_stack/distributions/*build.yaml`.
```
llama stack build --config llama_stack/templates/starter/build.yaml
llama stack build --config llama_stack/distributions/starter/build.yaml
```
:::
@ -249,11 +260,11 @@ Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podm
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
```
llama stack build --template starter --image-type container
llama stack build --distro starter --image-type container
```
```
$ llama stack build --template starter --image-type container
$ llama stack build --distro starter --image-type container
...
Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM python:3.10-slim
...
@ -308,7 +319,7 @@ Now, let's start the Llama Stack Distribution Server. You will need the YAML con
```
llama stack run -h
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--env KEY=VALUE]
[--image-type {conda,venv}] [--enable-ui]
[--image-type {venv}] [--enable-ui]
[config | template]
Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
@ -322,8 +333,8 @@ options:
--image-name IMAGE_NAME
Name of the image to run. Defaults to the current environment (default: None)
--env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times. (default: None)
--image-type {conda,venv}
Image Type used during the build. This can be either conda or venv. (default: None)
--image-type {venv}
Image Type used during the build. This should be venv. (default: None)
--enable-ui Start the UI server (default: False)
```
@ -338,9 +349,6 @@ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-
# Start using a venv
llama stack run --image-type venv ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
# Start using a conda environment
llama stack run --image-type conda ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
```
```

View file

@ -2,11 +2,14 @@
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution:
```{note}
The default `run.yaml` files generated by templates are starting points for your configuration. For guidance on customizing these files for your specific needs, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
```{dropdown} 👋 Click here for a Sample Configuration File
```yaml
version: 2
conda_env: ollama
apis:
- agents
- inference
@ -381,6 +384,166 @@ And must respond with:
If no access attributes are returned, the token is used as a namespace.
### Access control
When authentication is enabled, access to resources is controlled
through the `access_policy` attribute of the auth config section under
server. The value for this is a list of access rules.
Each access rule defines a list of actions either to permit or to
forbid. It may specify a principal or a resource that must match for
the rule to take effect.
Valid actions are create, read, update, and delete. The resource to
match should be specified in the form of a type qualified identifier,
e.g. model::my-model or vector_db::some-db, or a wildcard for all
resources of a type, e.g. model::*. If the principal or resource are
not specified, they will match all requests.
The valid resource types are model, shield, vector_db, dataset,
scoring_function, benchmark, tool, tool_group and session.
A rule may also specify a condition, either a 'when' or an 'unless',
with additional constraints as to where the rule applies. The
constraints supported at present are:
- 'user with <attr-value> in <attr-name>'
- 'user with <attr-value> not in <attr-name>'
- 'user is owner'
- 'user is not owner'
- 'user in owners <attr-name>'
- 'user not in owners <attr-name>'
The attributes defined for a user will depend on how the auth
configuration is defined.
When checking whether a particular action is allowed by the current
user for a resource, all the defined rules are tested in order to find
a match. If a match is found, the request is permitted or forbidden
depending on the type of rule. If no match is found, the request is
denied.
If no explicit rules are specified, a default policy is defined with
which all users can access all resources defined in config but
resources created dynamically can only be accessed by the user that
created them.
Examples:
The following restricts access to particular github users:
```yaml
server:
auth:
provider_config:
type: "github_token"
github_api_base_url: "https://api.github.com"
access_policy:
- permit:
principal: user-1
actions: [create, read, delete]
description: user-1 has full access to all resources
- permit:
principal: user-2
actions: [read]
resource: model::model-1
description: user-2 has read access to model-1 only
```
Similarly, the following restricts access to particular kubernetes
service accounts:
```yaml
server:
auth:
provider_config:
type: "oauth2_token"
audience: https://kubernetes.default.svc.cluster.local
issuer: https://kubernetes.default.svc.cluster.local
tls_cafile: /home/gsim/.minikube/ca.crt
jwks:
uri: https://kubernetes.default.svc.cluster.local:8443/openid/v1/jwks
token: ${env.TOKEN}
access_policy:
- permit:
principal: system:serviceaccount:my-namespace:my-serviceaccount
actions: [create, read, delete]
description: specific serviceaccount has full access to all resources
- permit:
principal: system:serviceaccount:default:default
actions: [read]
resource: model::model-1
description: default account has read access to model-1 only
```
The following policy, which assumes that users are defined with roles
and teams by whichever authentication system is in use, allows any
user with a valid token to use models, create resources other than
models, read and delete resources they created and read resources
created by users sharing a team with them:
```
access_policy:
- permit:
actions: [read]
resource: model::*
description: all users have read access to models
- forbid:
actions: [create, delete]
resource: model::*
unless: user with admin in roles
description: only user with admin role can create or delete models
- permit:
actions: [create, read, delete]
when: user is owner
description: users can create resources other than models and read and delete those they own
- permit:
actions: [read]
when: user in owner teams
description: any user has read access to any resource created by a user with the same team
```
#### API Endpoint Authorization with Scopes
In addition to resource-based access control, Llama Stack supports endpoint-level authorization using OAuth 2.0 style scopes. When authentication is enabled, specific API endpoints require users to have particular scopes in their authentication token.
**Scope-Gated APIs:**
The following APIs are currently gated by scopes:
- **Telemetry API** (scope: `telemetry.read`):
- `POST /telemetry/traces` - Query traces
- `GET /telemetry/traces/{trace_id}` - Get trace by ID
- `GET /telemetry/traces/{trace_id}/spans/{span_id}` - Get span by ID
- `POST /telemetry/spans/{span_id}/tree` - Get span tree
- `POST /telemetry/spans` - Query spans
- `POST /telemetry/metrics/{metric_name}` - Query metrics
**Authentication Configuration:**
For **JWT/OAuth2 providers**, scopes should be included in the JWT's claims:
```json
{
"sub": "user123",
"scope": "telemetry.read",
"aud": "llama-stack"
}
```
For **custom authentication providers**, the endpoint must return user attributes including the `scopes` array:
```json
{
"principal": "user123",
"attributes": {
"scopes": ["telemetry.read"]
}
}
```
**Behavior:**
- Users without the required scope receive a 403 Forbidden response
- When authentication is disabled, scope checks are bypassed
- Endpoints without `required_scope` work normally for all authenticated users
### Quota Configuration
The `quota` section allows you to enable server-side request throttling for both

View file

@ -0,0 +1,40 @@
# Customizing run.yaml Files
The `run.yaml` files generated by Llama Stack templates are **starting points** designed to be customized for your specific needs. They are not meant to be used as-is in production environments.
## Key Points
- **Templates are starting points**: Generated `run.yaml` files contain defaults for development/testing
- **Customization expected**: Update URLs, credentials, models, and settings for your environment
- **Version control separately**: Keep customized configs in your own repository
- **Environment-specific**: Create different configurations for dev, staging, production
## What You Can Customize
You can customize:
- **Provider endpoints**: Change `http://localhost:8000` to your actual servers
- **Swap providers**: Replace default providers (e.g., swap Tavily with Brave for search)
- **Storage paths**: Move from `/tmp/` to production directories
- **Authentication**: Add API keys, SSL, timeouts
- **Models**: Different model sizes for dev vs prod
- **Database settings**: Switch from SQLite to PostgreSQL
- **Tool configurations**: Add custom tools and integrations
## Best Practices
- Use environment variables for secrets and environment-specific values
- Create separate `run.yaml` files for different environments (dev, staging, prod)
- Document your changes with comments
- Test configurations before deployment
- Keep your customized configs in version control
Example structure:
```
your-project/
├── configs/
│ ├── dev-run.yaml
│ ├── prod-run.yaml
└── README.md
```
The goal is to take the generated template and adapt it to your specific infrastructure and operational needs.

View file

@ -6,14 +6,14 @@ This avoids the overhead of setting up a server.
```bash
# setup
uv pip install llama-stack
llama stack build --template starter --image-type venv
llama stack build --distro starter --image-type venv
```
```python
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient(
"ollama",
"starter",
# provider_data is optional, but if you need to pass in any provider specific data, you can do so here.
provider_data={"tavily_search_api_key": os.environ["TAVILY_SEARCH_API_KEY"]},
)

View file

@ -6,13 +6,10 @@ This section provides an overview of the distributions available in Llama Stack.
```{toctree}
:maxdepth: 3
list_of_distributions
building_distro
customizing_run_yaml
starting_llama_stack_server
importing_as_library
configuration
list_of_distributions
kubernetes_deployment
building_distro
on_device_distro
remote_hosted_distro
self_hosted_distro
```

View file

@ -21,6 +21,24 @@ else
exit 1
fi
if [ -z "${GITHUB_CLIENT_ID:-}" ]; then
echo "ERROR: GITHUB_CLIENT_ID not set. You need it for Github login to work. Refer to https://llama-stack.readthedocs.io/en/latest/deploying/index.html#kubernetes-deployment-guide"
exit 1
fi
if [ -z "${GITHUB_CLIENT_SECRET:-}" ]; then
echo "ERROR: GITHUB_CLIENT_SECRET not set. You need it for Github login to work. Refer to https://llama-stack.readthedocs.io/en/latest/deploying/index.html#kubernetes-deployment-guide"
exit 1
fi
if [ -z "${LLAMA_STACK_UI_URL:-}" ]; then
echo "ERROR: LLAMA_STACK_UI_URL not set. Should be set to the external URL of the UI (excluding port). You need it for Github login to work. Refer to https://llama-stack.readthedocs.io/en/latest/deploying/index.html#kubernetes-deployment-guide"
exit 1
fi
set -euo pipefail
set -x

View file

@ -34,6 +34,13 @@ data:
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -122,6 +129,9 @@ data:
provider_id: rag-runtime
server:
port: 8321
auth:
provider_config:
type: github_token
kind: ConfigMap
metadata:
creationTimestamp: null

View file

@ -27,7 +27,7 @@ spec:
spec:
containers:
- name: llama-stack
image: llamastack/distribution-remote-vllm:latest
image: llamastack/distribution-starter:latest
imagePullPolicy: Always # since we have specified latest instead of a version
env:
- name: ENABLE_CHROMADB
@ -52,7 +52,7 @@ spec:
value: "${SAFETY_MODEL}"
- name: TAVILY_SEARCH_API_KEY
value: "${TAVILY_SEARCH_API_KEY}"
command: ["python", "-m", "llama_stack.distribution.server.server", "--config", "/etc/config/stack_run_config.yaml", "--port", "8321"]
command: ["python", "-m", "llama_stack.core.server.server", "--config", "/etc/config/stack_run_config.yaml", "--port", "8321"]
ports:
- containerPort: 8321
volumeMounts:

View file

@ -31,6 +31,13 @@ providers:
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -119,3 +126,6 @@ tool_groups:
provider_id: rag-runtime
server:
port: 8321
auth:
provider_config:
type: github_token

View file

@ -26,6 +26,12 @@ spec:
value: "http://llama-stack-service:8321"
- name: LLAMA_STACK_UI_PORT
value: "8322"
- name: GITHUB_CLIENT_ID
value: "${GITHUB_CLIENT_ID}"
- name: GITHUB_CLIENT_SECRET
value: "${GITHUB_CLIENT_SECRET}"
- name: NEXTAUTH_URL
value: "${LLAMA_STACK_UI_URL}:8322"
args:
- -c
- |

View file

@ -56,12 +56,12 @@ Breaking down the demo app, this section will show the core pieces that are used
### Setup Remote Inferencing
Start a Llama Stack server on localhost. Here is an example of how you can do this using the firework.ai distribution:
```
conda create -n stack-fireworks python=3.10
conda activate stack-fireworks
uv venv starter --python 3.12
source starter/bin/activate # On Windows: starter\Scripts\activate
pip install --no-cache llama-stack==0.2.2
llama stack build --template fireworks --image-type conda
llama stack build --distro starter --image-type venv
export FIREWORKS_API_KEY=<SOME_KEY>
llama stack run fireworks --port 5050
llama stack run starter --port 5050
```
Ensure the Llama Stack server version is the same as the Kotlin SDK Library for maximum compatibility.

View file

@ -57,7 +57,7 @@ Make sure you have access to a watsonx API Key. You can get one by referring [wa
## Running Llama Stack with watsonx
You can do this via Conda (build code), venv or Docker which has a pre-built image.
You can do this via venv or Docker which has a pre-built image.
### Via Docker
@ -76,13 +76,3 @@ docker run \
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID \
--env WATSONX_BASE_URL=$WATSONX_BASE_URL
```
### Via Conda
```bash
llama stack build --template watsonx --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env WATSONX_API_KEY=$WATSONX_API_KEY \
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID
```

View file

@ -114,7 +114,7 @@ podman run --rm -it \
## Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via venv or Docker which has a pre-built image.
### Via Docker
@ -153,7 +153,7 @@ docker run \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $HOME/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
-v ./llama_stack/distributions/tgi/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-dell \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
@ -164,12 +164,12 @@ docker run \
--env CHROMA_URL=$CHROMA_URL
```
### Via Conda
### Via venv
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template dell --image-type conda
llama stack build --distro dell --image-type venv
llama stack run dell
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \

View file

@ -70,7 +70,7 @@ $ llama model list --downloaded
## Running the Distribution
You can do this via Conda (build code) or Docker which has a pre-built image.
You can do this via venv or Docker which has a pre-built image.
### Via Docker
@ -104,12 +104,12 @@ docker run \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
```
### Via Conda
### Via venv
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template meta-reference-gpu --image-type conda
llama stack build --distro meta-reference-gpu --image-type venv
llama stack run distributions/meta-reference-gpu/run.yaml \
--port 8321 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

View file

@ -1,3 +1,6 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# NVIDIA Distribution
@ -37,16 +40,16 @@ The following environment variables can be configured:
The following models are available by default:
- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)`
- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)`
- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `meta/llama-3.3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `meta/llama3-8b-instruct `
- `meta/llama3-70b-instruct `
- `meta/llama-3.1-8b-instruct `
- `meta/llama-3.1-70b-instruct `
- `meta/llama-3.1-405b-instruct `
- `meta/llama-3.2-1b-instruct `
- `meta/llama-3.2-3b-instruct `
- `meta/llama-3.2-11b-vision-instruct `
- `meta/llama-3.2-90b-vision-instruct `
- `meta/llama-3.3-70b-instruct `
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
- `nvidia/nv-embedqa-e5-v5 `
- `nvidia/nv-embedqa-mistral-7b-v2 `
@ -130,7 +133,7 @@ curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-inst
## Running Llama Stack with NVIDIA
You can do this via Conda or venv (build code), or Docker which has a pre-built image.
You can do this via venv (build code), or Docker which has a pre-built image.
### Via Docker
@ -149,24 +152,13 @@ docker run \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
```
### Via Conda
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
### Via venv
If you've set up your local development environment, you can also build the image using your local virtual environment.
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
llama stack build --template nvidia --image-type venv
INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
llama stack build --distro nvidia --image-type venv
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \

View file

@ -100,10 +100,6 @@ The following environment variables can be configured:
### Model Configuration
- `INFERENCE_MODEL`: HuggingFace model for serverless inference
- `INFERENCE_ENDPOINT_NAME`: HuggingFace endpoint name
- `OLLAMA_INFERENCE_MODEL`: Ollama model name
- `OLLAMA_EMBEDDING_MODEL`: Ollama embedding model name
- `OLLAMA_EMBEDDING_DIMENSION`: Ollama embedding dimension (default: `384`)
- `VLLM_INFERENCE_MODEL`: vLLM model name
### Vector Database Configuration
- `SQLITE_STORE_DIR`: SQLite store directory (default: `~/.llama/distributions/starter`)
@ -127,47 +123,29 @@ The following environment variables can be configured:
## Enabling Providers
You can enable specific providers by setting their provider ID to a valid value using environment variables. This is useful when you want to use certain providers or don't have the required API keys.
You can enable specific providers by setting appropriate environment variables. For example,
### Examples of Enabling Providers
#### Enable FAISS Vector Provider
```bash
export ENABLE_FAISS=faiss
# self-hosted
export OLLAMA_URL=http://localhost:11434 # enables the Ollama inference provider
export VLLM_URL=http://localhost:8000/v1 # enables the vLLM inference provider
export TGI_URL=http://localhost:8000/v1 # enables the TGI inference provider
# cloud-hosted requiring API key configuration on the server
export CEREBRAS_API_KEY=your_cerebras_api_key # enables the Cerebras inference provider
export NVIDIA_API_KEY=your_nvidia_api_key # enables the NVIDIA inference provider
# vector providers
export MILVUS_URL=http://localhost:19530 # enables the Milvus vector provider
export CHROMADB_URL=http://localhost:8000/v1 # enables the ChromaDB vector provider
export PGVECTOR_DB=llama_stack_db # enables the PGVector vector provider
```
#### Enable Ollama Models
```bash
export ENABLE_OLLAMA=ollama
```
#### Disable vLLM Models
```bash
export VLLM_INFERENCE_MODEL=__disabled__
```
#### Disable Optional Vector Providers
```bash
export ENABLE_SQLITE_VEC=__disabled__
export ENABLE_CHROMADB=__disabled__
export ENABLE_PGVECTOR=__disabled__
```
### Provider ID Patterns
The starter distribution uses several patterns for provider IDs:
1. **Direct provider IDs**: `faiss`, `ollama`, `vllm`
2. **Environment-based provider IDs**: `${env.ENABLE_SQLITE_VEC+sqlite-vec}`
3. **Model-based provider IDs**: `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`
When using the `+` pattern (like `${env.ENABLE_SQLITE_VEC+sqlite-vec}`), the provider is enabled by default and can be disabled by setting the environment variable to `__disabled__`.
When using the `:` pattern (like `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`), the provider is disabled by default and can be enabled by setting the environment variable to a valid value.
This distribution comes with a default "llama-guard" shield that can be enabled by setting the `SAFETY_MODEL` environment variable to point to an appropriate Llama Guard model id. Use `llama-stack-client models list` to see the list of available models.
## Running the Distribution
You can run the starter distribution via Docker or Conda.
You can run the starter distribution via Docker or venv.
### Via Docker
@ -186,17 +164,12 @@ docker run \
--port $LLAMA_STACK_PORT
```
### Via Conda
### Via venv
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
Ensure you have configured the starter distribution using the environment variables explained above.
```bash
llama stack build --template starter --image-type conda
llama stack run distributions/starter/run.yaml \
--port 8321 \
--env OPENAI_API_KEY=your_openai_key \
--env FIREWORKS_API_KEY=your_fireworks_key \
--env TOGETHER_API_KEY=your_together_key
uv run --with llama-stack llama stack build --distro starter --image-type venv --run
```
## Example Usage

View file

@ -11,12 +11,6 @@ This is the simplest way to get started. Using Llama Stack as a library means yo
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
## Conda:
If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details.
## Kubernetes:
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details.
@ -28,5 +22,4 @@ If you have built a container image and want to deploy it in a Kubernetes cluste
importing_as_library
configuration
kubernetes_deployment
```

View file

@ -0,0 +1,67 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
vector_db_id = "my_demo_vector_db"
client = LlamaStackClient(base_url="http://localhost:8321")
models = client.models.list()
# Select the first LLM and first embedding models
model_id = next(m for m in models if m.model_type == "llm").identifier
embedding_model_id = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = em.metadata["embedding_dimension"]
_ = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
source = "https://www.paulgraham.com/greatwork.html"
print("rag_tool> Ingesting document:", source)
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={},
)
client.tool_runtime.rag_tool.insert(
documents=[document],
vector_db_id=vector_db_id,
chunk_size_in_tokens=50,
)
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": [vector_db_id]},
}
],
)
prompt = "How do you do great work?"
print("prompt>", prompt)
use_stream = True
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=agent.create_session("rag_session"),
stream=use_stream,
)
# Only call `AgentEventLogger().log(response)` for streaming responses.
if use_stream:
for log in AgentEventLogger().log(response):
log.print()
else:
print(response)

View file

@ -1,4 +1,4 @@
# Detailed Tutorial
## Detailed Tutorial
In this guide, we'll walk through how you can use the Llama Stack (server and client SDK) to test a simple agent.
A Llama Stack agent is a simple integrated system that can perform tasks by combining a Llama model for reasoning with
@ -10,7 +10,7 @@ Llama Stack is a stateful service with REST APIs to support seamless transition
In this guide, we'll walk through how to build a RAG agent locally using Llama Stack with [Ollama](https://ollama.com/)
as the inference [provider](../providers/index.md#inference) for a Llama Model.
## Step 1: Installation and Setup
### Step 1: Installation and Setup
Install Ollama by following the instructions on the [Ollama website](https://ollama.com/download), then
download Llama 3.2 3B model, and then start the Ollama service.
@ -45,7 +45,7 @@ Setup your virtual environment.
uv sync --python 3.12
source .venv/bin/activate
```
## Step 2: Run Llama Stack
### Step 2: Run Llama Stack
Llama Stack is a server that exposes multiple APIs, you connect with it using the Llama Stack client SDK.
::::{tab-set}
@ -54,15 +54,15 @@ Llama Stack is a server that exposes multiple APIs, you connect with it using th
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup,
which defines the providers and their settings.
which defines the providers and their settings. The generated configuration serves as a starting point that you can [customize for your specific needs](../distributions/customizing_run_yaml.md).
Now let's build and run the Llama Stack config for Ollama.
We use `starter` as template. By default all providers are disabled, this requires enable ollama by passing environment variables.
```bash
ENABLE_OLLAMA=ollama OLLAMA_INFERENCE_MODEL="llama3.2:3b" llama stack build --template starter --image-type venv --run
llama stack build --distro starter --image-type venv --run
```
:::
:::{tab-item} Using `conda`
:::{tab-item} Using `venv`
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup,
@ -70,18 +70,16 @@ which defines the providers and their settings.
Now let's build and run the Llama Stack config for Ollama.
```bash
ENABLE_OLLAMA=ollama INFERENCE_MODEL="llama3.2:3b" llama stack build --template starter --image-type conda --run
llama stack build --distro starter --image-type venv --run
```
:::
:::{tab-item} Using a Container
You can use a container image to run the Llama Stack server. We provide several container images for the server
component that works with different inference providers out of the box. For this guide, we will use
`llamastack/distribution-starter` as the container image. If you'd like to build your own image or customize the
configurations, please check out [this guide](../references/index.md).
configurations, please check out [this guide](../distributions/building_distro.md).
First lets setup some environment variables and create a local directory to mount into the containers file system.
```bash
export INFERENCE_MODEL="llama3.2:3b"
export ENABLE_OLLAMA=ollama
export LLAMA_STACK_PORT=8321
mkdir -p ~/.llama
```
@ -94,7 +92,6 @@ docker run -it \
-v ~/.llama:/root/.llama \
llamastack/distribution-starter \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
Note to start the container with Podman, you can do the same but replace `docker` at the start of the command with
@ -116,7 +113,6 @@ docker run -it \
--network=host \
llamastack/distribution-starter \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
:::
@ -132,7 +128,7 @@ Now you can use the Llama Stack client to run inference and build agents!
You can reuse the server setup or use the [Llama Stack Client](https://github.com/meta-llama/llama-stack-client-python/).
Note that the client package is already included in the `llama-stack` package.
## Step 3: Run Client CLI
### Step 3: Run Client CLI
Open a new terminal and navigate to the same directory you started the server from. Then set up a new or activate your
existing server virtual environment.
@ -154,13 +150,7 @@ pip install llama-stack-client
```
:::
:::{tab-item} Install with `conda`
```bash
yes | conda create -n stack-client python=3.12
conda activate stack-client
pip install llama-stack-client
```
:::
::::
Now let's use the `llama-stack-client` [CLI](../references/llama_stack_client_cli_reference.md) to check the
@ -232,7 +222,7 @@ OpenAIChatCompletion(
)
```
## Step 4: Run the Demos
### Step 4: Run the Demos
Note that these demos show the [Python Client SDK](../references/python_sdk_reference/index.md).
Other SDKs are also available, please refer to the [Client SDK](../index.md#client-sdks) list for the complete options.
@ -242,7 +232,7 @@ Other SDKs are also available, please refer to the [Client SDK](../index.md#clie
:::{tab-item} Basic Inference
Now you can run inference using the Llama Stack client SDK.
### i. Create the Script
#### i. Create the Script
Create a file `inference.py` and add the following code:
```python
@ -269,7 +259,7 @@ response = client.chat.completions.create(
print(response)
```
### ii. Run the Script
#### ii. Run the Script
Let's run the script using `uv`
```bash
uv run python inference.py
@ -283,7 +273,7 @@ OpenAIChatCompletion(id='chatcmpl-30cd0f28-a2ad-4b6d-934b-13707fc60ebf', choices
:::{tab-item} Build a Simple Agent
Next we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server.
### i. Create the Script
#### i. Create the Script
Create a file `agent.py` and add the following code:
```python
@ -455,7 +445,7 @@ uv run python agent.py
For our last demo, we can build a RAG agent that can answer questions about the Torchtune project using the documents
in a vector database.
### i. Create the Script
#### i. Create the Script
Create a file `rag_agent.py` and add the following code:
```python
@ -533,7 +523,7 @@ for t in turns:
for event in AgentEventLogger().log(stream):
event.print()
```
### ii. Run the Script
#### ii. Run the Script
Let's run the script using `uv`
```bash
uv run python rag_agent.py

View file

@ -1,123 +1,13 @@
# Quickstart
# Getting Started
Get started with Llama Stack in minutes!
Llama Stack is a stateful service with REST APIs to support the seamless transition of AI applications across different
environments. You can build and test using a local server first and deploy to a hosted endpoint for production.
In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)
as the inference [provider](../providers/inference/index) for a Llama Model.
**💡 Notebook Version:** You can also follow this quickstart guide in a Jupyter notebook format: [quick_start.ipynb](https://github.com/meta-llama/llama-stack/blob/main/docs/quick_start.ipynb)
#### Step 1: Install and setup
1. Install [uv](https://docs.astral.sh/uv/)
2. Run inference on a Llama model with [Ollama](https://ollama.com/download)
```bash
ollama run llama3.2:3b --keepalive 60m
```{include} quickstart.md
:start-after: ## Quickstart
```
#### Step 2: Run the Llama Stack server
We will use `uv` to run the Llama Stack server.
```bash
INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template starter --image-type venv --run
```{include} libraries.md
:start-after: ## Libraries (SDKs)
```
#### Step 3: Run the demo
Now open up a new terminal and copy the following script into a file named `demo_script.py`.
```python
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
vector_db_id = "my_demo_vector_db"
client = LlamaStackClient(base_url="http://localhost:8321")
models = client.models.list()
# Select the first LLM and first embedding models
model_id = next(m for m in models if m.model_type == "llm").identifier
embedding_model_id = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = em.metadata["embedding_dimension"]
_ = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
source = "https://www.paulgraham.com/greatwork.html"
print("rag_tool> Ingesting document:", source)
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={},
)
client.tool_runtime.rag_tool.insert(
documents=[document],
vector_db_id=vector_db_id,
chunk_size_in_tokens=50,
)
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": [vector_db_id]},
}
],
)
prompt = "How do you do great work?"
print("prompt>", prompt)
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=agent.create_session("rag_session"),
stream=True,
)
for log in AgentEventLogger().log(response):
log.print()
```{include} detailed_tutorial.md
:start-after: ## Detailed Tutorial
```
We will use `uv` to run the script
```
uv run --with llama-stack-client,fire,requests demo_script.py
```
And you should see output like below.
```
rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html
prompt> How do you do great work?
inference> [knowledge_search(query="What is the key to doing great work")]
tool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text="Result 1:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 2:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 3:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 4:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 5:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
inference> Based on the search results, it seems that doing great work means doing something important so well that you expand people's ideas of what's possible. However, there is no clear threshold for importance, and it can be difficult to judge at the time.
To further clarify, I would suggest that doing great work involves:
* Completing tasks with high quality and attention to detail
* Expanding on existing knowledge or ideas
* Making a positive impact on others through your work
* Striving for excellence and continuous improvement
Ultimately, great work is about making a meaningful contribution and leaving a lasting impression.
```
Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳
## Next Steps
Now you're ready to dive deeper into Llama Stack!
- Explore the [Detailed Tutorial](./detailed_tutorial.md).
- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).
- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).
- Learn about Llama Stack [Concepts](../concepts/index.md).
- Discover how to [Build Llama Stacks](../distributions/index.md).
- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.
- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials.

View file

@ -0,0 +1,10 @@
## Libraries (SDKs)
We have a number of client-side SDKs available for different languages.
| **Language** | **Client SDK** | **Package** |
| :----: | :----: | :----: |
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [![PyPI version](https://img.shields.io/pypi/v/llama_stack_client.svg)](https://pypi.org/project/llama_stack_client/)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/tree/latest-release) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [![NPM version](https://img.shields.io/npm/v/llama-stack-client.svg)](https://npmjs.org/package/llama-stack-client)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)

View file

@ -0,0 +1,77 @@
## Quickstart
Get started with Llama Stack in minutes!
Llama Stack is a stateful service with REST APIs to support the seamless transition of AI applications across different
environments. You can build and test using a local server first and deploy to a hosted endpoint for production.
In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)
as the inference [provider](../providers/inference/index) for a Llama Model.
**💡 Notebook Version:** You can also follow this quickstart guide in a Jupyter notebook format: [quick_start.ipynb](https://github.com/meta-llama/llama-stack/blob/main/docs/quick_start.ipynb)
#### Step 1: Install and setup
1. Install [uv](https://docs.astral.sh/uv/)
2. Run inference on a Llama model with [Ollama](https://ollama.com/download)
```bash
ollama run llama3.2:3b --keepalive 60m
```
#### Step 2: Run the Llama Stack server
We will use `uv` to run the Llama Stack server.
```bash
OLLAMA_URL=http://localhost:11434 \
uv run --with llama-stack llama stack build --distro starter --image-type venv --run
```
#### Step 3: Run the demo
Now open up a new terminal and copy the following script into a file named `demo_script.py`.
```{literalinclude} ./demo_script.py
:language: python
```
We will use `uv` to run the script
```
uv run --with llama-stack-client,fire,requests demo_script.py
```
And you should see output like below.
```
rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html
prompt> How do you do great work?
inference> [knowledge_search(query="What is the key to doing great work")]
tool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text="Result 1:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 2:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 3:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 4:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 5:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
inference> Based on the search results, it seems that doing great work means doing something important so well that you expand people's ideas of what's possible. However, there is no clear threshold for importance, and it can be difficult to judge at the time.
To further clarify, I would suggest that doing great work involves:
* Completing tasks with high quality and attention to detail
* Expanding on existing knowledge or ideas
* Making a positive impact on others through your work
* Striving for excellence and continuous improvement
Ultimately, great work is about making a meaningful contribution and leaving a lasting impression.
```
Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳
```{admonition} HuggingFace access
:class: tip
If you are getting a **401 Client Error** from HuggingFace for the **all-MiniLM-L6-v2** model, try setting **HF_TOKEN** to a valid HuggingFace token in your environment
```
### Next Steps
Now you're ready to dive deeper into Llama Stack!
- Explore the [Detailed Tutorial](./detailed_tutorial.md).
- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).
- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).
- Learn about Llama Stack [Concepts](../concepts/index.md).
- Discover how to [Build Llama Stacks](../distributions/index.md).
- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.
- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials.

View file

@ -40,17 +40,6 @@ Kotlin.
- Ready to build? Check out the [Quick Start](getting_started/index) to get started.
- Want to contribute? See the [Contributing](contributing/index) guide.
## Client SDKs
We have a number of client-side SDKs available for different languages.
| **Language** | **Client SDK** | **Package** |
| :----: | :----: | :----: |
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [![PyPI version](https://img.shields.io/pypi/v/llama_stack_client.svg)](https://pypi.org/project/llama_stack_client/)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/tree/latest-release) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [![NPM version](https://img.shields.io/npm/v/llama-stack-client.svg)](https://npmjs.org/package/llama-stack-client)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
## Supported Llama Stack Implementations
A number of "adapters" are available for some popular Inference and Vector Store providers. For other APIs (particularly Safety and Agents), we provide *reference implementations* you can use to get started. We expect this list to grow over time. We are slowly onboarding more providers to the ecosystem as we get more confidence in the APIs.
@ -133,14 +122,12 @@ A number of "adapters" are available for some popular Inference and Vector Store
self
getting_started/index
getting_started/detailed_tutorial
introduction/index
concepts/index
openai/index
providers/index
distributions/index
advanced_apis/index
building_applications/index
playground/index
deploying/index
contributing/index
references/index
```

View file

@ -1,5 +1,13 @@
# Agents Providers
# Agents
## Overview
This section contains documentation for all available providers for the **agents** API.
- [inline::meta-reference](inline_meta-reference.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
```

View file

@ -1,7 +1,15 @@
# Datasetio Providers
# Datasetio
## Overview
This section contains documentation for all available providers for the **datasetio** API.
- [inline::localfs](inline_localfs.md)
- [remote::huggingface](remote_huggingface.md)
- [remote::nvidia](remote_nvidia.md)
## Providers
```{toctree}
:maxdepth: 1
inline_localfs
remote_huggingface
remote_nvidia
```

View file

@ -1,6 +1,14 @@
# Eval Providers
# Eval
## Overview
This section contains documentation for all available providers for the **eval** API.
- [inline::meta-reference](inline_meta-reference.md)
- [remote::nvidia](remote_nvidia.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
remote_nvidia
```

View file

@ -1,13 +1,17 @@
# External Providers Guide
Llama Stack supports external providers that live outside of the main codebase. This allows you to:
- Create and maintain your own providers independently
- Share providers with others without contributing to the main codebase
- Keep provider-specific code separate from the core Llama Stack code
# Creating External Providers
## Configuration
To enable external providers, you need to configure the `external_providers_dir` in your Llama Stack configuration. This directory should contain your external provider specifications:
To enable external providers, you need to add `module` into your build yaml, allowing Llama Stack to install the required package corresponding to the external provider.
an example entry in your build.yaml should look like:
```
- provider_type: remote::ramalama
module: ramalama_stack
```
Additionally you can configure the `external_providers_dir` in your Llama Stack configuration. This method is in the process of being deprecated in favor of the `module` method. If using this method, the external provider directory should contain your external provider specifications:
```yaml
external_providers_dir: ~/.llama/providers.d/
@ -46,17 +50,6 @@ Llama Stack supports two types of external providers:
1. **Remote Providers**: Providers that communicate with external services (e.g., cloud APIs)
2. **Inline Providers**: Providers that run locally within the Llama Stack process
## Known External Providers
Here's a list of known external providers that you can use with Llama Stack:
| Name | Description | API | Type | Repository |
|------|-------------|-----|------|------------|
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
### Remote Provider Specification
Remote providers are used when you need to communicate with external services. Here's an example for a custom Ollama provider:
@ -110,9 +103,34 @@ container_image: custom-vector-store:latest # optional
- `provider_data_validator`: Optional validator for provider data
- `container_image`: Optional container image to use instead of pip packages
## Required Implementation
## Required Fields
### Remote Providers
### All Providers
All providers must contain a `get_provider_spec` function in their `provider` module. This is a standardized structure that Llama Stack expects and is necessary for getting things such as the config class. The `get_provider_spec` method returns a structure identical to the `adapter`. An example function may look like:
```python
from llama_stack.providers.datatypes import (
ProviderSpec,
Api,
AdapterSpec,
remote_provider_spec,
)
def get_provider_spec() -> ProviderSpec:
return remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="ramalama",
pip_packages=["ramalama>=0.8.5", "pymilvus"],
config_class="ramalama_stack.config.RamalamaImplConfig",
module="ramalama_stack",
),
)
```
#### Remote Providers
Remote providers must expose a `get_adapter_impl()` function in their module that takes two arguments:
1. `config`: An instance of the provider's config class
@ -128,7 +146,7 @@ async def get_adapter_impl(
return OllamaInferenceAdapter(config)
```
### Inline Providers
#### Inline Providers
Inline providers must expose a `get_provider_impl()` function in their module that takes two arguments:
1. `config`: An instance of the provider's config class
@ -155,7 +173,40 @@ Version: 0.1.0
Location: /path/to/venv/lib/python3.10/site-packages
```
## Example: Custom Ollama Provider
## Best Practices
1. **Package Naming**: Use the prefix `llama-stack-provider-` for your provider packages to make them easily identifiable.
2. **Version Management**: Keep your provider package versioned and compatible with the Llama Stack version you're using.
3. **Dependencies**: Only include the minimum required dependencies in your provider package.
4. **Documentation**: Include clear documentation in your provider package about:
- Installation requirements
- Configuration options
- Usage examples
- Any limitations or known issues
5. **Testing**: Include tests in your provider package to ensure it works correctly with Llama Stack.
You can refer to the [integration tests
guide](https://github.com/meta-llama/llama-stack/blob/main/tests/integration/README.md) for more
information. Execute the test for the Provider type you are developing.
## Troubleshooting
If your external provider isn't being loaded:
1. Check that `module` points to a published pip package with a top level `provider` module including `get_provider_spec`.
1. Check that the `external_providers_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more
information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the provider package is installed in your Python environment if using `external_providers_dir`.
## Examples
### Example using `external_providers_dir`: Custom Ollama Provider
Here's a complete example of creating and using a custom Ollama provider:
@ -206,32 +257,30 @@ external_providers_dir: ~/.llama/providers.d/
The provider will now be available in Llama Stack with the type `remote::custom_ollama`.
## Best Practices
1. **Package Naming**: Use the prefix `llama-stack-provider-` for your provider packages to make them easily identifiable.
### Example using `module`: ramalama-stack
2. **Version Management**: Keep your provider package versioned and compatible with the Llama Stack version you're using.
[ramalama-stack](https://github.com/containers/ramalama-stack) is a recognized external provider that supports installation via module.
3. **Dependencies**: Only include the minimum required dependencies in your provider package.
To install Llama Stack with this external provider a user can provider the following build.yaml:
4. **Documentation**: Include clear documentation in your provider package about:
- Installation requirements
- Configuration options
- Usage examples
- Any limitations or known issues
```yaml
version: 2
distribution_spec:
description: Use (an external) Ramalama server for running LLM inference
container_image: null
providers:
inference:
- provider_type: remote::ramalama
module: ramalama_stack==0.3.0a0
image_type: venv
image_name: null
external_providers_dir: null
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]
```
5. **Testing**: Include tests in your provider package to ensure it works correctly with Llama Stack.
You can refer to the [integration tests
guide](https://github.com/meta-llama/llama-stack/blob/main/tests/integration/README.md) for more
information. Execute the test for the Provider type you are developing.
No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc.
## Troubleshooting
If your external provider isn't being loaded:
1. Check that the `external_providers_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more
information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the provider package is installed in your Python environment.
The provider will now be available in Llama Stack with the type `remote::ramalama`.

View file

@ -0,0 +1,10 @@
# Known External Providers
Here's a list of known external providers that you can use with Llama Stack:
| Name | Description | API | Type | Repository |
|------|-------------|-----|------|------------|
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |

13
docs/source/providers/external/index.md vendored Normal file
View file

@ -0,0 +1,13 @@
# External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to:
- Create and maintain your own providers independently
- Share providers with others without contributing to the main codebase
- Keep provider-specific code separate from the core Llama Stack code
```{toctree}
:maxdepth: 1
external-providers-list
external-providers-guide
```

View file

@ -1,5 +1,13 @@
# Files Providers
# Files
## Overview
This section contains documentation for all available providers for the **files** API.
- [inline::localfs](inline_localfs.md)
## Providers
```{toctree}
:maxdepth: 1
inline_localfs
```

View file

@ -8,7 +8,7 @@ Local filesystem-based file storage provider for managing files and documents lo
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `storage_dir` | `<class 'str'>` | No | PydanticUndefined | Directory to store uploaded files |
| `storage_dir` | `<class 'str'>` | No | | Directory to store uploaded files |
| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata |
| `ttl_secs` | `<class 'int'>` | No | 31536000 | |

View file

@ -1,4 +1,4 @@
# Providers Overview
# API Providers
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
- LLM inference providers (e.g., Meta Reference, Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, OpenAI, Anthropic, Gemini, WatsonX, etc.),
@ -12,105 +12,17 @@ Providers come in two flavors:
Importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
## External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently.
```{toctree}
:maxdepth: 1
external
```
## Agents
Run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
```{toctree}
:maxdepth: 1
agents/index
```
## DatasetIO
Interfaces with datasets and data loaders.
```{toctree}
:maxdepth: 1
datasetio/index
```
## Eval
Generates outputs (via Inference or Agents) and perform scoring.
```{toctree}
:maxdepth: 1
eval/index
```
## Inference
Runs inference with an LLM.
```{toctree}
:maxdepth: 1
external/index
openai
inference/index
```
## Post Training
Fine-tunes a model.
```{toctree}
:maxdepth: 1
post_training/index
```
## Safety
Applies safety policies to the output at a Systems (not only model) level.
```{toctree}
:maxdepth: 1
agents/index
datasetio/index
safety/index
```
## Scoring
Evaluates the outputs of the system.
```{toctree}
:maxdepth: 1
scoring/index
```
## Telemetry
Collects telemetry data from the system.
```{toctree}
:maxdepth: 1
telemetry/index
```
## Tool Runtime
Is associated with the ToolGroup resouces.
```{toctree}
:maxdepth: 1
tool_runtime/index
```
## Vector IO
Vector IO refers to operations on vector databases, such as adding documents, searching, and deleting documents.
Vector IO plays a crucial role in [Retreival Augmented Generation (RAG)](../..//building_applications/rag), where the vector
io and database are used to store and retrieve documents for retrieval.
```{toctree}
:maxdepth: 1
vector_io/index
tool_runtime/index
files/index
```

View file

@ -1,32 +1,34 @@
# Inference Providers
# Inference
## Overview
This section contains documentation for all available providers for the **inference** API.
- [inline::meta-reference](inline_meta-reference.md)
- [inline::sentence-transformers](inline_sentence-transformers.md)
- [inline::vllm](inline_vllm.md)
- [remote::anthropic](remote_anthropic.md)
- [remote::bedrock](remote_bedrock.md)
- [remote::cerebras](remote_cerebras.md)
- [remote::cerebras-openai-compat](remote_cerebras-openai-compat.md)
- [remote::databricks](remote_databricks.md)
- [remote::fireworks](remote_fireworks.md)
- [remote::fireworks-openai-compat](remote_fireworks-openai-compat.md)
- [remote::gemini](remote_gemini.md)
- [remote::groq](remote_groq.md)
- [remote::groq-openai-compat](remote_groq-openai-compat.md)
- [remote::hf::endpoint](remote_hf_endpoint.md)
- [remote::hf::serverless](remote_hf_serverless.md)
- [remote::llama-openai-compat](remote_llama-openai-compat.md)
- [remote::nvidia](remote_nvidia.md)
- [remote::ollama](remote_ollama.md)
- [remote::openai](remote_openai.md)
- [remote::passthrough](remote_passthrough.md)
- [remote::runpod](remote_runpod.md)
- [remote::sambanova](remote_sambanova.md)
- [remote::sambanova-openai-compat](remote_sambanova-openai-compat.md)
- [remote::tgi](remote_tgi.md)
- [remote::together](remote_together.md)
- [remote::together-openai-compat](remote_together-openai-compat.md)
- [remote::vllm](remote_vllm.md)
- [remote::watsonx](remote_watsonx.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
inline_sentence-transformers
remote_anthropic
remote_bedrock
remote_cerebras
remote_databricks
remote_fireworks
remote_gemini
remote_groq
remote_hf_endpoint
remote_hf_serverless
remote_llama-openai-compat
remote_nvidia
remote_ollama
remote_openai
remote_passthrough
remote_runpod
remote_sambanova
remote_tgi
remote_together
remote_vllm
remote_watsonx
```

View file

@ -1,29 +0,0 @@
# inline::vllm
## Description
vLLM inference provider for high-performance model serving with PagedAttention and continuous batching.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `tensor_parallel_size` | `<class 'int'>` | No | 1 | Number of tensor parallel replicas (number of GPUs to use). |
| `max_tokens` | `<class 'int'>` | No | 4096 | Maximum number of tokens to generate. |
| `max_model_len` | `<class 'int'>` | No | 4096 | Maximum context length to use during serving. |
| `max_num_seqs` | `<class 'int'>` | No | 4 | Maximum parallel batch size for generation. |
| `enforce_eager` | `<class 'bool'>` | No | False | Whether to use eager mode for inference (otherwise cuda graphs are used). |
| `gpu_memory_utilization` | `<class 'float'>` | No | 0.3 | How much GPU memory will be allocated when this provider has finished loading, including memory that was already allocated before loading. |
## Sample Configuration
```yaml
tensor_parallel_size: ${env.TENSOR_PARALLEL_SIZE:=1}
max_tokens: ${env.MAX_TOKENS:=4096}
max_model_len: ${env.MAX_MODEL_LEN:=4096}
max_num_seqs: ${env.MAX_NUM_SEQS:=4}
enforce_eager: ${env.ENFORCE_EAGER:=False}
gpu_memory_utilization: ${env.GPU_MEMORY_UTILIZATION:=0.3}
```

View file

@ -13,7 +13,7 @@ Anthropic inference provider for accessing Claude models and Anthropic's AI serv
## Sample Configuration
```yaml
api_key: ${env.ANTHROPIC_API_KEY}
api_key: ${env.ANTHROPIC_API_KEY:=}
```

View file

@ -1,21 +0,0 @@
# remote::cerebras-openai-compat
## Description
Cerebras OpenAI-compatible provider for using Cerebras models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Cerebras API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.cerebras.ai/v1 | The URL for the Cerebras API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.cerebras.ai/v1
api_key: ${env.CEREBRAS_API_KEY}
```

View file

@ -15,7 +15,7 @@ Cerebras inference provider for running models on Cerebras Cloud platform.
```yaml
base_url: https://api.cerebras.ai
api_key: ${env.CEREBRAS_API_KEY}
api_key: ${env.CEREBRAS_API_KEY:=}
```

View file

@ -14,8 +14,8 @@ Databricks inference provider for running models on Databricks' unified analytic
## Sample Configuration
```yaml
url: ${env.DATABRICKS_URL}
api_token: ${env.DATABRICKS_API_TOKEN}
url: ${env.DATABRICKS_URL:=}
api_token: ${env.DATABRICKS_API_TOKEN:=}
```

View file

@ -1,21 +0,0 @@
# remote::fireworks-openai-compat
## Description
Fireworks AI OpenAI-compatible provider for using Fireworks models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Fireworks API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY}
```

View file

@ -8,6 +8,7 @@ Fireworks AI inference provider for Llama models and other AI models on the Fire
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `url` | `<class 'str'>` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks server |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Fireworks.ai API Key |
@ -15,7 +16,7 @@ Fireworks AI inference provider for Llama models and other AI models on the Fire
```yaml
url: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY}
api_key: ${env.FIREWORKS_API_KEY:=}
```

View file

@ -13,7 +13,7 @@ Google Gemini inference provider for accessing Gemini models and Google's AI ser
## Sample Configuration
```yaml
api_key: ${env.GEMINI_API_KEY}
api_key: ${env.GEMINI_API_KEY:=}
```

View file

@ -1,21 +0,0 @@
# remote::groq-openai-compat
## Description
Groq OpenAI-compatible provider for using Groq models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Groq API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.groq.com/openai/v1 | The URL for the Groq API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.groq.com/openai/v1
api_key: ${env.GROQ_API_KEY}
```

View file

@ -15,7 +15,7 @@ Groq inference provider for ultra-fast inference using Groq's LPU technology.
```yaml
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY}
api_key: ${env.GROQ_API_KEY:=}
```

View file

@ -8,7 +8,7 @@ HuggingFace Inference Endpoints provider for dedicated model serving.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `endpoint_name` | `<class 'str'>` | No | PydanticUndefined | The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided. |
| `endpoint_name` | `<class 'str'>` | No | | The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided. |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
## Sample Configuration

View file

@ -8,7 +8,7 @@ HuggingFace Inference API serverless provider for on-demand model inference.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `huggingface_repo` | `<class 'str'>` | No | PydanticUndefined | The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct') |
| `huggingface_repo` | `<class 'str'>` | No | | The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct') |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
## Sample Configuration

View file

@ -9,6 +9,7 @@ Ollama inference provider for running local models through the Ollama runtime.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `<class 'str'>` | No | http://localhost:11434 | |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |
## Sample Configuration

View file

@ -9,11 +9,13 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | API key for OpenAI models |
| `base_url` | `<class 'str'>` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
## Sample Configuration
```yaml
api_key: ${env.OPENAI_API_KEY}
api_key: ${env.OPENAI_API_KEY:=}
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
```

View file

@ -15,7 +15,7 @@ SambaNova OpenAI-compatible provider for using SambaNova models with OpenAI API
```yaml
openai_compat_api_base: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
api_key: ${env.SAMBANOVA_API_KEY:=}
```

View file

@ -15,7 +15,7 @@ SambaNova inference provider for running models on SambaNova's dataflow architec
```yaml
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
api_key: ${env.SAMBANOVA_API_KEY:=}
```

View file

@ -8,12 +8,12 @@ Text Generation Inference (TGI) provider for HuggingFace model serving.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `<class 'str'>` | No | PydanticUndefined | The URL for the TGI serving endpoint |
| `url` | `<class 'str'>` | No | | The URL for the TGI serving endpoint |
## Sample Configuration
```yaml
url: ${env.TGI_URL}
url: ${env.TGI_URL:=}
```

View file

@ -1,21 +0,0 @@
# remote::together-openai-compat
## Description
Together AI OpenAI-compatible provider for using Together models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Together API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.together.xyz/v1 | The URL for the Together API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY}
```

View file

@ -8,6 +8,7 @@ Together AI inference provider for open-source models and collaborative AI devel
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `url` | `<class 'str'>` | No | https://api.together.xyz/v1 | The URL for the Together AI server |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Together AI API Key |
@ -15,7 +16,7 @@ Together AI inference provider for open-source models and collaborative AI devel
```yaml
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY}
api_key: ${env.TOGETHER_API_KEY:=}
```

View file

@ -12,11 +12,12 @@ Remote vLLM inference provider for connecting to vLLM servers.
| `max_tokens` | `<class 'int'>` | No | 4096 | Maximum number of tokens to generate. |
| `api_token` | `str \| None` | No | fake | The API token |
| `tls_verify` | `bool \| str` | No | True | Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |
## Sample Configuration
```yaml
url: ${env.VLLM_URL}
url: ${env.VLLM_URL:=}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}

View file

@ -1,14 +1,14 @@
# OpenAI API Compatibility
## OpenAI API Compatibility
## Server path
### Server path
Llama Stack exposes an OpenAI-compatible API endpoint at `/v1/openai/v1`. So, for a Llama Stack server running locally on port `8321`, the full url to the OpenAI-compatible API endpoint is `http://localhost:8321/v1/openai/v1`.
## Clients
### Clients
You should be able to use any client that speaks OpenAI APIs with Llama Stack. We regularly test with the official Llama Stack clients as well as OpenAI's official Python client.
### Llama Stack Client
#### Llama Stack Client
When using the Llama Stack client, set the `base_url` to the root of your Llama Stack server. It will automatically route OpenAI-compatible requests to the right server endpoint for you.
@ -18,7 +18,7 @@ from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url="http://localhost:8321")
```
### OpenAI Client
#### OpenAI Client
When using an OpenAI client, set the `base_url` to the `/v1/openai/v1` path on your Llama Stack server.
@ -30,9 +30,9 @@ client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="none")
Regardless of the client you choose, the following code examples should all work the same.
## APIs implemented
### APIs implemented
### Models
#### Models
Many of the APIs require you to pass in a model parameter. To see the list of models available in your Llama Stack server:
@ -40,13 +40,13 @@ Many of the APIs require you to pass in a model parameter. To see the list of mo
models = client.models.list()
```
### Responses
#### Responses
:::{note}
The Responses API implementation is still in active development. While it is quite usable, there are still unimplemented parts of the API. We'd love feedback on any use-cases you try that do not work to help prioritize the pieces left to implement. Please open issues in the [meta-llama/llama-stack](https://github.com/meta-llama/llama-stack) GitHub repository with details of anything that does not work.
:::
#### Simple inference
##### Simple inference
Request:
@ -66,7 +66,7 @@ Syntax whispers secrets sweet
Code's gentle silence
```
#### Structured Output
##### Structured Output
Request:
@ -106,9 +106,9 @@ Example output:
{ "participants": ["Alice", "Bob"] }
```
### Chat Completions
#### Chat Completions
#### Simple inference
##### Simple inference
Request:
@ -129,7 +129,7 @@ Logic flows like a river
Code's gentle beauty
```
#### Structured Output
##### Structured Output
Request:
@ -170,9 +170,9 @@ Example output:
{ "participants": ["Alice", "Bob"] }
```
### Completions
#### Completions
#### Simple inference
##### Simple inference
Request:

View file

@ -1,7 +1,15 @@
# Post_Training Providers
# Post_Training
## Overview
This section contains documentation for all available providers for the **post_training** API.
- [inline::huggingface](inline_huggingface.md)
- [inline::torchtune](inline_torchtune.md)
- [remote::nvidia](remote_nvidia.md)
## Providers
```{toctree}
:maxdepth: 1
inline_huggingface
inline_torchtune
remote_nvidia
```

View file

@ -24,6 +24,10 @@ HuggingFace-based post-training provider for fine-tuning models using the Huggin
| `weight_decay` | `<class 'float'>` | No | 0.01 | |
| `dataloader_num_workers` | `<class 'int'>` | No | 4 | |
| `dataloader_pin_memory` | `<class 'bool'>` | No | True | |
| `dpo_beta` | `<class 'float'>` | No | 0.1 | |
| `use_reference_model` | `<class 'bool'>` | No | True | |
| `dpo_loss_type` | `Literal['sigmoid', 'hinge', 'ipo', 'kto_pair'` | No | sigmoid | |
| `dpo_output_dir` | `<class 'str'>` | No | | |
## Sample Configuration
@ -31,6 +35,7 @@ HuggingFace-based post-training provider for fine-tuning models using the Huggin
checkpoint_format: huggingface
distributed_backend: null
device: cpu
dpo_output_dir: ~/.llama/dummy/dpo_output
```

View file

@ -1,10 +1,18 @@
# Safety Providers
# Safety
## Overview
This section contains documentation for all available providers for the **safety** API.
- [inline::code-scanner](inline_code-scanner.md)
- [inline::llama-guard](inline_llama-guard.md)
- [inline::prompt-guard](inline_prompt-guard.md)
- [remote::bedrock](remote_bedrock.md)
- [remote::nvidia](remote_nvidia.md)
- [remote::sambanova](remote_sambanova.md)
## Providers
```{toctree}
:maxdepth: 1
inline_code-scanner
inline_llama-guard
inline_prompt-guard
remote_bedrock
remote_nvidia
remote_sambanova
```

View file

@ -15,7 +15,7 @@ SambaNova's safety provider for content moderation and safety filtering.
```yaml
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
api_key: ${env.SAMBANOVA_API_KEY:=}
```

View file

@ -1,7 +1,15 @@
# Scoring Providers
# Scoring
## Overview
This section contains documentation for all available providers for the **scoring** API.
- [inline::basic](inline_basic.md)
- [inline::braintrust](inline_braintrust.md)
- [inline::llm-as-judge](inline_llm-as-judge.md)
## Providers
```{toctree}
:maxdepth: 1
inline_basic
inline_braintrust
inline_llm-as-judge
```

View file

@ -1,5 +1,13 @@
# Telemetry Providers
# Telemetry
## Overview
This section contains documentation for all available providers for the **telemetry** API.
- [inline::meta-reference](inline_meta-reference.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
```

View file

@ -1,10 +1,18 @@
# Tool_Runtime Providers
# Tool_Runtime
## Overview
This section contains documentation for all available providers for the **tool_runtime** API.
- [inline::rag-runtime](inline_rag-runtime.md)
- [remote::bing-search](remote_bing-search.md)
- [remote::brave-search](remote_brave-search.md)
- [remote::model-context-protocol](remote_model-context-protocol.md)
- [remote::tavily-search](remote_tavily-search.md)
- [remote::wolfram-alpha](remote_wolfram-alpha.md)
## Providers
```{toctree}
:maxdepth: 1
inline_rag-runtime
remote_bing-search
remote_brave-search
remote_model-context-protocol
remote_tavily-search
remote_wolfram-alpha
```

View file

@ -1,17 +1,17 @@
# Vector_Io Providers
## Providers
This section contains documentation for all available providers for the **vector_io** API.
```{toctree}
:maxdepth: 1
- [inline::chromadb](inline_chromadb.md)
- [inline::faiss](inline_faiss.md)
- [inline::meta-reference](inline_meta-reference.md)
- [inline::milvus](inline_milvus.md)
- [inline::qdrant](inline_qdrant.md)
- [inline::sqlite-vec](inline_sqlite-vec.md)
- [inline::sqlite_vec](inline_sqlite_vec.md)
- [remote::chromadb](remote_chromadb.md)
- [remote::milvus](remote_milvus.md)
- [remote::opengauss](remote_opengauss.md)
- [remote::pgvector](remote_pgvector.md)
- [remote::qdrant](remote_qdrant.md)
- [remote::weaviate](remote_weaviate.md)
inline_chromadb
inline_faiss
inline_meta-reference
inline_milvus
inline_qdrant
inline_sqlite-vec
remote_chromadb
remote_milvus
remote_opengauss
remote_pgvector
remote_qdrant
remote_weaviate

View file

@ -41,12 +41,16 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | PydanticUndefined | |
| `db_path` | `<class 'str'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
## Sample Configuration
```yaml
db_path: ${env.CHROMADB_PATH}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_inline_registry.db
```

View file

@ -10,7 +10,7 @@ Please refer to the remote provider documentation.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | PydanticUndefined | |
| `db_path` | `<class 'str'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |

View file

@ -50,12 +50,16 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `path` | `<class 'str'>` | No | PydanticUndefined | |
| `path` | `<class 'str'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
```

View file

@ -205,7 +205,7 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | PydanticUndefined | Path to the SQLite database file |
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -10,7 +10,7 @@ Please refer to the sqlite-vec provider documentation.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | PydanticUndefined | Path to the SQLite database file |
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -40,12 +40,16 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `str \| None` | No | PydanticUndefined | |
| `url` | `str \| None` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
## Sample Configuration
```yaml
url: ${env.CHROMADB_URL}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_remote_registry.db
```

View file

@ -111,10 +111,10 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `uri` | `<class 'str'>` | No | PydanticUndefined | The URI of the Milvus server |
| `token` | `str \| None` | No | PydanticUndefined | The token of the Milvus server |
| `uri` | `<class 'str'>` | No | | The URI of the Milvus server |
| `token` | `str \| None` | No | | The token of the Milvus server |
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
| `config` | `dict` | No | {} | This configuration allows additional fields to be passed through to the underlying Milvus client. See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. |
> **Note**: This configuration class accepts additional fields beyond those listed above. You can pass any additional configuration options that will be forwarded to the underlying provider.
@ -124,6 +124,9 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
```yaml
uri: ${env.MILVUS_ENDPOINT}
token: ${env.MILVUS_TOKEN}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/milvus_remote_registry.db
```

View file

@ -17,7 +17,7 @@ That means you'll get fast and efficient vector retrieval.
To use PGVector in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use Faiss.
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
3. Start storing and querying vectors.
## Installation
@ -40,6 +40,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
| `db` | `str \| None` | No | postgres | |
| `user` | `str \| None` | No | postgres | |
| `password` | `str \| None` | No | mysecretpassword | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration
@ -49,6 +50,9 @@ port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB}
user: ${env.PGVECTOR_USER}
password: ${env.PGVECTOR_PASSWORD}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/pgvector_registry.db
```

View file

@ -20,11 +20,15 @@ Please refer to the inline provider documentation.
| `prefix` | `str \| None` | No | | |
| `timeout` | `int \| None` | No | | |
| `host` | `str \| None` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
api_key: ${env.QDRANT_API_KEY}
api_key: ${env.QDRANT_API_KEY:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
```

View file

@ -33,10 +33,22 @@ To install Weaviate see the [Weaviate quickstart documentation](https://weaviate
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance |
| `weaviate_cluster_url` | `str \| None` | No | localhost:8080 | The URL of the Weaviate cluster |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration
```yaml
{}
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/weaviate_registry.db
```

Some files were not shown because too many files have changed in this diff Show more