Merge branch 'main' into opengauss-add

This commit is contained in:
windy 2025-08-08 20:58:48 +08:00 committed by GitHub
commit 39e49ab97a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
807 changed files with 79555 additions and 26772 deletions

View file

@ -43,14 +43,30 @@ class ModelsProtocolPrivate(Protocol):
-> Provider uses provider-model-id for inference
"""
# this should be called `on_model_register` or something like that.
# the provider should _not_ be able to change the object in this
# callback
async def register_model(self, model: Model) -> Model: ...
async def unregister_model(self, model_id: str) -> None: ...
# the Stack router will query each provider for their list of models
# if a `refresh_interval_seconds` is provided, this method will be called
# periodically to refresh the list of models
#
# NOTE: each model returned will be registered with the model registry. this means
# a callback to the `register_model()` method will be made. this is duplicative and
# may be removed in the future.
async def list_models(self) -> list[Model] | None: ...
async def should_refresh_models(self) -> bool: ...
class ShieldsProtocolPrivate(Protocol):
async def register_shield(self, shield: Shield) -> None: ...
async def unregister_shield(self, identifier: str) -> None: ...
class VectorDBsProtocolPrivate(Protocol):
async def register_vector_db(self, vector_db: VectorDB) -> None: ...
@ -104,6 +120,19 @@ class ProviderSpec(BaseModel):
description="If this provider is deprecated and does NOT work, specify the error message here",
)
module: str | None = Field(
default=None,
description="""
Fully-qualified name of the module to import. The module is expected to have:
- `get_adapter_impl(config, deps)`: returns the adapter implementation
Example: `module: ramalama_stack`
""",
)
is_external: bool = Field(default=False, description="Notes whether this provider is an external provider.")
# used internally by the resolver; this is a hack for now
deps__: list[str] = Field(default_factory=list)
@ -113,7 +142,7 @@ class ProviderSpec(BaseModel):
class RoutingTable(Protocol):
def get_provider_impl(self, routing_key: str) -> Any: ...
async def get_provider_impl(self, routing_key: str) -> Any: ...
# TODO: this can now be inlined into RemoteProviderSpec
@ -124,7 +153,7 @@ class AdapterSpec(BaseModel):
description="Unique identifier for this adapter",
)
module: str = Field(
...,
default_factory=str,
description="""
Fully-qualified name of the module to import. The module is expected to have:
@ -162,14 +191,7 @@ The container image to use for this implementation. If one is provided, pip_pack
If a provider depends on other providers, the dependencies MUST NOT specify a container image.
""",
)
module: str = Field(
...,
description="""
Fully-qualified name of the module to import. The module is expected to have:
- `get_provider_impl(config, deps)`: returns the local implementation
""",
)
# module field is inherited from ProviderSpec
provider_data_validator: str | None = Field(
default=None,
)
@ -212,9 +234,7 @@ API responses, specify the adapter here.
def container_image(self) -> str | None:
return None
@property
def module(self) -> str:
return self.adapter.module
# module field is inherited from ProviderSpec
@property
def pip_packages(self) -> list[str]:
@ -226,14 +246,19 @@ API responses, specify the adapter here.
def remote_provider_spec(
api: Api, adapter: AdapterSpec, api_dependencies: list[Api] | None = None
api: Api,
adapter: AdapterSpec,
api_dependencies: list[Api] | None = None,
optional_api_dependencies: list[Api] | None = None,
) -> RemoteProviderSpec:
return RemoteProviderSpec(
api=api,
provider_type=f"remote::{adapter.adapter_type}",
config_class=adapter.config_class,
module=adapter.module,
adapter=adapter,
api_dependencies=api_dependencies or [],
optional_api_dependencies=optional_api_dependencies or [],
)

View file

@ -6,7 +6,7 @@
from typing import Any
from llama_stack.distribution.datatypes import AccessRule, Api
from llama_stack.core.datatypes import AccessRule, Api
from .config import MetaReferenceAgentsImplConfig

View file

@ -10,6 +10,7 @@ import re
import secrets
import string
import uuid
import warnings
from collections.abc import AsyncGenerator
from datetime import UTC, datetime
@ -43,6 +44,7 @@ from llama_stack.apis.common.content_types import (
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.common.errors import SessionNotFoundError
from llama_stack.apis.inference import (
ChatCompletionResponseEventType,
CompletionMessage,
@ -60,7 +62,7 @@ from llama_stack.apis.inference import (
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.datatypes import AccessRule
from llama_stack.core.datatypes import AccessRule
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import (
BuiltinTool,
@ -213,7 +215,7 @@ class ChatAgent(ShieldRunnerMixin):
is_resume = isinstance(request, AgentTurnResumeRequest)
session_info = await self.storage.get_session_info(request.session_id)
if session_info is None:
raise ValueError(f"Session {request.session_id} not found")
raise SessionNotFoundError(request.session_id)
turns = await self.storage.get_session_turns(request.session_id)
if is_resume and len(turns) == 0:
@ -911,8 +913,16 @@ async def load_data_from_url(url: str) -> str:
async def get_raw_document_text(document: Document) -> str:
if not document.mime_type.startswith("text/"):
# Handle deprecated text/yaml mime type with warning
if document.mime_type == "text/yaml":
warnings.warn(
"The 'text/yaml' MIME type is deprecated. Please use 'application/yaml' instead.",
DeprecationWarning,
stacklevel=2,
)
elif not (document.mime_type.startswith("text/") or document.mime_type == "application/yaml"):
raise ValueError(f"Unexpected document mime type: {document.mime_type}")
if isinstance(document.content, URL):
return await load_data_from_url(document.content.uri)
elif isinstance(document.content, str):

View file

@ -41,7 +41,7 @@ from llama_stack.apis.inference import (
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.datatypes import AccessRule
from llama_stack.core.datatypes import AccessRule
from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_impl
from llama_stack.providers.utils.pagination import paginate_records
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
@ -230,8 +230,6 @@ class MetaReferenceAgentsImpl(Agents):
agent = await self._get_agent_impl(agent_id)
session_info = await agent.storage.get_session_info(session_id)
if session_info is None:
raise ValueError(f"Session {session_id} not found")
turns = await agent.storage.get_session_turns(session_id)
if turn_ids:
turns = [turn for turn in turns if turn.turn_id in turn_ids]
@ -244,9 +242,6 @@ class MetaReferenceAgentsImpl(Agents):
async def delete_agents_session(self, agent_id: str, session_id: str) -> None:
agent = await self._get_agent_impl(agent_id)
session_info = await agent.storage.get_session_info(session_id)
if session_info is None:
raise ValueError(f"Session {session_id} not found")
# Delete turns first, then the session
await agent.storage.delete_session_turns(session_id)

View file

@ -10,10 +10,11 @@ import uuid
from datetime import UTC, datetime
from llama_stack.apis.agents import AgentConfig, Session, ToolExecutionStep, Turn
from llama_stack.distribution.access_control.access_control import AccessDeniedError, is_action_allowed
from llama_stack.distribution.access_control.datatypes import AccessRule
from llama_stack.distribution.datatypes import User
from llama_stack.distribution.request_headers import get_authenticated_user
from llama_stack.apis.common.errors import SessionNotFoundError
from llama_stack.core.access_control.access_control import AccessDeniedError, is_action_allowed
from llama_stack.core.access_control.datatypes import AccessRule
from llama_stack.core.datatypes import User
from llama_stack.core.request_headers import get_authenticated_user
from llama_stack.providers.utils.kvstore import KVStore
log = logging.getLogger(__name__)
@ -61,12 +62,12 @@ class AgentPersistence:
)
return session_id
async def get_session_info(self, session_id: str) -> AgentSessionInfo | None:
async def get_session_info(self, session_id: str) -> AgentSessionInfo:
value = await self.kvstore.get(
key=f"session:{self.agent_id}:{session_id}",
)
if not value:
return None
raise SessionNotFoundError(session_id)
session_info = AgentSessionInfo(**json.loads(value))
@ -95,7 +96,7 @@ class AgentPersistence:
async def add_vector_db_to_session(self, session_id: str, vector_db_id: str):
session_info = await self.get_session_if_accessible(session_id)
if session_info is None:
raise ValueError(f"Session {session_id} not found or access denied")
raise SessionNotFoundError(session_id)
session_info.vector_db_id = vector_db_id
await self.kvstore.set(
@ -105,7 +106,7 @@ class AgentPersistence:
async def add_turn_to_session(self, session_id: str, turn: Turn):
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
raise SessionNotFoundError(session_id)
await self.kvstore.set(
key=f"session:{self.agent_id}:{session_id}:{turn.turn_id}",
@ -114,7 +115,7 @@ class AgentPersistence:
async def get_session_turns(self, session_id: str) -> list[Turn]:
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
raise SessionNotFoundError(session_id)
values = await self.kvstore.values_in_range(
start_key=f"session:{self.agent_id}:{session_id}:",
@ -128,11 +129,16 @@ class AgentPersistence:
except Exception as e:
log.error(f"Error parsing turn: {e}")
continue
# The kvstore does not guarantee order, so we sort by started_at
# to ensure consistent ordering of turns.
turns.sort(key=lambda t: t.started_at)
return turns
async def get_session_turn(self, session_id: str, turn_id: str) -> Turn | None:
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
raise SessionNotFoundError(session_id)
value = await self.kvstore.get(
key=f"session:{self.agent_id}:{session_id}:{turn_id}",
@ -143,7 +149,7 @@ class AgentPersistence:
async def set_in_progress_tool_call_step(self, session_id: str, turn_id: str, step: ToolExecutionStep):
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
raise SessionNotFoundError(session_id)
await self.kvstore.set(
key=f"in_progress_tool_call_step:{self.agent_id}:{session_id}:{turn_id}",
@ -161,7 +167,7 @@ class AgentPersistence:
async def set_num_infer_iters_in_turn(self, session_id: str, turn_id: str, num_infer_iters: int):
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
raise SessionNotFoundError(session_id)
await self.kvstore.set(
key=f"num_infer_iters_in_turn:{self.agent_id}:{session_id}:{turn_id}",
@ -213,6 +219,6 @@ class AgentPersistence:
"""
session_info = await self.get_session_info(session_id)
if session_info is None:
raise ValueError(f"Session {session_id} not found")
raise SessionNotFoundError(session_id)
await self.kvstore.delete(key=f"session:{self.agent_id}:{session_id}")

View file

@ -5,8 +5,6 @@
# the root directory of this source tree.
from typing import Any
import pandas
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Dataset
@ -44,6 +42,8 @@ class PandasDataframeDataset:
if self.dataset_def.source.type == "uri":
self.df = await get_dataframe_from_uri(self.dataset_def.source.uri)
elif self.dataset_def.source.type == "rows":
import pandas
self.df = pandas.DataFrame(self.dataset_def.source.rows)
else:
raise ValueError(f"Unsupported dataset source type: {self.dataset_def.source.type}")
@ -103,6 +103,8 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
return paginate_records(records, start_index, limit)
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
import pandas
dataset_def = self.dataset_infos[dataset_id]
dataset_impl = PandasDataframeDataset(dataset_def)
await dataset_impl.load()

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import MetaReferenceEvalConfig

View file

@ -6,7 +6,7 @@
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import AccessRule, Api
from .config import LocalfsFilesImplConfig
from .files import LocalfsFilesImpl
@ -14,7 +14,7 @@ from .files import LocalfsFilesImpl
__all__ = ["LocalfsFilesImpl", "LocalfsFilesImplConfig"]
async def get_provider_impl(config: LocalfsFilesImplConfig, deps: dict[Api, Any]):
impl = LocalfsFilesImpl(config)
async def get_provider_impl(config: LocalfsFilesImplConfig, deps: dict[Api, Any], policy: list[AccessRule]):
impl = LocalfsFilesImpl(config, policy)
await impl.initialize()
return impl

View file

@ -19,16 +19,19 @@ from llama_stack.apis.files import (
OpenAIFileObject,
OpenAIFilePurpose,
)
from llama_stack.core.datatypes import AccessRule
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStore, sqlstore_impl
from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore
from llama_stack.providers.utils.sqlstore.sqlstore import sqlstore_impl
from .config import LocalfsFilesImplConfig
class LocalfsFilesImpl(Files):
def __init__(self, config: LocalfsFilesImplConfig) -> None:
def __init__(self, config: LocalfsFilesImplConfig, policy: list[AccessRule]) -> None:
self.config = config
self.sql_store: SqlStore | None = None
self.policy = policy
self.sql_store: AuthorizedSqlStore | None = None
async def initialize(self) -> None:
"""Initialize the files provider by setting up storage directory and metadata database."""
@ -37,7 +40,7 @@ class LocalfsFilesImpl(Files):
storage_path.mkdir(parents=True, exist_ok=True)
# Initialize SQL store for metadata
self.sql_store = sqlstore_impl(self.config.metadata_store)
self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.config.metadata_store))
await self.sql_store.create_table(
"openai_files",
{
@ -51,6 +54,9 @@ class LocalfsFilesImpl(Files):
},
)
async def shutdown(self) -> None:
pass
def _generate_file_id(self) -> str:
"""Generate a unique file ID for OpenAI API."""
return f"file-{uuid.uuid4().hex}"
@ -123,6 +129,7 @@ class LocalfsFilesImpl(Files):
paginated_result = await self.sql_store.fetch_all(
table="openai_files",
policy=self.policy,
where=where_conditions if where_conditions else None,
order_by=[("created_at", order.value)],
cursor=("id", after) if after else None,
@ -153,7 +160,7 @@ class LocalfsFilesImpl(Files):
if not self.sql_store:
raise RuntimeError("Files provider not initialized")
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
row = await self.sql_store.fetch_one("openai_files", policy=self.policy, where={"id": file_id})
if not row:
raise ValueError(f"File with id {file_id} not found")
@ -171,7 +178,7 @@ class LocalfsFilesImpl(Files):
if not self.sql_store:
raise RuntimeError("Files provider not initialized")
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
row = await self.sql_store.fetch_one("openai_files", policy=self.policy, where={"id": file_id})
if not row:
raise ValueError(f"File with id {file_id} not found")
@ -194,7 +201,7 @@ class LocalfsFilesImpl(Files):
raise RuntimeError("Files provider not initialized")
# Get file metadata
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
row = await self.sql_store.fetch_one("openai_files", policy=self.policy, where={"id": file_id})
if not row:
raise ValueError(f"File with id {file_id} not found")

View file

@ -6,7 +6,7 @@
from pathlib import Path
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.model_utils import model_local_dir
def model_checkpoint_dir(model_id) -> str:

View file

@ -102,6 +102,12 @@ class MetaReferenceInferenceImpl(
if self.config.create_distributed_process_group:
self.generator.stop()
async def should_refresh_models(self) -> bool:
return False
async def list_models(self) -> list[Model] | None:
return None
async def unregister_model(self, model_id: str) -> None:
pass

View file

@ -98,7 +98,7 @@ class ProcessingMessageWrapper(BaseModel):
def mp_rank_0() -> bool:
return get_model_parallel_rank() == 0
return bool(get_model_parallel_rank() == 0)
def encode_msg(msg: ProcessingMessage) -> bytes:
@ -125,7 +125,7 @@ def retrieve_requests(reply_socket_url: str):
reply_socket.send_multipart([client_id, encode_msg(obj)])
while True:
tasks = [None]
tasks: list[ProcessingMessage | None] = [None]
if mp_rank_0():
client_id, maybe_task_json = maybe_get_work(reply_socket)
if maybe_task_json is not None:
@ -152,7 +152,7 @@ def retrieve_requests(reply_socket_url: str):
break
for obj in out:
updates = [None]
updates: list[ProcessingMessage | None] = [None]
if mp_rank_0():
_, update_json = maybe_get_work(reply_socket)
update = maybe_parse_message(update_json)

View file

@ -20,6 +20,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import ModelType
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
@ -41,6 +42,8 @@ class SentenceTransformersInferenceImpl(
InferenceProvider,
ModelsProtocolPrivate,
):
__provider_id__: str
def __init__(self, config: SentenceTransformersInferenceConfig) -> None:
self.config = config
@ -50,6 +53,22 @@ class SentenceTransformersInferenceImpl(
async def shutdown(self) -> None:
pass
async def should_refresh_models(self) -> bool:
return False
async def list_models(self) -> list[Model] | None:
return [
Model(
identifier="all-MiniLM-L6-v2",
provider_resource_id="all-MiniLM-L6-v2",
provider_id=self.__provider_id__,
metadata={
"embedding_dimension": 384,
},
model_type=ModelType.embedding,
),
]
async def register_model(self, model: Model) -> Model:
return model

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from .config import VLLMConfig
async def get_provider_impl(config: VLLMConfig, _deps: dict[str, Any]):
from .vllm import VLLMInferenceImpl
impl = VLLMInferenceImpl(config)
await impl.initialize()
return impl

View file

@ -1,53 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class VLLMConfig(BaseModel):
"""Configuration for the vLLM inference provider.
Note that the model name is no longer part of this static configuration.
You can bind an instance of this provider to a specific model with the
``models.register()`` API call."""
tensor_parallel_size: int = Field(
default=1,
description="Number of tensor parallel replicas (number of GPUs to use).",
)
max_tokens: int = Field(
default=4096,
description="Maximum number of tokens to generate.",
)
max_model_len: int = Field(default=4096, description="Maximum context length to use during serving.")
max_num_seqs: int = Field(default=4, description="Maximum parallel batch size for generation.")
enforce_eager: bool = Field(
default=False,
description="Whether to use eager mode for inference (otherwise cuda graphs are used).",
)
gpu_memory_utilization: float = Field(
default=0.3,
description=(
"How much GPU memory will be allocated when this provider has finished "
"loading, including memory that was already allocated before loading."
),
)
@classmethod
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
return {
"tensor_parallel_size": "${env.TENSOR_PARALLEL_SIZE:=1}",
"max_tokens": "${env.MAX_TOKENS:=4096}",
"max_model_len": "${env.MAX_MODEL_LEN:=4096}",
"max_num_seqs": "${env.MAX_NUM_SEQS:=4}",
"enforce_eager": "${env.ENFORCE_EAGER:=False}",
"gpu_memory_utilization": "${env.GPU_MEMORY_UTILIZATION:=0.3}",
}

View file

@ -1,170 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import vllm
from llama_stack.apis.inference import (
ChatCompletionRequest,
GrammarResponseFormat,
JsonSchemaResponseFormat,
Message,
ToolChoice,
ToolDefinition,
UserMessage,
)
from llama_stack.models.llama.datatypes import BuiltinTool
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
)
###############################################################################
# This file contains OpenAI compatibility code that is currently only used
# by the inline vLLM connector. Some or all of this code may be moved to a
# central location at a later date.
def _merge_context_into_content(message: Message) -> Message: # type: ignore
"""
Merge the ``context`` field of a Llama Stack ``Message`` object into
the content field for compabilitiy with OpenAI-style APIs.
Generates a content string that emulates the current behavior
of ``llama_models.llama3.api.chat_format.encode_message()``.
:param message: Message that may include ``context`` field
:returns: A version of ``message`` with any context merged into the
``content`` field.
"""
if not isinstance(message, UserMessage): # Separate type check for linter
return message
if message.context is None:
return message
return UserMessage(
role=message.role,
# Emumate llama_models.llama3.api.chat_format.encode_message()
content=message.content + "\n\n" + message.context,
context=None,
)
def _llama_stack_tools_to_openai_tools(
tools: list[ToolDefinition] | None = None,
) -> list[vllm.entrypoints.openai.protocol.ChatCompletionToolsParam]:
"""
Convert the list of available tools from Llama Stack's format to vLLM's
version of OpenAI's format.
"""
if tools is None:
return []
result = []
for t in tools:
if isinstance(t.tool_name, BuiltinTool):
raise NotImplementedError("Built-in tools not yet implemented")
if t.parameters is None:
parameters = None
else: # if t.parameters is not None
# Convert the "required" flags to a list of required params
required_params = [k for k, v in t.parameters.items() if v.required]
parameters = {
"type": "object", # Mystery value that shows up in OpenAI docs
"properties": {
k: {"type": v.param_type, "description": v.description} for k, v in t.parameters.items()
},
"required": required_params,
}
function_def = vllm.entrypoints.openai.protocol.FunctionDefinition(
name=t.tool_name, description=t.description, parameters=parameters
)
# Every tool definition is double-boxed in a ChatCompletionToolsParam
result.append(vllm.entrypoints.openai.protocol.ChatCompletionToolsParam(function=function_def))
return result
async def llama_stack_chat_completion_to_openai_chat_completion_dict(
request: ChatCompletionRequest,
) -> dict:
"""
Convert a chat completion request in Llama Stack format into an
equivalent set of arguments to pass to an OpenAI-compatible
chat completions API.
:param request: Bundled request parameters in Llama Stack format.
:returns: Dictionary of key-value pairs to use as an initializer
for a dataclass or to be converted directly to JSON and sent
over the wire.
"""
converted_messages = [
# This mystery async call makes the parent function also be async
await convert_message_to_openai_dict(_merge_context_into_content(m), download=True)
for m in request.messages
]
converted_tools = _llama_stack_tools_to_openai_tools(request.tools)
# Llama will try to use built-in tools with no tool catalog, so don't enable
# tool choice unless at least one tool is enabled.
converted_tool_choice = "none"
if (
request.tool_config is not None
and request.tool_config.tool_choice == ToolChoice.auto
and request.tools is not None
and len(request.tools) > 0
):
converted_tool_choice = "auto"
# TODO: Figure out what to do with the tool_prompt_format argument.
# Other connectors appear to drop it quietly.
# Use Llama Stack shared code to translate sampling parameters.
sampling_options = get_sampling_options(request.sampling_params)
# get_sampling_options() translates repetition penalties to an option that
# OpenAI's APIs don't know about.
# vLLM's OpenAI-compatible API also handles repetition penalties wrong.
# For now, translate repetition penalties into a format that vLLM's broken
# API will handle correctly. Two wrongs make a right...
if "repeat_penalty" in sampling_options:
del sampling_options["repeat_penalty"]
if request.sampling_params.repetition_penalty is not None and request.sampling_params.repetition_penalty != 1.0:
sampling_options["repetition_penalty"] = request.sampling_params.repetition_penalty
# Convert a single response format into four different parameters, per
# the OpenAI spec
guided_decoding_options = dict()
if request.response_format is None:
# Use defaults
pass
elif isinstance(request.response_format, JsonSchemaResponseFormat):
guided_decoding_options["guided_json"] = request.response_format.json_schema
elif isinstance(request.response_format, GrammarResponseFormat):
guided_decoding_options["guided_grammar"] = request.response_format.bnf
else:
raise TypeError(f"ResponseFormat object is of unexpected subtype '{type(request.response_format)}'")
logprob_options = dict()
if request.logprobs is not None:
logprob_options["logprobs"] = request.logprobs.top_k
# Marshall together all the arguments for a ChatCompletionRequest
request_options = {
"model": request.model,
"messages": converted_messages,
"tools": converted_tools,
"tool_choice": converted_tool_choice,
"stream": request.stream,
**sampling_options,
**guided_decoding_options,
**logprob_options,
}
return request_options

View file

@ -1,811 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import re
import uuid
from collections.abc import AsyncGenerator, AsyncIterator
# These vLLM modules contain names that overlap with Llama Stack names, so we import
# fully-qualified names
import vllm.entrypoints.openai.protocol
import vllm.sampling_params
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_models import BaseModelPath, OpenAIServingModels
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
TextDelta,
ToolCallDelta,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
GrammarResponseFormat,
Inference,
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
TokenLogProbs,
ToolChoice,
ToolConfig,
TopKSamplingStrategy,
TopPSamplingStrategy,
)
from llama_stack.apis.models import Model
from llama_stack.log import get_logger
from llama_stack.models.llama import sku_list
from llama_stack.models.llama.datatypes import (
StopReason,
ToolCall,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.models.llama.llama3.chat_format import ChatFormat
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.remote.inference.vllm.vllm import build_hf_repo_model_entries
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
ModelsProtocolPrivate,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
OpenAICompletionToLlamaStackMixin,
get_stop_reason,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import VLLMConfig
from .openai_utils import llama_stack_chat_completion_to_openai_chat_completion_dict
# Map from Hugging Face model architecture name to appropriate tool parser.
# See vllm.entrypoints.openai.tool_parsers.ToolParserManager.tool_parsers for the full list of
# available parsers.
# TODO: Expand this list
CONFIG_TYPE_TO_TOOL_PARSER = {
"GraniteConfig": "granite",
"MllamaConfig": "llama3_json",
"LlamaConfig": "llama3_json",
}
DEFAULT_TOOL_PARSER = "pythonic"
logger = get_logger(__name__, category="inference")
def _random_uuid_str() -> str:
return str(uuid.uuid4().hex)
def _response_format_to_guided_decoding_params(
response_format: ResponseFormat | None, # type: ignore
) -> vllm.sampling_params.GuidedDecodingParams:
"""
Translate constrained decoding parameters from Llama Stack's format to vLLM's format.
:param response_format: Llama Stack version of constrained decoding info. Can be ``None``,
indicating no constraints.
:returns: The equivalent dataclass object for the low-level inference layer of vLLM.
"""
if response_format is None:
# As of vLLM 0.6.3, the default constructor for GuidedDecodingParams() returns an invalid
# value that crashes the executor on some code paths. Use ``None`` instead.
return None
# Llama Stack currently implements fewer types of constrained decoding than vLLM does.
# Translate the types that exist and detect if Llama Stack adds new ones.
if isinstance(response_format, JsonSchemaResponseFormat):
return vllm.sampling_params.GuidedDecodingParams(json=response_format.json_schema)
elif isinstance(response_format, GrammarResponseFormat):
# BNF grammar.
# Llama Stack uses the parse tree of the grammar, while vLLM uses the string
# representation of the grammar.
raise TypeError(
"Constrained decoding with BNF grammars is not currently implemented, because the "
"reference implementation does not implement it."
)
else:
raise TypeError(f"ResponseFormat object is of unexpected subtype '{type(response_format)}'")
def _convert_sampling_params(
sampling_params: SamplingParams | None,
response_format: ResponseFormat | None, # type: ignore
log_prob_config: LogProbConfig | None,
) -> vllm.SamplingParams:
"""Convert sampling and constrained decoding configuration from Llama Stack's format to vLLM's
format."""
# In the absence of provided config values, use Llama Stack defaults as encoded in the Llama
# Stack dataclasses. These defaults are different from vLLM's defaults.
if sampling_params is None:
sampling_params = SamplingParams()
if log_prob_config is None:
log_prob_config = LogProbConfig()
if isinstance(sampling_params.strategy, TopKSamplingStrategy):
if sampling_params.strategy.top_k == 0:
# vLLM treats "k" differently for top-k sampling
vllm_top_k = -1
else:
vllm_top_k = sampling_params.strategy.top_k
else:
vllm_top_k = -1
if isinstance(sampling_params.strategy, TopPSamplingStrategy):
vllm_top_p = sampling_params.strategy.top_p
# Llama Stack only allows temperature with top-P.
vllm_temperature = sampling_params.strategy.temperature
else:
vllm_top_p = 1.0
vllm_temperature = 0.0
# vLLM allows top-p and top-k at the same time.
vllm_sampling_params = vllm.SamplingParams.from_optional(
max_tokens=(None if sampling_params.max_tokens == 0 else sampling_params.max_tokens),
temperature=vllm_temperature,
top_p=vllm_top_p,
top_k=vllm_top_k,
repetition_penalty=sampling_params.repetition_penalty,
guided_decoding=_response_format_to_guided_decoding_params(response_format),
logprobs=log_prob_config.top_k,
)
return vllm_sampling_params
class VLLMInferenceImpl(
Inference,
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
ModelsProtocolPrivate,
):
"""
vLLM-based inference model adapter for Llama Stack with support for multiple models.
Requires the configuration parameters documented in the :class:`VllmConfig2` class.
"""
config: VLLMConfig
register_helper: ModelRegistryHelper
model_ids: set[str]
resolved_model_id: str | None
engine: AsyncLLMEngine | None
chat: OpenAIServingChat | None
is_meta_llama_model: bool
def __init__(self, config: VLLMConfig):
self.config = config
logger.info(f"Config is: {self.config}")
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
self.formatter = ChatFormat(Tokenizer.get_instance())
# The following are initialized when paths are bound to this provider
self.resolved_model_id = None
self.model_ids = set()
self.engine = None
self.chat = None
self.is_meta_llama_model = False
###########################################################################
# METHODS INHERITED FROM IMPLICIT BASE CLASS.
# TODO: Make this class inherit from the new base class ProviderBase once that class exists.
async def initialize(self) -> None:
"""
Callback that is invoked through many levels of indirection during provider class
instantiation, sometime after when __init__() is called and before any model registration
methods or methods connected to a REST API are called.
It's not clear what assumptions the class can make about the platform's initialization
state here that can't be made during __init__(), and vLLM can't be started until we know
what model it's supposed to be serving, so nothing happens here currently.
"""
pass
async def shutdown(self) -> None:
logger.info(f"Shutting down inline vLLM inference provider {self}.")
if self.engine is not None:
self.engine.shutdown_background_loop()
self.engine = None
self.chat = None
self.model_ids = set()
self.resolved_model_id = None
###########################################################################
# METHODS INHERITED FROM ModelsProtocolPrivate INTERFACE
# Note that the return type of the superclass method is WRONG
async def register_model(self, model: Model) -> Model:
"""
Callback that is called when the server associates an inference endpoint with an
inference provider.
:param model: Object that encapsulates parameters necessary for identifying a specific
LLM.
:returns: The input ``Model`` object. It may or may not be permissible to change fields
before returning this object.
"""
logger.debug(f"In register_model({model})")
# First attempt to interpret the model coordinates as a Llama model name
resolved_llama_model = sku_list.resolve_model(model.provider_model_id)
if resolved_llama_model is not None:
# Load from Hugging Face repo into default local cache dir
model_id_for_vllm = resolved_llama_model.huggingface_repo
# Detect a genuine Meta Llama model to trigger Meta-specific preprocessing.
# Don't set self.is_meta_llama_model until we actually load the model.
is_meta_llama_model = True
else: # if resolved_llama_model is None
# Not a Llama model name. Pass the model id through to vLLM's loader
model_id_for_vllm = model.provider_model_id
is_meta_llama_model = False
if self.resolved_model_id is not None:
if model_id_for_vllm != self.resolved_model_id:
raise ValueError(
f"Attempted to serve two LLMs (ids '{self.resolved_model_id}') and "
f"'{model_id_for_vllm}') from one copy of provider '{self}'. Use multiple "
f"copies of the provider instead."
)
else:
# Model already loaded
logger.info(
f"Requested id {model} resolves to {model_id_for_vllm}, which is already loaded. Continuing."
)
self.model_ids.add(model.model_id)
return model
logger.info(f"Requested id {model} resolves to {model_id_for_vllm}. Loading {model_id_for_vllm}.")
if is_meta_llama_model:
logger.info(f"Model {model_id_for_vllm} is a Meta Llama model.")
self.is_meta_llama_model = is_meta_llama_model
# If we get here, this is the first time registering a model.
# Preload so that the first inference request won't time out.
engine_args = AsyncEngineArgs(
model=model_id_for_vllm,
tokenizer=model_id_for_vllm,
tensor_parallel_size=self.config.tensor_parallel_size,
enforce_eager=self.config.enforce_eager,
gpu_memory_utilization=self.config.gpu_memory_utilization,
max_num_seqs=self.config.max_num_seqs,
max_model_len=self.config.max_model_len,
)
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
# vLLM currently requires the user to specify the tool parser manually. To choose a tool
# parser, we need to determine what model architecture is being used. For now, we infer
# that information from what config class the model uses.
low_level_model_config = self.engine.engine.get_model_config()
hf_config = low_level_model_config.hf_config
hf_config_class_name = hf_config.__class__.__name__
if hf_config_class_name in CONFIG_TYPE_TO_TOOL_PARSER:
tool_parser = CONFIG_TYPE_TO_TOOL_PARSER[hf_config_class_name]
else:
# No info -- choose a default so we can at least attempt tool
# use.
tool_parser = DEFAULT_TOOL_PARSER
logger.debug(f"{hf_config_class_name=}")
logger.debug(f"{tool_parser=}")
# Wrap the lower-level engine in an OpenAI-compatible chat API
model_config = await self.engine.get_model_config()
self.chat = OpenAIServingChat(
engine_client=self.engine,
model_config=model_config,
models=OpenAIServingModels(
engine_client=self.engine,
model_config=model_config,
base_model_paths=[
# The layer below us will only see resolved model IDs
BaseModelPath(model_id_for_vllm, model_id_for_vllm)
],
),
response_role="assistant",
request_logger=None, # Use default logging
chat_template=None, # Use default template from model checkpoint
enable_auto_tools=True,
tool_parser=tool_parser,
chat_template_content_format="auto",
)
self.resolved_model_id = model_id_for_vllm
self.model_ids.add(model.model_id)
logger.info(f"Finished preloading model: {model_id_for_vllm}")
return model
async def unregister_model(self, model_id: str) -> None:
"""
Callback that is called when the server removes an inference endpoint from an inference
provider.
:param model_id: The same external ID that the higher layers of the stack previously passed
to :func:`register_model()`
"""
if model_id not in self.model_ids:
raise ValueError(
f"Attempted to unregister model ID '{model_id}', but that ID is not registered to this provider."
)
self.model_ids.remove(model_id)
if len(self.model_ids) == 0:
# Last model was just unregistered. Shut down the connection to vLLM and free up
# resources.
# Note that this operation may cause in-flight chat completion requests on the
# now-unregistered model to return errors.
self.resolved_model_id = None
self.chat = None
self.engine.shutdown_background_loop()
self.engine = None
###########################################################################
# METHODS INHERITED FROM Inference INTERFACE
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
if model_id not in self.model_ids:
raise ValueError(
f"This adapter is not registered to model id '{model_id}'. Registered IDs are: {self.model_ids}"
)
if not isinstance(content, str):
raise NotImplementedError("Multimodal input not currently supported")
if sampling_params is None:
sampling_params = SamplingParams()
converted_sampling_params = _convert_sampling_params(sampling_params, response_format, logprobs)
logger.debug(f"{converted_sampling_params=}")
if stream:
return self._streaming_completion(content, converted_sampling_params)
else:
streaming_result = None
async for _ in self._streaming_completion(content, converted_sampling_params):
pass
return CompletionResponse(
content=streaming_result.delta,
stop_reason=streaming_result.stop_reason,
logprobs=streaming_result.logprobs,
)
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: list[Message], # type: ignore
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None, # type: ignore
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> ChatCompletionResponse | ChatCompletionResponseStreamChunk:
sampling_params = sampling_params or SamplingParams()
if model_id not in self.model_ids:
raise ValueError(
f"This adapter is not registered to model id '{model_id}'. Registered IDs are: {self.model_ids}"
)
# Convert to Llama Stack internal format for consistency
request = ChatCompletionRequest(
model=self.resolved_model_id,
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
if self.is_meta_llama_model:
# Bypass vLLM chat templating layer for Meta Llama models, because the
# templating layer in Llama Stack currently produces better results.
logger.debug(
f"Routing {self.resolved_model_id} chat completion through "
f"Llama Stack's templating layer instead of vLLM's."
)
return await self._chat_completion_for_meta_llama(request)
logger.debug(f"{self.resolved_model_id} is not a Meta Llama model")
# Arguments to the vLLM call must be packaged as a ChatCompletionRequest dataclass.
# Note that this dataclass has the same name as a similar dataclass in Llama Stack.
request_options = await llama_stack_chat_completion_to_openai_chat_completion_dict(request)
chat_completion_request = vllm.entrypoints.openai.protocol.ChatCompletionRequest(**request_options)
logger.debug(f"Converted request: {chat_completion_request}")
vllm_result = await self.chat.create_chat_completion(chat_completion_request)
logger.debug(f"Result from vLLM: {vllm_result}")
if isinstance(vllm_result, vllm.entrypoints.openai.protocol.ErrorResponse):
raise ValueError(f"Error from vLLM layer: {vllm_result}")
# Return type depends on "stream" argument
if stream:
if not isinstance(vllm_result, AsyncGenerator):
raise TypeError(f"Unexpected result type {type(vllm_result)} for streaming inference call")
# vLLM client returns a stream of strings, which need to be parsed.
# Stream comes in the form of an async generator.
return self._convert_streaming_results(vllm_result)
else:
if not isinstance(vllm_result, vllm.entrypoints.openai.protocol.ChatCompletionResponse):
raise TypeError(f"Unexpected result type {type(vllm_result)} for non-streaming inference call")
return self._convert_non_streaming_results(vllm_result)
###########################################################################
# INTERNAL METHODS
async def _streaming_completion(
self, content: str, sampling_params: vllm.SamplingParams
) -> AsyncIterator[CompletionResponseStreamChunk]:
"""Internal implementation of :func:`completion()` API for the streaming case. Assumes
that arguments have been validated upstream.
:param content: Must be a string
:param sampling_params: Paramters from public API's ``response_format``
and ``sampling_params`` arguments, converted to VLLM format
"""
# We run agains the vLLM generate() call directly instead of using the OpenAI-compatible
# layer, because doing so simplifies the code here.
# The vLLM engine requires a unique identifier for each call to generate()
request_id = _random_uuid_str()
# The vLLM generate() API is streaming-only and returns an async generator.
# The generator returns objects of type vllm.RequestOutput.
results_generator = self.engine.generate(content, sampling_params, request_id)
# Need to know the model's EOS token ID for the conversion code below.
# AsyncLLMEngine is a wrapper around LLMEngine, and the tokenizer is only available if
# we drill down to the LLMEngine inside the AsyncLLMEngine.
# Similarly, the tokenizer in an LLMEngine is a wrapper around a BaseTokenizerGroup,
# and we need to drill down to the Hugging Face tokenizer inside the BaseTokenizerGroup.
llm_engine = self.engine.engine
tokenizer_group = llm_engine.tokenizer
eos_token_id = tokenizer_group.tokenizer.eos_token_id
request_output: vllm.RequestOutput = None
async for request_output in results_generator:
# Check for weird inference failures
if request_output.outputs is None or len(request_output.outputs) == 0:
# This case also should never happen
raise ValueError("Inference produced empty result")
# If we get here, then request_output contains the final output of the generate() call.
# The result may include multiple alternate outputs, but Llama Stack APIs only allow
# us to return one.
output: vllm.CompletionOutput = request_output.outputs[0]
completion_string = output.text
# Convert logprobs from vLLM's format to Llama Stack's format
logprobs = [
TokenLogProbs(logprobs_by_token={v.decoded_token: v.logprob for _, v in logprob_dict.items()})
for logprob_dict in output.logprobs
]
# The final output chunk should be labeled with the reason that the overall generate()
# call completed.
logger.debug(f"{output.stop_reason=}; {type(output.stop_reason)=}")
if output.stop_reason is None:
stop_reason = None # Still going
elif output.stop_reason == "stop":
stop_reason = StopReason.end_of_turn
elif output.stop_reason == "length":
stop_reason = StopReason.out_of_tokens
elif isinstance(output.stop_reason, int):
# If the model config specifies multiple end-of-sequence tokens, then vLLM
# will return the token ID of the EOS token in the stop_reason field.
stop_reason = StopReason.end_of_turn
else:
raise ValueError(f"Unrecognized stop reason '{output.stop_reason}'")
# vLLM's protocol outputs the stop token, then sets end of message on the next step for
# some reason.
if request_output.outputs[-1].token_ids[-1] == eos_token_id:
stop_reason = StopReason.end_of_message
yield CompletionResponseStreamChunk(delta=completion_string, stop_reason=stop_reason, logprobs=logprobs)
# Llama Stack requires that the last chunk have a stop reason, but vLLM doesn't always
# provide one if it runs out of tokens.
if stop_reason is None:
yield CompletionResponseStreamChunk(
delta=completion_string,
stop_reason=StopReason.out_of_tokens,
logprobs=logprobs,
)
def _convert_non_streaming_results(
self, vllm_result: vllm.entrypoints.openai.protocol.ChatCompletionResponse
) -> ChatCompletionResponse:
"""
Subroutine to convert the non-streaming output of vLLM's OpenAI-compatible API into an
equivalent Llama Stack object.
The result from vLLM's non-streaming API is a dataclass with the same name as the Llama
Stack ChatCompletionResponse dataclass, but with more and different field names. We ignore
the fields that aren't currently present in the Llama Stack dataclass.
"""
# There may be multiple responses, but we can only pass through the first one.
if len(vllm_result.choices) == 0:
raise ValueError("Don't know how to convert response object without any responses")
vllm_message = vllm_result.choices[0].message
vllm_finish_reason = vllm_result.choices[0].finish_reason
converted_message = CompletionMessage(
role=vllm_message.role,
# Llama Stack API won't accept None for content field.
content=("" if vllm_message.content is None else vllm_message.content),
stop_reason=get_stop_reason(vllm_finish_reason),
tool_calls=[
ToolCall(
call_id=t.id,
tool_name=t.function.name,
# vLLM function args come back as a string. Llama Stack expects JSON.
arguments=json.loads(t.function.arguments),
arguments_json=t.function.arguments,
)
for t in vllm_message.tool_calls
],
)
# TODO: Convert logprobs
logger.debug(f"Converted message: {converted_message}")
return ChatCompletionResponse(
completion_message=converted_message,
)
async def _chat_completion_for_meta_llama(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
"""
Subroutine that routes chat completions for Meta Llama models through Llama Stack's
chat template instead of using vLLM's version of that template. The Llama Stack version
of the chat template currently produces more reliable outputs.
Once vLLM's support for Meta Llama models has matured more, we should consider routing
Meta Llama requests through the vLLM chat completions API instead of using this method.
"""
formatter = ChatFormat(Tokenizer.get_instance())
# Note that this function call modifies `request` in place.
prompt = await chat_completion_request_to_prompt(request, self.resolved_model_id)
model_id = list(self.model_ids)[0] # Any model ID will do here
completion_response_or_iterator = await self.completion(
model_id=model_id,
content=prompt,
sampling_params=request.sampling_params,
response_format=request.response_format,
stream=request.stream,
logprobs=request.logprobs,
)
if request.stream:
if not isinstance(completion_response_or_iterator, AsyncIterator):
raise TypeError(
f"Received unexpected result type {type(completion_response_or_iterator)}for streaming request."
)
return self._chat_completion_for_meta_llama_streaming(completion_response_or_iterator, request)
# elsif not request.stream:
if not isinstance(completion_response_or_iterator, CompletionResponse):
raise TypeError(
f"Received unexpected result type {type(completion_response_or_iterator)}for non-streaming request."
)
completion_response: CompletionResponse = completion_response_or_iterator
raw_message = formatter.decode_assistant_message_from_content(
completion_response.content, completion_response.stop_reason
)
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=raw_message.content,
stop_reason=raw_message.stop_reason,
tool_calls=raw_message.tool_calls,
),
logprobs=completion_response.logprobs,
)
async def _chat_completion_for_meta_llama_streaming(
self, results_iterator: AsyncIterator, request: ChatCompletionRequest
) -> AsyncIterator:
"""
Code from :func:`_chat_completion_for_meta_llama()` that needs to be a separate
method to keep asyncio happy.
"""
# Convert to OpenAI format, then use shared code to convert to Llama Stack format.
async def _generate_and_convert_to_openai_compat():
chunk: CompletionResponseStreamChunk # Make Pylance happy
last_text_len = 0
async for chunk in results_iterator:
if chunk.stop_reason == StopReason.end_of_turn:
finish_reason = "stop"
elif chunk.stop_reason == StopReason.end_of_message:
finish_reason = "eos"
elif chunk.stop_reason == StopReason.out_of_tokens:
finish_reason = "length"
else:
finish_reason = None
# Convert delta back to an actual delta
text_delta = chunk.delta[last_text_len:]
last_text_len = len(chunk.delta)
logger.debug(f"{text_delta=}; {finish_reason=}")
yield OpenAICompatCompletionResponse(
choices=[OpenAICompatCompletionChoice(finish_reason=finish_reason, text=text_delta)]
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(stream, request):
logger.debug(f"Returning chunk: {chunk}")
yield chunk
async def _convert_streaming_results(self, vllm_result: AsyncIterator) -> AsyncIterator:
"""
Subroutine that wraps the streaming outputs of vLLM's OpenAI-compatible
API into a second async iterator that returns Llama Stack objects.
:param vllm_result: Stream of strings that need to be parsed
"""
# Tool calls come in pieces, but Llama Stack expects them in bigger chunks. We build up
# those chunks and output them at the end.
# This data structure holds the current set of partial tool calls.
index_to_tool_call: dict[int, dict] = dict()
# The Llama Stack event stream must always start with a start event. Use an empty one to
# simplify logic below
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta=TextDelta(text=""),
stop_reason=None,
)
)
converted_stop_reason = None
async for chunk_str in vllm_result:
# Due to OpenAI compatibility, each event in the stream will start with "data: " and
# end with "\n\n".
_prefix = "data: "
_suffix = "\n\n"
if not chunk_str.startswith(_prefix) or not chunk_str.endswith(_suffix):
raise ValueError(f"Can't parse result string from vLLM: '{re.escape(chunk_str)}'")
# In between the "data: " and newlines is an event record
data_str = chunk_str[len(_prefix) : -len(_suffix)]
# The end of the stream is indicated with "[DONE]"
if data_str == "[DONE]":
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=""),
stop_reason=converted_stop_reason,
)
)
return
# Anything that is not "[DONE]" should be a JSON record
parsed_chunk = json.loads(data_str)
logger.debug(f"Parsed JSON event to:\n{json.dumps(parsed_chunk, indent=2)}")
# The result may contain multiple completions, but Llama Stack APIs only support
# returning one.
first_choice = parsed_chunk["choices"][0]
converted_stop_reason = get_stop_reason(first_choice["finish_reason"])
delta_record = first_choice["delta"]
if "content" in delta_record:
# Text delta
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=TextDelta(text=delta_record["content"]),
stop_reason=converted_stop_reason,
)
)
elif "tool_calls" in delta_record:
# Tool call(s). Llama Stack APIs do not have a clear way to return partial tool
# calls, so buffer until we get a "tool calls" stop reason
for tc in delta_record["tool_calls"]:
index = tc["index"]
if index not in index_to_tool_call:
# First time this tool call is showing up
index_to_tool_call[index] = dict()
tool_call = index_to_tool_call[index]
if "id" in tc:
tool_call["call_id"] = tc["id"]
if "function" in tc:
if "name" in tc["function"]:
tool_call["tool_name"] = tc["function"]["name"]
if "arguments" in tc["function"]:
# Arguments comes in as pieces of a string
if "arguments_str" not in tool_call:
tool_call["arguments_str"] = ""
tool_call["arguments_str"] += tc["function"]["arguments"]
else:
raise ValueError(f"Don't know how to parse event delta: {delta_record}")
if first_choice["finish_reason"] == "tool_calls":
# Special OpenAI code for "tool calls complete".
# Output the buffered tool calls. Llama Stack requires a separate event per tool
# call.
for tool_call_record in index_to_tool_call.values():
# Arguments come in as a string. Parse the completed string.
tool_call_record["arguments"] = json.loads(tool_call_record["arguments_str"])
del tool_call_record["arguments_str"]
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(tool_call=tool_call_record, parse_status="succeeded"),
stop_reason=converted_stop_reason,
)
)
# If we get here, we've lost the connection with the vLLM event stream before it ended
# normally.
raise ValueError("vLLM event stream ended without [DONE] message.")

View file

@ -6,7 +6,7 @@
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import HuggingFacePostTrainingConfig

View file

@ -67,6 +67,17 @@ class HuggingFacePostTrainingConfig(BaseModel):
# Can improve data transfer speed to GPU but uses more memory
dataloader_pin_memory: bool = True
# DPO-specific parameters
dpo_beta: float = 0.1
use_reference_model: bool = True
dpo_loss_type: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = "sigmoid"
dpo_output_dir: str
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {"checkpoint_format": "huggingface", "distributed_backend": None, "device": "cpu"}
return {
"checkpoint_format": "huggingface",
"distributed_backend": None,
"device": "cpu",
"dpo_output_dir": __distro_dir__ + "/dpo_output",
}

View file

@ -22,12 +22,8 @@ from llama_stack.apis.post_training import (
from llama_stack.providers.inline.post_training.huggingface.config import (
HuggingFacePostTrainingConfig,
)
from llama_stack.providers.inline.post_training.huggingface.recipes.finetune_single_device import (
HFFinetuningSingleDevice,
)
from llama_stack.providers.utils.scheduler import JobArtifact, Scheduler
from llama_stack.providers.utils.scheduler import JobStatus as SchedulerJobStatus
from llama_stack.schema_utils import webmethod
class TrainingArtifactType(Enum):
@ -36,6 +32,7 @@ class TrainingArtifactType(Enum):
_JOB_TYPE_SUPERVISED_FINE_TUNE = "supervised-fine-tune"
_JOB_TYPE_DPO_TRAINING = "dpo-training"
class HuggingFacePostTrainingImpl:
@ -81,6 +78,10 @@ class HuggingFacePostTrainingImpl:
algorithm_config: AlgorithmConfig | None = None,
) -> PostTrainingJob:
async def handler(on_log_message_cb, on_status_change_cb, on_artifact_collected_cb):
from llama_stack.providers.inline.post_training.huggingface.recipes.finetune_single_device import (
HFFinetuningSingleDevice,
)
on_log_message_cb("Starting HF finetuning")
recipe = HFFinetuningSingleDevice(
@ -119,12 +120,41 @@ class HuggingFacePostTrainingImpl:
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
) -> PostTrainingJob:
raise NotImplementedError("DPO alignment is not implemented yet")
async def handler(on_log_message_cb, on_status_change_cb, on_artifact_collected_cb):
from llama_stack.providers.inline.post_training.huggingface.recipes.finetune_single_device_dpo import (
HFDPOAlignmentSingleDevice,
)
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
return ListPostTrainingJobsResponse(
data=[PostTrainingJob(job_uuid=job.id) for job in self._scheduler.get_jobs()]
)
on_log_message_cb("Starting HF DPO alignment")
recipe = HFDPOAlignmentSingleDevice(
job_uuid=job_uuid,
datasetio_api=self.datasetio_api,
datasets_api=self.datasets_api,
)
resources_allocated, checkpoints = await recipe.train(
model=finetuned_model,
output_dir=f"{self.config.dpo_output_dir}/{job_uuid}",
job_uuid=job_uuid,
dpo_config=algorithm_config,
config=training_config,
provider_config=self.config,
)
on_artifact_collected_cb(self._resources_stats_to_artifact(resources_allocated))
if checkpoints:
for checkpoint in checkpoints:
artifact = self._checkpoint_to_artifact(checkpoint)
on_artifact_collected_cb(artifact)
else:
on_log_message_cb("Warning: No checkpoints were saved during DPO training")
on_status_change_cb(SchedulerJobStatus.completed)
on_log_message_cb("HF DPO alignment completed")
job_uuid = self._scheduler.schedule(_JOB_TYPE_DPO_TRAINING, job_uuid, handler)
return PostTrainingJob(job_uuid=job_uuid)
@staticmethod
def _get_artifacts_metadata_by_type(job, artifact_type):
@ -139,7 +169,6 @@ class HuggingFacePostTrainingImpl:
data = cls._get_artifacts_metadata_by_type(job, TrainingArtifactType.RESOURCES_STATS.value)
return data[0] if data else None
@webmethod(route="/post-training/job/status")
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse | None:
job = self._scheduler.get_job(job_uuid)
@ -166,11 +195,14 @@ class HuggingFacePostTrainingImpl:
resources_allocated=self._get_resources_allocated(job),
)
@webmethod(route="/post-training/job/cancel")
async def cancel_training_job(self, job_uuid: str) -> None:
self._scheduler.cancel(job_uuid)
@webmethod(route="/post-training/job/artifacts")
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse | None:
job = self._scheduler.get_job(job_uuid)
return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=self._get_checkpoints(job))
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
return ListPostTrainingJobsResponse(
data=[PostTrainingJob(job_uuid=job.id) for job in self._scheduler.get_jobs()]
)

View file

@ -8,30 +8,13 @@ import gc
import json
import logging
import multiprocessing
import os
import signal
import sys
from datetime import UTC, datetime
from pathlib import Path
from typing import Any
import psutil
from llama_stack.providers.inline.post_training.common.utils import evacuate_model_from_device
# Set tokenizer parallelism environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Force PyTorch to use OpenBLAS instead of MKL
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["MKL_SERVICE_FORCE_INTEL"] = "0"
os.environ["MKL_NUM_THREADS"] = "1"
import torch
from datasets import Dataset
from peft import LoraConfig
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
)
@ -45,93 +28,25 @@ from llama_stack.apis.post_training import (
LoraFinetuningConfig,
TrainingConfig,
)
from llama_stack.providers.inline.post_training.common.utils import evacuate_model_from_device
from ..config import HuggingFacePostTrainingConfig
from ..utils import (
calculate_training_steps,
create_checkpoints,
get_memory_stats,
get_save_strategy,
load_model,
load_rows_from_dataset,
setup_environment,
setup_signal_handlers,
setup_torch_device,
split_dataset,
)
logger = logging.getLogger(__name__)
def get_gb(to_convert: int) -> str:
"""Converts memory stats to GB and formats to 2 decimal places.
Args:
to_convert: Memory value in bytes
Returns:
str: Memory value in GB formatted to 2 decimal places
"""
return f"{(to_convert / (1024**3)):.2f}"
def get_memory_stats(device: torch.device) -> dict[str, Any]:
"""Get memory statistics for the given device."""
stats = {
"system_memory": {
"total": get_gb(psutil.virtual_memory().total),
"available": get_gb(psutil.virtual_memory().available),
"used": get_gb(psutil.virtual_memory().used),
"percent": psutil.virtual_memory().percent,
}
}
if device.type == "cuda":
stats["device_memory"] = {
"allocated": get_gb(torch.cuda.memory_allocated(device)),
"reserved": get_gb(torch.cuda.memory_reserved(device)),
"max_allocated": get_gb(torch.cuda.max_memory_allocated(device)),
}
elif device.type == "mps":
# MPS doesn't provide direct memory stats, but we can track system memory
stats["device_memory"] = {
"note": "MPS memory stats not directly available",
"system_memory_used": get_gb(psutil.virtual_memory().used),
}
elif device.type == "cpu":
# For CPU, we track process memory usage
process = psutil.Process()
stats["device_memory"] = {
"process_rss": get_gb(process.memory_info().rss),
"process_vms": get_gb(process.memory_info().vms),
"process_percent": process.memory_percent(),
}
return stats
def setup_torch_device(device_str: str) -> torch.device:
"""Initialize and validate a PyTorch device.
This function handles device initialization and validation for different device types:
- CUDA: Validates CUDA availability and handles device selection
- MPS: Validates MPS availability for Apple Silicon
- CPU: Basic validation
- HPU: Raises error as it's not supported
Args:
device_str: String specifying the device ('cuda', 'cpu', 'mps')
Returns:
torch.device: The initialized and validated device
Raises:
RuntimeError: If device initialization fails or device is not supported
"""
try:
device = torch.device(device_str)
except RuntimeError as e:
raise RuntimeError(f"Error getting Torch Device {str(e)}") from e
# Validate device capabilities
if device.type == "cuda":
if not torch.cuda.is_available():
raise RuntimeError(
f"{device.type}: Torch has no CUDA/ROCm support or could not detect a compatible device."
)
if device.index is None:
device = torch.device(device.type, torch.cuda.current_device())
elif device.type == "mps":
if not torch.backends.mps.is_available():
raise RuntimeError(f"{device.type}: Torch has no MPS support or could not detect a compatible device.")
elif device.type == "hpu":
raise RuntimeError(f"{device.type}: training does not support Intel Gaudi.")
return device
class HFFinetuningSingleDevice:
def __init__(
self,
@ -262,19 +177,6 @@ class HFFinetuningSingleDevice:
remove_columns=ds.column_names,
)
async def _setup_data(self, dataset_id: str) -> list[dict[str, Any]]:
"""Load dataset from llama stack dataset provider"""
try:
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
limit=-1,
)
if not isinstance(all_rows.data, list):
raise RuntimeError("Expected dataset data to be a list")
return all_rows.data
except Exception as e:
raise RuntimeError(f"Failed to load dataset: {str(e)}") from e
def _run_training_sync(
self,
model: str,
@ -327,7 +229,7 @@ class HFFinetuningSingleDevice:
# Load dataset
logger.info(f"Loading dataset: {config.data_config.dataset_id}")
rows = await self._setup_data(config.data_config.dataset_id)
rows = await load_rows_from_dataset(self.datasetio_api, config.data_config.dataset_id)
if not self.validate_dataset_format(rows):
raise ValueError("Dataset is missing required fields: input_query, expected_answer, chat_completion_input")
logger.info(f"Loaded {len(rows)} rows from dataset")
@ -369,47 +271,10 @@ class HFFinetuningSingleDevice:
raise ValueError(f"Failed to create dataset: {str(e)}") from e
# Split dataset
logger.info("Splitting dataset into train and validation sets")
train_val_split = ds.train_test_split(test_size=0.1, seed=42)
train_dataset = train_val_split["train"]
eval_dataset = train_val_split["test"]
logger.info(f"Split dataset into {len(train_dataset)} training and {len(eval_dataset)} validation examples")
train_dataset, eval_dataset = split_dataset(ds)
return train_dataset, eval_dataset, tokenizer
def load_model(
self,
model: str,
device: torch.device,
provider_config: HuggingFacePostTrainingConfig,
) -> AutoModelForCausalLM:
"""Load and initialize the model for training.
Args:
model: The model identifier to load
device: The device to load the model onto
provider_config: Provider-specific configuration
Returns:
The loaded and initialized model
Raises:
RuntimeError: If model loading fails
"""
logger.info("Loading the base model")
try:
model_config = AutoConfig.from_pretrained(model, **provider_config.model_specific_config)
model_obj = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype="auto" if device.type != "cpu" else "float32",
quantization_config=None,
config=model_config,
**provider_config.model_specific_config,
)
# Always move model to specified device
model_obj = model_obj.to(device)
logger.info(f"Model loaded and moved to device: {model_obj.device}")
return model_obj
except Exception as e:
raise RuntimeError(f"Failed to load model: {str(e)}") from e
def setup_training_args(
self,
config: TrainingConfig,
@ -439,27 +304,12 @@ class HFFinetuningSingleDevice:
raise ValueError("DataConfig is required for training")
data_config = config.data_config
# Calculate steps
total_steps = steps_per_epoch * config.n_epochs
max_steps = min(config.max_steps_per_epoch, total_steps)
logging_steps = max(1, steps_per_epoch // 50) # Log 50 times per epoch
logger.info("Training configuration:")
logger.info(f"- Steps per epoch: {steps_per_epoch}")
logger.info(f"- Total steps: {total_steps}")
logger.info(f"- Max steps: {max_steps}")
logger.info(f"- Logging steps: {logging_steps}")
# Configure save strategy
save_strategy = "no"
eval_strategy = "no"
if output_dir_path:
save_strategy = "epoch"
eval_strategy = "epoch"
logger.info(f"Will save checkpoints to {output_dir_path}")
# Calculate steps and get save strategy
step_info = calculate_training_steps(steps_per_epoch, config)
save_strategy, eval_strategy = get_save_strategy(output_dir_path)
return SFTConfig(
max_steps=max_steps,
max_steps=step_info["max_steps"],
output_dir=str(output_dir_path) if output_dir_path is not None else None,
num_train_epochs=config.n_epochs,
per_device_train_batch_size=data_config.batch_size,
@ -469,7 +319,7 @@ class HFFinetuningSingleDevice:
use_cpu=True if device.type == "cpu" and not torch.backends.mps.is_available() else False,
save_strategy=save_strategy,
report_to="none",
max_seq_length=provider_config.max_seq_length,
max_length=provider_config.max_seq_length,
gradient_accumulation_steps=config.gradient_accumulation_steps,
gradient_checkpointing=provider_config.gradient_checkpointing,
learning_rate=lr,
@ -483,7 +333,7 @@ class HFFinetuningSingleDevice:
load_best_model_at_end=True if output_dir_path else False,
metric_for_best_model="eval_loss",
greater_is_better=False,
logging_steps=logging_steps,
logging_steps=step_info["logging_steps"],
)
def save_model(
@ -523,13 +373,11 @@ class HFFinetuningSingleDevice:
) -> None:
"""Run the training process with signal handling."""
def signal_handler(signum, frame):
"""Handle termination signals gracefully."""
logger.info(f"Received signal {signum}, initiating graceful shutdown")
sys.exit(0)
# Setup environment variables
setup_environment()
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# Setup signal handlers
setup_signal_handlers()
# Convert config dicts back to objects
logger.info("Initializing configuration objects")
@ -558,7 +406,7 @@ class HFFinetuningSingleDevice:
)
# Load model
model_obj = self.load_model(model, device, provider_config_obj)
model_obj = load_model(model, device, provider_config_obj)
# Initialize trainer
logger.info("Initializing SFTTrainer")
@ -633,7 +481,7 @@ class HFFinetuningSingleDevice:
# Train in a separate process
logger.info("Starting training in separate process")
try:
# Set multiprocessing start method to 'spawn' for CUDA/MPS compatibility
# Setup multiprocessing for device
if device.type in ["cuda", "mps"]:
multiprocessing.set_start_method("spawn", force=True)
@ -663,37 +511,7 @@ class HFFinetuningSingleDevice:
checkpoints = []
if output_dir_path:
# Get all checkpoint directories and sort them numerically
checkpoint_dirs = sorted(
[d for d in output_dir_path.glob("checkpoint-*") if d.is_dir()],
key=lambda x: int(x.name.split("-")[1]),
)
# Add all checkpoint directories
for epoch_number, checkpoint_dir in enumerate(checkpoint_dirs, start=1):
# Get the creation time of the directory
created_time = datetime.fromtimestamp(os.path.getctime(checkpoint_dir), tz=UTC)
checkpoint = Checkpoint(
identifier=checkpoint_dir.name,
created_at=created_time,
epoch=epoch_number,
post_training_job_id=job_uuid,
path=str(checkpoint_dir),
)
checkpoints.append(checkpoint)
# Add the merged model as a checkpoint
merged_model_path = output_dir_path / "merged_model"
if merged_model_path.exists():
checkpoint = Checkpoint(
identifier=f"{model}-sft-{config.n_epochs}",
created_at=datetime.now(UTC),
epoch=config.n_epochs,
post_training_job_id=job_uuid,
path=str(merged_model_path),
)
checkpoints.append(checkpoint)
checkpoints = create_checkpoints(output_dir_path, job_uuid, model, config, "merged_model")
return memory_stats, checkpoints if checkpoints else None
finally:

View file

@ -0,0 +1,485 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import gc
import logging
import multiprocessing
from pathlib import Path
from typing import Any
import torch
from datasets import Dataset
from transformers import (
AutoTokenizer,
)
from trl import DPOConfig, DPOTrainer
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.post_training import (
Checkpoint,
DPOAlignmentConfig,
TrainingConfig,
)
from llama_stack.providers.inline.post_training.common.utils import evacuate_model_from_device
from ..config import HuggingFacePostTrainingConfig
from ..utils import (
calculate_training_steps,
create_checkpoints,
get_memory_stats,
get_save_strategy,
load_model,
load_rows_from_dataset,
setup_environment,
setup_signal_handlers,
setup_torch_device,
split_dataset,
)
logger = logging.getLogger(__name__)
class HFDPOAlignmentSingleDevice:
def __init__(
self,
job_uuid: str,
datasetio_api: DatasetIO,
datasets_api: Datasets,
):
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.job_uuid = job_uuid
def validate_dataset_format(self, rows: list[dict]) -> None:
"""Validate that the dataset has the required fields for DPO training."""
required_fields = ["prompt", "chosen", "rejected"]
if not rows:
logger.warning("Dataset is empty")
raise ValueError("Dataset is empty")
for i, row in enumerate(rows):
if not isinstance(row, dict):
logger.warning(f"Row {i} is not a dictionary")
raise ValueError(f"Row {i} is not a dictionary")
for field in required_fields:
if field not in row:
logger.warning(f"Row {i} missing required DPO field: {field}")
raise ValueError(f"Row {i} missing required DPO field: {field}")
# Handle both string and list formats
if field == "prompt":
# Prompt should be a string
if not isinstance(row[field], str):
logger.warning(f"Row {i} field '{field}' is not a string")
raise ValueError(f"Row {i} field '{field}' is not a string")
if not row[field].strip():
logger.warning(f"Row {i} field '{field}' is empty")
raise ValueError(f"Row {i} field '{field}' is empty")
else:
# chosen/rejected can be either strings or lists of messages
if isinstance(row[field], str):
if not row[field].strip():
logger.warning(f"Row {i} field '{field}' is empty")
raise ValueError(f"Row {i} field '{field}' is empty")
elif isinstance(row[field], list):
if not row[field]:
logger.warning(f"Row {i} field '{field}' is empty list")
raise ValueError(f"Row {i} field '{field}' is empty list")
else:
logger.warning(f"Row {i} field '{field}' is neither string nor list")
raise ValueError(f"Row {i} field '{field}' is neither string nor list")
logger.info(f"DPO dataset validation passed: {len(rows)} preference examples")
def _process_dpo_format(self, row: dict) -> tuple[str | None, str | None, str | None]:
"""Process a row in DPO format, handling both string and conversation list formats."""
if all(field in row for field in ["prompt", "chosen", "rejected"]):
prompt = row["prompt"]
# Handle chosen field - convert list to string if needed
if isinstance(row["chosen"], list):
# For conversation format, concatenate messages
chosen = "\n".join(
[msg.get("content", "") if isinstance(msg, dict) else str(msg) for msg in row["chosen"]]
)
else:
chosen = row["chosen"]
# Handle rejected field - convert list to string if needed
if isinstance(row["rejected"], list):
# For conversation format, concatenate messages
rejected = "\n".join(
[msg.get("content", "") if isinstance(msg, dict) else str(msg) for msg in row["rejected"]]
)
else:
rejected = row["rejected"]
return prompt, chosen, rejected
return None, None, None
def _format_text_for_dpo(self, prompt: str, response: str, provider_config: HuggingFacePostTrainingConfig) -> str:
"""Format prompt and response text based on model requirements."""
if hasattr(provider_config, "chat_template") and provider_config.chat_template:
# Use the chat template, supporting both {prompt}/{response} and {input}/{output}
template = provider_config.chat_template
# Try prompt/response first (DPO style)
if "{prompt}" in template and "{response}" in template:
return template.format(prompt=prompt, response=response)
# Fall back to input/output (SFT style)
elif "{input}" in template and "{output}" in template:
return template.format(input=prompt, output=response)
else:
# If template doesn't have expected placeholders, use default
return f"{prompt}\n{response}"
return f"{prompt}\n{response}"
def _create_dataset(
self, rows: list[dict], config: TrainingConfig, provider_config: HuggingFacePostTrainingConfig
) -> Dataset:
"""Create and preprocess the dataset for DPO."""
dpo_examples = []
for row in rows:
prompt, chosen, rejected = self._process_dpo_format(row)
if prompt and chosen and rejected:
# Format the texts
chosen_formatted = self._format_text_for_dpo(prompt, chosen, provider_config)
rejected_formatted = self._format_text_for_dpo(prompt, rejected, provider_config)
dpo_examples.append(
{
"prompt": prompt,
"chosen": chosen_formatted,
"rejected": rejected_formatted,
}
)
if not dpo_examples:
raise ValueError("No valid preference examples found in dataset")
logger.info(f"Created DPO dataset with {len(dpo_examples)} preference pairs")
return Dataset.from_list(dpo_examples)
def _preprocess_dataset(
self, ds: Dataset, tokenizer: AutoTokenizer, provider_config: HuggingFacePostTrainingConfig
) -> Dataset:
"""Preprocess the dataset with tokenizer for DPO."""
# DPOTrainer expects raw text, so we don't tokenize here
# Just return the dataset as is
return ds
def _run_training_sync(
self,
model: str,
provider_config: dict[str, Any],
dpo_config: dict[str, Any],
config: dict[str, Any],
output_dir_path: Path | None,
) -> None:
"""Synchronous wrapper for running DPO training process."""
import asyncio
logger.info("Starting DPO training process with async wrapper")
asyncio.run(
self._run_training(
model=model,
provider_config=provider_config,
dpo_config=dpo_config,
config=config,
output_dir_path=output_dir_path,
)
)
async def load_dataset(
self,
model: str,
config: TrainingConfig,
provider_config: HuggingFacePostTrainingConfig,
) -> tuple[Dataset, Dataset, AutoTokenizer]:
"""Load and prepare the dataset for DPO training."""
# Validate data config
if not config.data_config:
raise ValueError("DataConfig is required for DPO training")
# Load dataset
logger.info(f"Loading dataset: {config.data_config.dataset_id}")
rows = await load_rows_from_dataset(self.datasetio_api, config.data_config.dataset_id)
self.validate_dataset_format(rows)
logger.info(f"Loaded {len(rows)} rows from dataset")
# Initialize tokenizer
logger.info(f"Initializing tokenizer for model: {model}")
try:
tokenizer = AutoTokenizer.from_pretrained(model, **provider_config.model_specific_config)
# Set pad token to eos token if not present
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
# Set padding side to left for DPO
tokenizer.padding_side = "left"
# Set truncation side to right to keep the beginning of the sequence
tokenizer.truncation_side = "right"
# Set model max length to match provider config
tokenizer.model_max_length = provider_config.max_seq_length
logger.info("Tokenizer initialized successfully for DPO")
except Exception as e:
raise RuntimeError(f"Failed to initialize tokenizer: {str(e)}") from e
# Create and preprocess dataset
logger.info("Creating and preprocessing dataset for DPO")
try:
ds = self._create_dataset(rows, config, provider_config)
ds = self._preprocess_dataset(ds, tokenizer, provider_config)
logger.info(f"Dataset created with {len(ds)} examples")
except Exception as e:
raise ValueError(f"Failed to create dataset: {str(e)}") from e
# Split dataset
train_dataset, eval_dataset = split_dataset(ds)
return train_dataset, eval_dataset, tokenizer
def setup_training_args(
self,
config: TrainingConfig,
provider_config: HuggingFacePostTrainingConfig,
dpo_config: DPOAlignmentConfig,
device: torch.device,
output_dir_path: Path | None,
steps_per_epoch: int,
) -> DPOConfig:
"""Setup DPO training arguments."""
logger.info("Configuring DPO training arguments")
lr = 5e-7 # Lower learning rate for DPO
if config.optimizer_config:
lr = config.optimizer_config.lr
logger.info(f"Using custom learning rate: {lr}")
# Validate data config
if not config.data_config:
raise ValueError("DataConfig is required for training")
data_config = config.data_config
# Calculate steps and get save strategy
step_info = calculate_training_steps(steps_per_epoch, config)
save_strategy, eval_strategy = get_save_strategy(output_dir_path)
logger.info("DPO training configuration:")
logger.info(f"- DPO beta: {dpo_config.beta}")
logger.info(f"- DPO loss type: {provider_config.dpo_loss_type}")
# Calculate max prompt length as half of max sequence length
max_prompt_length = provider_config.max_seq_length // 2
return DPOConfig(
max_steps=step_info["max_steps"],
output_dir=str(output_dir_path) if output_dir_path is not None else None,
num_train_epochs=config.n_epochs,
per_device_train_batch_size=data_config.batch_size,
fp16=device.type == "cuda",
bf16=False, # Causes CPU issues.
eval_strategy=eval_strategy,
use_cpu=True if device.type == "cpu" and not torch.backends.mps.is_available() else False,
save_strategy=save_strategy,
report_to="none",
max_length=provider_config.max_seq_length,
max_prompt_length=max_prompt_length,
gradient_accumulation_steps=config.gradient_accumulation_steps,
gradient_checkpointing=provider_config.gradient_checkpointing,
learning_rate=lr,
warmup_ratio=provider_config.warmup_ratio,
weight_decay=provider_config.weight_decay,
remove_unused_columns=False,
dataloader_pin_memory=provider_config.dataloader_pin_memory,
dataloader_num_workers=provider_config.dataloader_num_workers,
load_best_model_at_end=True if output_dir_path else False,
metric_for_best_model="eval_loss",
greater_is_better=False,
logging_steps=step_info["logging_steps"],
save_total_limit=provider_config.save_total_limit,
# DPO specific parameters
beta=dpo_config.beta,
loss_type=provider_config.dpo_loss_type,
)
def save_model(
self,
trainer: DPOTrainer,
output_dir_path: Path,
) -> None:
"""Save the trained DPO model."""
logger.info("Saving final DPO model")
save_path = output_dir_path / "dpo_model"
logger.info(f"Saving model to {save_path}")
# Save model and tokenizer
trainer.save_model(str(save_path))
async def _run_training(
self,
model: str,
provider_config: dict[str, Any],
dpo_config: dict[str, Any],
config: dict[str, Any],
output_dir_path: Path | None,
) -> None:
"""Run the DPO training process with signal handling."""
# Setup environment variables
setup_environment()
# Setup signal handlers
setup_signal_handlers()
# Convert config dicts back to objects
logger.info("Initializing configuration objects")
provider_config_obj = HuggingFacePostTrainingConfig(**provider_config)
config_obj = TrainingConfig(**config)
dpo_config_obj = DPOAlignmentConfig(**dpo_config)
# Initialize and validate device
device = setup_torch_device(provider_config_obj.device)
logger.info(f"Using device '{device}'")
# Load dataset and tokenizer
train_dataset, eval_dataset, tokenizer = await self.load_dataset(model, config_obj, provider_config_obj)
# Calculate steps per epoch
if not config_obj.data_config:
raise ValueError("DataConfig is required for training")
steps_per_epoch = len(train_dataset) // config_obj.data_config.batch_size
# Setup training arguments
training_args = self.setup_training_args(
config_obj,
provider_config_obj,
dpo_config_obj,
device,
output_dir_path,
steps_per_epoch,
)
# Load model and reference model
model_obj = load_model(model, device, provider_config_obj)
ref_model = None
if provider_config_obj.use_reference_model:
logger.info("Loading separate reference model for DPO")
ref_model = load_model(model, device, provider_config_obj)
else:
logger.info("Using shared reference model for DPO")
# Initialize DPO trainer
logger.info("Initializing DPOTrainer")
trainer = DPOTrainer(
model=model_obj,
ref_model=ref_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=tokenizer,
)
try:
# Train
logger.info("Starting DPO training")
trainer.train()
logger.info("DPO training completed successfully")
# Save final model if output directory is provided
if output_dir_path:
logger.info(f"Saving model to output directory: {output_dir_path}")
self.save_model(trainer, output_dir_path)
logger.info("Model save completed")
finally:
# Clean up resources
logger.info("Cleaning up resources")
if hasattr(trainer, "model"):
evacuate_model_from_device(trainer.model, device.type)
if ref_model:
evacuate_model_from_device(ref_model, device.type)
del trainer
del ref_model
gc.collect()
logger.info("Cleanup completed")
logger.info("DPO training process finishing successfully")
async def train(
self,
model: str,
output_dir: str | None,
job_uuid: str,
dpo_config: DPOAlignmentConfig,
config: TrainingConfig,
provider_config: HuggingFacePostTrainingConfig,
) -> tuple[dict[str, Any], list[Checkpoint] | None]:
"""Train a model using HuggingFace's DPOTrainer"""
# Initialize and validate device
device = setup_torch_device(provider_config.device)
logger.info(f"Using device '{device}'")
output_dir_path = None
if output_dir:
output_dir_path = Path(output_dir)
# Track memory stats
memory_stats = {
"initial": get_memory_stats(device),
"after_training": None,
"final": None,
}
# Validate data config
if not config.data_config:
raise ValueError("DataConfig is required for training")
# Train in a separate process
logger.info("Starting DPO training in separate process")
try:
# Setup multiprocessing for device
if device.type in ["cuda", "mps"]:
multiprocessing.set_start_method("spawn", force=True)
process = multiprocessing.Process(
target=self._run_training_sync,
kwargs={
"model": model,
"provider_config": provider_config.model_dump(),
"dpo_config": dpo_config.model_dump(),
"config": config.model_dump(),
"output_dir_path": output_dir_path,
},
)
process.start()
# Monitor the process
while process.is_alive():
process.join(timeout=1) # Check every second
if not process.is_alive():
break
# Get the return code
if process.exitcode != 0:
raise RuntimeError(f"DPO training failed with exit code {process.exitcode}")
memory_stats["after_training"] = get_memory_stats(device)
checkpoints = []
if output_dir_path:
checkpoints = create_checkpoints(output_dir_path, job_uuid, model, config, "dpo_model")
return memory_stats, checkpoints if checkpoints else None
finally:
memory_stats["final"] = get_memory_stats(device)
gc.collect()

View file

@ -0,0 +1,269 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import os
import signal
import sys
from datetime import UTC, datetime
from pathlib import Path
from typing import Any
import psutil
import torch
from datasets import Dataset
from transformers import AutoConfig, AutoModelForCausalLM
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.post_training import Checkpoint, TrainingConfig
from .config import HuggingFacePostTrainingConfig
logger = logging.getLogger(__name__)
def setup_environment():
"""Setup common environment variables for training."""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["MKL_SERVICE_FORCE_INTEL"] = "0"
os.environ["MKL_NUM_THREADS"] = "1"
def bytes_to_gb(to_convert: int) -> str:
"""Converts memory stats to GB and formats to 2 decimal places.
Args:
to_convert: Memory value in bytes
Returns:
str: Memory value in GB formatted to 2 decimal places
"""
return f"{(to_convert / (1024**3)):.2f}"
def get_memory_stats(device: torch.device) -> dict[str, Any]:
"""Get memory statistics for the given device."""
stats = {
"system_memory": {
"total": bytes_to_gb(psutil.virtual_memory().total),
"available": bytes_to_gb(psutil.virtual_memory().available),
"used": bytes_to_gb(psutil.virtual_memory().used),
"percent": psutil.virtual_memory().percent,
}
}
if device.type == "cuda":
stats["device_memory"] = {
"allocated": bytes_to_gb(torch.cuda.memory_allocated(device)),
"reserved": bytes_to_gb(torch.cuda.memory_reserved(device)),
"max_allocated": bytes_to_gb(torch.cuda.max_memory_allocated(device)),
}
elif device.type == "mps":
# MPS doesn't provide direct memory stats, but we can track system memory
stats["device_memory"] = {
"note": "MPS memory stats not directly available",
"system_memory_used": bytes_to_gb(psutil.virtual_memory().used),
}
elif device.type == "cpu":
# For CPU, we track process memory usage
process = psutil.Process()
stats["device_memory"] = {
"process_rss": bytes_to_gb(process.memory_info().rss),
"process_vms": bytes_to_gb(process.memory_info().vms),
"process_percent": process.memory_percent(),
}
return stats
def setup_torch_device(device_str: str) -> torch.device:
"""Initialize and validate a PyTorch device.
This function handles device initialization and validation for different device types:
- CUDA: Validates CUDA availability and handles device selection
- MPS: Validates MPS availability for Apple Silicon
- CPU: Basic validation
- HPU: Raises error as it's not supported
Args:
device_str: String specifying the device ('cuda', 'cpu', 'mps')
Returns:
torch.device: The initialized and validated device
Raises:
RuntimeError: If device initialization fails or device is not supported
"""
try:
device = torch.device(device_str)
except RuntimeError as e:
raise RuntimeError(f"Error getting Torch Device {str(e)}") from e
# Validate device capabilities
if device.type == "cuda":
if not torch.cuda.is_available():
raise RuntimeError(
f"{device.type}: Torch has no CUDA/ROCm support or could not detect a compatible device."
)
if device.index is None:
device = torch.device(device.type, torch.cuda.current_device())
elif device.type == "mps":
if not torch.backends.mps.is_available():
raise RuntimeError(f"{device.type}: Torch has no MPS support or could not detect a compatible device.")
elif device.type == "hpu":
raise RuntimeError(f"{device.type}: training does not support Intel Gaudi.")
return device
async def load_rows_from_dataset(datasetio_api: DatasetIO, dataset_id: str) -> list[dict[str, Any]]:
"""Load dataset from llama stack dataset provider"""
try:
all_rows = await datasetio_api.iterrows(
dataset_id=dataset_id,
limit=-1,
)
if not isinstance(all_rows.data, list):
raise RuntimeError("Expected dataset data to be a list")
return all_rows.data
except Exception as e:
raise RuntimeError(f"Failed to load dataset: {str(e)}") from e
def load_model(
model: str,
device: torch.device,
provider_config: HuggingFacePostTrainingConfig,
) -> AutoModelForCausalLM:
"""Load and initialize the model for training.
Args:
model: The model identifier to load
device: The device to load the model onto
provider_config: Provider-specific configuration
Returns:
The loaded and initialized model
Raises:
RuntimeError: If model loading fails
"""
logger.info("Loading the base model")
try:
model_config = AutoConfig.from_pretrained(model, **provider_config.model_specific_config)
model_obj = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype="auto" if device.type != "cpu" else "float32",
quantization_config=None,
config=model_config,
**provider_config.model_specific_config,
)
# Always move model to specified device
model_obj = model_obj.to(device)
logger.info(f"Model loaded and moved to device: {model_obj.device}")
return model_obj
except Exception as e:
raise RuntimeError(f"Failed to load model: {str(e)}") from e
def split_dataset(ds: Dataset) -> tuple[Dataset, Dataset]:
"""Split dataset into train and validation sets.
Args:
ds: Dataset to split
Returns:
tuple: (train_dataset, eval_dataset)
"""
logger.info("Splitting dataset into train and validation sets")
train_val_split = ds.train_test_split(test_size=0.1, seed=42)
train_dataset = train_val_split["train"]
eval_dataset = train_val_split["test"]
logger.info(f"Split dataset into {len(train_dataset)} training and {len(eval_dataset)} validation examples")
return train_dataset, eval_dataset
def setup_signal_handlers():
"""Setup signal handlers for graceful shutdown."""
def signal_handler(signum, frame):
logger.info(f"Received signal {signum}, initiating graceful shutdown")
sys.exit(0)
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
def calculate_training_steps(steps_per_epoch: int, config: TrainingConfig) -> dict[str, int]:
"""Calculate training steps and logging configuration.
Args:
steps_per_epoch: Number of training steps per epoch
config: Training configuration
Returns:
dict: Dictionary with calculated step values
"""
total_steps = steps_per_epoch * config.n_epochs
max_steps = min(config.max_steps_per_epoch, total_steps)
logging_steps = max(1, steps_per_epoch // 50) # Log 50 times per epoch
logger.info("Training configuration:")
logger.info(f"- Steps per epoch: {steps_per_epoch}")
logger.info(f"- Total steps: {total_steps}")
logger.info(f"- Max steps: {max_steps}")
logger.info(f"- Logging steps: {logging_steps}")
return {"total_steps": total_steps, "max_steps": max_steps, "logging_steps": logging_steps}
def get_save_strategy(output_dir_path: Path | None) -> tuple[str, str]:
"""Get save and evaluation strategy based on output directory.
Args:
output_dir_path: Optional path to save the model
Returns:
tuple: (save_strategy, eval_strategy)
"""
if output_dir_path:
logger.info(f"Will save checkpoints to {output_dir_path}")
return "epoch", "epoch"
return "no", "no"
def create_checkpoints(
output_dir_path: Path, job_uuid: str, model: str, config: TrainingConfig, final_model_name: str
) -> list[Checkpoint]:
"""Create checkpoint objects from training output.
Args:
output_dir_path: Path to the training output directory
job_uuid: Unique identifier for the training job
model: Model identifier
config: Training configuration
final_model_name: Name of the final model directory ("merged_model" for SFT, "dpo_model" for DPO)
Returns:
List of Checkpoint objects
"""
checkpoints = []
# Add checkpoint directories
checkpoint_dirs = sorted(
[d for d in output_dir_path.glob("checkpoint-*") if d.is_dir()],
key=lambda x: int(x.name.split("-")[1]),
)
for epoch_number, checkpoint_dir in enumerate(checkpoint_dirs, start=1):
created_time = datetime.fromtimestamp(os.path.getctime(checkpoint_dir), tz=UTC)
checkpoint = Checkpoint(
identifier=checkpoint_dir.name,
created_at=created_time,
epoch=epoch_number,
post_training_job_id=job_uuid,
path=str(checkpoint_dir),
)
checkpoints.append(checkpoint)
# Add final model
final_model_path = output_dir_path / final_model_name
if final_model_path.exists():
training_type = "sft" if final_model_name == "merged_model" else "dpo"
checkpoint = Checkpoint(
identifier=f"{model}-{training_type}-{config.n_epochs}",
created_at=datetime.now(UTC),
epoch=config.n_epochs,
post_training_job_id=job_uuid,
path=str(final_model_path),
)
checkpoints.append(checkpoint)
return checkpoints

View file

@ -6,7 +6,7 @@
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import TorchtunePostTrainingConfig

View file

@ -23,12 +23,8 @@ from llama_stack.apis.post_training import (
from llama_stack.providers.inline.post_training.torchtune.config import (
TorchtunePostTrainingConfig,
)
from llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device import (
LoraFinetuningSingleDevice,
)
from llama_stack.providers.utils.scheduler import JobArtifact, Scheduler
from llama_stack.providers.utils.scheduler import JobStatus as SchedulerJobStatus
from llama_stack.schema_utils import webmethod
class TrainingArtifactType(Enum):
@ -84,6 +80,10 @@ class TorchtunePostTrainingImpl:
if isinstance(algorithm_config, LoraFinetuningConfig):
async def handler(on_log_message_cb, on_status_change_cb, on_artifact_collected_cb):
from llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device import (
LoraFinetuningSingleDevice,
)
on_log_message_cb("Starting Lora finetuning")
recipe = LoraFinetuningSingleDevice(
@ -144,7 +144,6 @@ class TorchtunePostTrainingImpl:
data = cls._get_artifacts_metadata_by_type(job, TrainingArtifactType.RESOURCES_STATS.value)
return data[0] if data else None
@webmethod(route="/post-training/job/status")
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse | None:
job = self._scheduler.get_job(job_uuid)
@ -171,11 +170,9 @@ class TorchtunePostTrainingImpl:
resources_allocated=self._get_resources_allocated(job),
)
@webmethod(route="/post-training/job/cancel")
async def cancel_training_job(self, job_uuid: str) -> None:
self._scheduler.cancel(job_uuid)
@webmethod(route="/post-training/job/artifacts")
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse | None:
job = self._scheduler.get_job(job_uuid)
return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=self._get_checkpoints(job))

View file

@ -43,8 +43,8 @@ from llama_stack.apis.post_training import (
QATFinetuningConfig,
TrainingConfig,
)
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
from llama_stack.core.utils.model_utils import model_local_dir
from llama_stack.models.llama.sku_list import resolve_model
from llama_stack.providers.inline.post_training.common.utils import evacuate_model_from_device
from llama_stack.providers.inline.post_training.torchtune.common import utils

View file

@ -4,7 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import re
import uuid
from string import Template
from typing import Any
@ -20,8 +22,9 @@ from llama_stack.apis.safety import (
SafetyViolation,
ViolationLevel,
)
from llama_stack.apis.safety.safety import ModerationObject, ModerationObjectResults, OpenAICategories
from llama_stack.apis.shields import Shield
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from llama_stack.models.llama.datatypes import Role
from llama_stack.models.llama.sku_types import CoreModelId
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
@ -67,6 +70,31 @@ SAFETY_CATEGORIES_TO_CODE_MAP = {
CAT_ELECTIONS: "S13",
CAT_CODE_INTERPRETER_ABUSE: "S14",
}
SAFETY_CODE_TO_CATEGORIES_MAP = {v: k for k, v in SAFETY_CATEGORIES_TO_CODE_MAP.items()}
OPENAI_TO_LLAMA_CATEGORIES_MAP = {
OpenAICategories.VIOLENCE: [CAT_VIOLENT_CRIMES],
OpenAICategories.VIOLENCE_GRAPHIC: [CAT_VIOLENT_CRIMES],
OpenAICategories.HARRASMENT: [CAT_CHILD_EXPLOITATION],
OpenAICategories.HARRASMENT_THREATENING: [CAT_VIOLENT_CRIMES, CAT_CHILD_EXPLOITATION],
OpenAICategories.HATE: [CAT_HATE],
OpenAICategories.HATE_THREATENING: [CAT_HATE, CAT_VIOLENT_CRIMES],
OpenAICategories.ILLICIT: [CAT_NON_VIOLENT_CRIMES],
OpenAICategories.ILLICIT_VIOLENT: [CAT_VIOLENT_CRIMES, CAT_INDISCRIMINATE_WEAPONS],
OpenAICategories.SEXUAL: [CAT_SEX_CRIMES, CAT_SEXUAL_CONTENT],
OpenAICategories.SEXUAL_MINORS: [CAT_CHILD_EXPLOITATION],
OpenAICategories.SELF_HARM: [CAT_SELF_HARM],
OpenAICategories.SELF_HARM_INTENT: [CAT_SELF_HARM],
OpenAICategories.SELF_HARM_INSTRUCTIONS: [CAT_SELF_HARM, CAT_SPECIALIZED_ADVICE],
# These are custom categories that are not in the OpenAI moderation categories
"custom/defamation": [CAT_DEFAMATION],
"custom/specialized_advice": [CAT_SPECIALIZED_ADVICE],
"custom/privacy_violation": [CAT_PRIVACY],
"custom/intellectual_property": [CAT_INTELLECTUAL_PROPERTY],
"custom/weapons": [CAT_INDISCRIMINATE_WEAPONS],
"custom/elections": [CAT_ELECTIONS],
"custom/code_interpreter_abuse": [CAT_CODE_INTERPRETER_ABUSE],
}
DEFAULT_LG_V3_SAFETY_CATEGORIES = [
@ -146,8 +174,13 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
pass
async def register_shield(self, shield: Shield) -> None:
# Allow any model to be registered as a shield
# The model will be validated during runtime when making inference calls
model_id = shield.provider_resource_id
if not model_id:
raise ValueError("Llama Guard shield must have a model id")
async def unregister_shield(self, identifier: str) -> None:
# LlamaGuard doesn't need to do anything special for unregistration
# The routing table handles the removal from the registry
pass
async def run_shield(
@ -189,6 +222,34 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
return await impl.run(messages)
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
if isinstance(input, list):
messages = input.copy()
else:
messages = [input]
# convert to user messages format with role
messages = [UserMessage(content=m) for m in messages]
# Determine safety categories based on the model type
# For known Llama Guard models, use specific categories
if model in LLAMA_GUARD_MODEL_IDS:
# Use the mapped model for categories but the original model_id for inference
mapped_model = LLAMA_GUARD_MODEL_IDS[model]
safety_categories = MODEL_TO_SAFETY_CATEGORIES_MAP.get(mapped_model, DEFAULT_LG_V3_SAFETY_CATEGORIES)
else:
# For unknown models, use default Llama Guard 3 8B categories
safety_categories = DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE]
impl = LlamaGuardShield(
model=model,
inference_api=self.inference_api,
excluded_categories=self.config.excluded_categories,
safety_categories=safety_categories,
)
return await impl.run_moderation(messages)
class LlamaGuardShield:
def __init__(
@ -335,3 +396,117 @@ class LlamaGuardShield:
)
raise ValueError(f"Unexpected response: {response}")
async def run_moderation(self, messages: list[Message]) -> ModerationObject:
if not messages:
return self.create_moderation_object(self.model)
# TODO: Add Image based support for OpenAI Moderations
shield_input_message = self.build_text_shield_input(messages)
response = await self.inference_api.openai_chat_completion(
model=self.model,
messages=[shield_input_message],
stream=False,
)
content = response.choices[0].message.content
content = content.strip()
return self.get_moderation_object(content)
def create_moderation_object(self, model: str, unsafe_code: str | None = None) -> ModerationObject:
"""Create a ModerationObject for either safe or unsafe content.
Args:
model: The model name
unsafe_code: Optional comma-separated list of safety codes. If None, creates safe object.
Returns:
ModerationObject with appropriate configuration
"""
# Set default values for safe case
categories = dict.fromkeys(OPENAI_TO_LLAMA_CATEGORIES_MAP.keys(), False)
category_scores = dict.fromkeys(OPENAI_TO_LLAMA_CATEGORIES_MAP.keys(), 1.0)
category_applied_input_types = {key: [] for key in OPENAI_TO_LLAMA_CATEGORIES_MAP.keys()}
flagged = False
user_message = None
metadata = {}
# Handle unsafe case
if unsafe_code:
unsafe_code_list = [code.strip() for code in unsafe_code.split(",")]
invalid_codes = [code for code in unsafe_code_list if code not in SAFETY_CODE_TO_CATEGORIES_MAP]
if invalid_codes:
logging.warning(f"Invalid safety codes returned: {invalid_codes}")
# just returning safe object, as we don't know what the invalid codes can map to
return ModerationObject(
id=f"modr-{uuid.uuid4()}",
model=model,
results=[
ModerationObjectResults(
flagged=flagged,
categories=categories,
category_applied_input_types=category_applied_input_types,
category_scores=category_scores,
user_message=user_message,
metadata=metadata,
)
],
)
# Get OpenAI categories for the unsafe codes
openai_categories = []
for code in unsafe_code_list:
llama_guard_category = SAFETY_CODE_TO_CATEGORIES_MAP[code]
openai_categories.extend(
k for k, v_l in OPENAI_TO_LLAMA_CATEGORIES_MAP.items() if llama_guard_category in v_l
)
# Update categories for unsafe content
categories = {k: k in openai_categories for k in OPENAI_TO_LLAMA_CATEGORIES_MAP}
category_scores = {k: 1.0 if k in openai_categories else 0.0 for k in OPENAI_TO_LLAMA_CATEGORIES_MAP}
category_applied_input_types = {
k: ["text"] if k in openai_categories else [] for k in OPENAI_TO_LLAMA_CATEGORIES_MAP
}
flagged = True
user_message = CANNED_RESPONSE_TEXT
metadata = {"violation_type": unsafe_code_list}
return ModerationObject(
id=f"modr-{uuid.uuid4()}",
model=model,
results=[
ModerationObjectResults(
flagged=flagged,
categories=categories,
category_applied_input_types=category_applied_input_types,
category_scores=category_scores,
user_message=user_message,
metadata=metadata,
)
],
)
def is_content_safe(self, response: str, unsafe_code: str | None = None) -> bool:
"""Check if content is safe based on response and unsafe code."""
if response.strip() == SAFE_RESPONSE:
return True
if unsafe_code:
unsafe_code_list = unsafe_code.split(",")
if set(unsafe_code_list).issubset(set(self.excluded_categories)):
return True
return False
def get_moderation_object(self, response: str) -> ModerationObject:
response = response.strip()
if self.is_content_safe(response):
return self.create_moderation_object(self.model)
unsafe_code = self.check_unsafe_response(response)
if not unsafe_code:
raise ValueError(f"Unexpected response: {response}")
if self.is_content_safe(response, unsafe_code):
return self.create_moderation_object(self.model)
else:
return self.create_moderation_object(self.model, unsafe_code)

View file

@ -18,7 +18,7 @@ from llama_stack.apis.safety import (
ViolationLevel,
)
from llama_stack.apis.shields import Shield
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.model_utils import model_local_dir
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
@ -46,6 +46,9 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
if shield.provider_resource_id != PROMPT_GUARD_MODEL:
raise ValueError(f"Only {PROMPT_GUARD_MODEL} is supported for Prompt Guard. ")
async def unregister_shield(self, identifier: str) -> None:
pass
async def run_shield(
self,
shield_id: str,

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import BasicScoringConfig

View file

@ -14,7 +14,7 @@ from llama_stack.apis.scoring import (
ScoringResult,
)
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
get_valid_schemas,

View file

@ -7,7 +7,7 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import BraintrustScoringConfig

View file

@ -29,8 +29,8 @@ from llama_stack.apis.scoring import (
ScoringResultRow,
)
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.core.datatypes import Api
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
get_valid_schemas,

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import LlmAsJudgeScoringConfig

View file

@ -15,7 +15,7 @@ from llama_stack.apis.scoring import (
ScoringResult,
)
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
get_valid_schemas,

View file

@ -6,7 +6,7 @@
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import TelemetryConfig, TelemetrySink

View file

@ -9,7 +9,7 @@ from typing import Any
from pydantic import BaseModel, Field, field_validator
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
class TelemetrySink(StrEnum):

View file

@ -11,19 +11,9 @@ from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanProcessor
from opentelemetry.trace.status import StatusCode
# Colors for console output
COLORS = {
"reset": "\033[0m",
"bold": "\033[1m",
"dim": "\033[2m",
"red": "\033[31m",
"green": "\033[32m",
"yellow": "\033[33m",
"blue": "\033[34m",
"magenta": "\033[35m",
"cyan": "\033[36m",
"white": "\033[37m",
}
from llama_stack.log import get_logger
logger = get_logger(name="console_span_processor", category="telemetry")
class ConsoleSpanProcessor(SpanProcessor):
@ -35,34 +25,18 @@ class ConsoleSpanProcessor(SpanProcessor):
return
timestamp = datetime.fromtimestamp(span.start_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
print(
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
f"{COLORS['magenta']}[START]{COLORS['reset']} "
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
)
logger.info(f"[dim]{timestamp}[/dim] [bold magenta][START][/bold magenta] [dim]{span.name}[/dim]")
def on_end(self, span: ReadableSpan) -> None:
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.fromtimestamp(span.end_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
span_context = (
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
f"{COLORS['magenta']}[END]{COLORS['reset']} "
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
)
span_context = f"[dim]{timestamp}[/dim] [bold magenta][END][/bold magenta] [dim]{span.name}[/dim]"
if span.status.status_code == StatusCode.ERROR:
span_context += f"{COLORS['reset']} {COLORS['red']}[ERROR]{COLORS['reset']}"
span_context += " [bold red][ERROR][/bold red]"
elif span.status.status_code != StatusCode.UNSET:
span_context += f"{COLORS['reset']} [{span.status.status_code}]"
span_context += f" [{span.status.status_code}]"
duration_ms = (span.end_time - span.start_time) / 1e6
span_context += f"{COLORS['reset']} ({duration_ms:.2f}ms)"
print(span_context)
span_context += f" ({duration_ms:.2f}ms)"
logger.info(span_context)
if self.print_attributes and span.attributes:
for key, value in span.attributes.items():
@ -71,31 +45,26 @@ class ConsoleSpanProcessor(SpanProcessor):
str_value = str(value)
if len(str_value) > 1000:
str_value = str_value[:997] + "..."
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
logger.info(f" [dim]{key}[/dim]: {str_value}")
for event in span.events:
event_time = datetime.fromtimestamp(event.timestamp / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
severity = event.attributes.get("severity", "info")
message = event.attributes.get("message", event.name)
if isinstance(message, dict | list):
if isinstance(message, dict) or isinstance(message, list):
message = json.dumps(message, indent=2)
severity_colors = {
"error": f"{COLORS['bold']}{COLORS['red']}",
"warn": f"{COLORS['bold']}{COLORS['yellow']}",
"info": COLORS["white"],
"debug": COLORS["dim"],
}
msg_color = severity_colors.get(severity, COLORS["white"])
print(f" {event_time} {msg_color}[{severity.upper()}] {message}{COLORS['reset']}")
severity_color = {
"error": "red",
"warn": "yellow",
"info": "white",
"debug": "dim",
}.get(severity, "white")
logger.info(f" {event_time} [bold {severity_color}][{severity.upper()}][/bold {severity_color}] {message}")
if event.attributes:
for key, value in event.attributes.items():
if key.startswith("__") or key in ["message", "severity"]:
continue
print(f" {COLORS['dim']}{key}: {value}{COLORS['reset']}")
logger.info(f"[dim]{key}[/dim]: {value}")
def shutdown(self) -> None:
"""Shutdown the processor."""

View file

@ -4,10 +4,13 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import threading
from typing import Any
from opentelemetry import metrics, trace
logger = logging.getLogger(__name__)
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.metrics import MeterProvider
@ -36,7 +39,7 @@ from llama_stack.apis.telemetry import (
Trace,
UnstructuredLogEvent,
)
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from llama_stack.providers.inline.telemetry.meta_reference.console_span_processor import (
ConsoleSpanProcessor,
)
@ -110,7 +113,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
if TelemetrySink.SQLITE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(SQLiteSpanProcessor(self.config.sqlite_db_path))
if TelemetrySink.CONSOLE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor(print_attributes=True))
if TelemetrySink.OTEL_METRIC in self.config.sinks:
self.meter = metrics.get_meter(__name__)
@ -126,9 +129,11 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
trace.get_tracer_provider().force_flush()
async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None:
logger.debug(f"DEBUG: log_event called with event type: {type(event).__name__}")
if isinstance(event, UnstructuredLogEvent):
self._log_unstructured(event, ttl_seconds)
elif isinstance(event, MetricEvent):
logger.debug("DEBUG: Routing MetricEvent to _log_metric")
self._log_metric(event)
elif isinstance(event, StructuredLogEvent):
self._log_structured(event, ttl_seconds)
@ -188,6 +193,38 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
return _GLOBAL_STORAGE["gauges"][name]
def _log_metric(self, event: MetricEvent) -> None:
# Always log to console if console sink is enabled (debug)
if TelemetrySink.CONSOLE in self.config.sinks:
logger.debug(f"METRIC: {event.metric}={event.value} {event.unit} {event.attributes}")
# Add metric as an event to the current span
try:
with self._lock:
# Only try to add to span if we have a valid span_id
if event.span_id:
try:
span_id = int(event.span_id, 16)
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
if span:
timestamp_ns = int(event.timestamp.timestamp() * 1e9)
span.add_event(
name=f"metric.{event.metric}",
attributes={
"value": event.value,
"unit": event.unit,
**(event.attributes or {}),
},
timestamp=timestamp_ns,
)
except (ValueError, KeyError):
# Invalid span_id or span not found, but we already logged to console above
pass
except Exception:
# Lock acquisition failed
logger.debug("Failed to acquire lock to add metric to span")
# Log to OpenTelemetry meter if available
if self.meter is None:
return
if isinstance(event.value, int):

View file

@ -16,6 +16,6 @@ async def get_provider_impl(config: ChromaVectorIOConfig, deps: dict[Api, Any]):
ChromaVectorIOAdapter,
)
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -6,12 +6,25 @@
from typing import Any
from pydantic import BaseModel
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class ChromaVectorIOConfig(BaseModel):
db_path: str
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
@classmethod
def sample_run_config(cls, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any) -> dict[str, Any]:
return {"db_path": db_path}
def sample_run_config(
cls, __distro_dir__: str, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any
) -> dict[str, Any]:
return {
"db_path": db_path,
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="chroma_inline_registry.db",
),
}

View file

@ -15,6 +15,7 @@ import faiss
import numpy as np
from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
@ -55,6 +56,11 @@ class FaissIndex(EmbeddingIndex):
self.kvstore = kvstore
self.bank_id = bank_id
# A list of chunk id's in the same order as they are in the index,
# must be updated when chunks are added or removed
self.chunk_id_lock = asyncio.Lock()
self.chunk_ids: list[Any] = []
@classmethod
async def create(cls, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None):
instance = cls(dimension, kvstore, bank_id)
@ -75,6 +81,7 @@ class FaissIndex(EmbeddingIndex):
buffer = io.BytesIO(base64.b64decode(data["faiss_index"]))
try:
self.index = faiss.deserialize_index(np.load(buffer, allow_pickle=False))
self.chunk_ids = [chunk.chunk_id for chunk in self.chunk_by_index.values()]
except Exception as e:
logger.debug(e, exc_info=True)
raise ValueError(
@ -114,11 +121,33 @@ class FaissIndex(EmbeddingIndex):
for i, chunk in enumerate(chunks):
self.chunk_by_index[indexlen + i] = chunk
self.index.add(np.array(embeddings).astype(np.float32))
async with self.chunk_id_lock:
self.index.add(np.array(embeddings).astype(np.float32))
self.chunk_ids.extend([chunk.chunk_id for chunk in chunks])
# Save updated index
await self._save_index()
async def delete_chunk(self, chunk_id: str) -> None:
if chunk_id not in self.chunk_ids:
return
async with self.chunk_id_lock:
index = self.chunk_ids.index(chunk_id)
self.index.remove_ids(np.array([index]))
new_chunk_by_index = {}
for idx, chunk in self.chunk_by_index.items():
# Shift all chunks after the removed chunk to the left
if idx > index:
new_chunk_by_index[idx - 1] = chunk
else:
new_chunk_by_index[idx] = chunk
self.chunk_by_index = new_chunk_by_index
self.chunk_ids.pop(index)
await self._save_index()
async def query_vector(
self,
embedding: NDArray,
@ -131,8 +160,11 @@ class FaissIndex(EmbeddingIndex):
for d, i in zip(distances[0], indices[0], strict=False):
if i < 0:
continue
score = 1.0 / float(d) if d != 0 else float("inf")
if score < score_threshold:
continue
chunks.append(self.chunk_by_index[int(i)])
scores.append(1.0 / float(d) if d != 0 else float("inf"))
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)
@ -181,8 +213,8 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
)
self.cache[vector_db.identifier] = index
# Load existing OpenAI vector stores using the mixin method
self.openai_vector_stores = await self._load_openai_vector_stores()
# Load existing OpenAI vector stores into the in-memory cache
await self.initialize_openai_vector_stores()
async def shutdown(self) -> None:
# Cleanup if needed
@ -257,74 +289,12 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
) -> QueryChunksResponse:
index = self.cache.get(vector_db_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
# OpenAI Vector Store Mixin abstract method implementations
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from kvstore."""
assert self.kvstore is not None
start_key = OPENAI_VECTOR_STORES_PREFIX
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
stores = {}
for store_data in stored_openai_stores:
store_info = json.loads(store_data)
stores[store_info["id"]] = store_info
return stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key)
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else {}
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else []
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.delete(key)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a faiss index"""
faiss_index = self.cache[store_id].index
for chunk_id in chunk_ids:
await faiss_index.delete_chunk(chunk_id)

View file

@ -4,14 +4,18 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import Api, ProviderSpec
from typing import Any
from llama_stack.providers.datatypes import Api
from .config import QdrantVectorIOConfig
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
async def get_provider_impl(config: QdrantVectorIOConfig, deps: dict[Api, Any]):
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
assert isinstance(config, QdrantVectorIOConfig), f"Unexpected config type: {type(config)}"
files_api = deps.get(Api.files)
impl = QdrantVectorIOAdapter(config, deps[Api.inference], files_api)
await impl.initialize()
return impl

View file

@ -9,15 +9,23 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="qdrant_registry.db"
),
}

View file

@ -5,8 +5,8 @@
# the root directory of this source tree.
import asyncio
import json
import logging
import re
import sqlite3
import struct
from typing import Any
@ -15,6 +15,7 @@ import numpy as np
import sqlite_vec
from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
@ -117,6 +118,10 @@ def _rrf_rerank(
return rrf_scores
def _make_sql_identifier(name: str) -> str:
return re.sub(r"[^a-zA-Z0-9_]", "_", name)
class SQLiteVecIndex(EmbeddingIndex):
"""
An index implementation that stores embeddings in a SQLite virtual table using sqlite-vec.
@ -130,9 +135,9 @@ class SQLiteVecIndex(EmbeddingIndex):
self.dimension = dimension
self.db_path = db_path
self.bank_id = bank_id
self.metadata_table = f"chunks_{bank_id}".replace("-", "_")
self.vector_table = f"vec_chunks_{bank_id}".replace("-", "_")
self.fts_table = f"fts_chunks_{bank_id}".replace("-", "_")
self.metadata_table = _make_sql_identifier(f"chunks_{bank_id}")
self.vector_table = _make_sql_identifier(f"vec_chunks_{bank_id}")
self.fts_table = _make_sql_identifier(f"fts_chunks_{bank_id}")
self.kvstore = kvstore
@classmethod
@ -148,14 +153,14 @@ class SQLiteVecIndex(EmbeddingIndex):
try:
# Create the table to store chunk metadata.
cur.execute(f"""
CREATE TABLE IF NOT EXISTS {self.metadata_table} (
CREATE TABLE IF NOT EXISTS [{self.metadata_table}] (
id TEXT PRIMARY KEY,
chunk TEXT
);
""")
# Create the virtual table for embeddings.
cur.execute(f"""
CREATE VIRTUAL TABLE IF NOT EXISTS {self.vector_table}
CREATE VIRTUAL TABLE IF NOT EXISTS [{self.vector_table}]
USING vec0(embedding FLOAT[{self.dimension}], id TEXT);
""")
connection.commit()
@ -163,7 +168,7 @@ class SQLiteVecIndex(EmbeddingIndex):
# based on query. Implementation of the change on client side will allow passing the search_mode option
# during initialization to make it easier to create the table that is required.
cur.execute(f"""
CREATE VIRTUAL TABLE IF NOT EXISTS {self.fts_table}
CREATE VIRTUAL TABLE IF NOT EXISTS [{self.fts_table}]
USING fts5(id, content);
""")
connection.commit()
@ -178,9 +183,9 @@ class SQLiteVecIndex(EmbeddingIndex):
connection = _create_sqlite_connection(self.db_path)
cur = connection.cursor()
try:
cur.execute(f"DROP TABLE IF EXISTS {self.metadata_table};")
cur.execute(f"DROP TABLE IF EXISTS {self.vector_table};")
cur.execute(f"DROP TABLE IF EXISTS {self.fts_table};")
cur.execute(f"DROP TABLE IF EXISTS [{self.metadata_table}];")
cur.execute(f"DROP TABLE IF EXISTS [{self.vector_table}];")
cur.execute(f"DROP TABLE IF EXISTS [{self.fts_table}];")
connection.commit()
finally:
cur.close()
@ -212,7 +217,7 @@ class SQLiteVecIndex(EmbeddingIndex):
metadata_data = [(chunk.chunk_id, chunk.model_dump_json()) for chunk in batch_chunks]
cur.executemany(
f"""
INSERT INTO {self.metadata_table} (id, chunk)
INSERT INTO [{self.metadata_table}] (id, chunk)
VALUES (?, ?)
ON CONFLICT(id) DO UPDATE SET chunk = excluded.chunk;
""",
@ -230,7 +235,7 @@ class SQLiteVecIndex(EmbeddingIndex):
for chunk, emb in zip(batch_chunks, batch_embeddings, strict=True)
]
cur.executemany(
f"INSERT INTO {self.vector_table} (id, embedding) VALUES (?, ?);",
f"INSERT INTO [{self.vector_table}] (id, embedding) VALUES (?, ?);",
embedding_data,
)
@ -238,13 +243,13 @@ class SQLiteVecIndex(EmbeddingIndex):
fts_data = [(chunk.chunk_id, chunk.content) for chunk in batch_chunks]
# DELETE existing entries with same IDs (FTS5 doesn't support ON CONFLICT)
cur.executemany(
f"DELETE FROM {self.fts_table} WHERE id = ?;",
f"DELETE FROM [{self.fts_table}] WHERE id = ?;",
[(row[0],) for row in fts_data],
)
# INSERT new entries
cur.executemany(
f"INSERT INTO {self.fts_table} (id, content) VALUES (?, ?);",
f"INSERT INTO [{self.fts_table}] (id, content) VALUES (?, ?);",
fts_data,
)
@ -280,8 +285,8 @@ class SQLiteVecIndex(EmbeddingIndex):
emb_blob = serialize_vector(emb_list)
query_sql = f"""
SELECT m.id, m.chunk, v.distance
FROM {self.vector_table} AS v
JOIN {self.metadata_table} AS m ON m.id = v.id
FROM [{self.vector_table}] AS v
JOIN [{self.metadata_table}] AS m ON m.id = v.id
WHERE v.embedding MATCH ? AND k = ?
ORDER BY v.distance;
"""
@ -322,9 +327,9 @@ class SQLiteVecIndex(EmbeddingIndex):
cur = connection.cursor()
try:
query_sql = f"""
SELECT DISTINCT m.id, m.chunk, bm25({self.fts_table}) AS score
FROM {self.fts_table} AS f
JOIN {self.metadata_table} AS m ON m.id = f.id
SELECT DISTINCT m.id, m.chunk, bm25([{self.fts_table}]) AS score
FROM [{self.fts_table}] AS f
JOIN [{self.metadata_table}] AS m ON m.id = f.id
WHERE f.content MATCH ?
ORDER BY score ASC
LIMIT ?;
@ -421,6 +426,35 @@ class SQLiteVecIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores)
async def delete_chunk(self, chunk_id: str) -> None:
"""Remove a chunk from the SQLite vector store."""
def _delete_chunk():
connection = _create_sqlite_connection(self.db_path)
cur = connection.cursor()
try:
cur.execute("BEGIN TRANSACTION")
# Delete from metadata table
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id = ?", (chunk_id,))
# Delete from vector table
cur.execute(f"DELETE FROM {self.vector_table} WHERE id = ?", (chunk_id,))
# Delete from FTS table
cur.execute(f"DELETE FROM {self.fts_table} WHERE id = ?", (chunk_id,))
connection.commit()
except Exception as e:
connection.rollback()
logger.error(f"Error deleting chunk {chunk_id}: {e}")
raise
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete_chunk)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
"""
@ -452,8 +486,8 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
)
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
# load any existing OpenAI vector stores
self.openai_vector_stores = await self._load_openai_vector_stores()
# Load existing OpenAI vector stores into the in-memory cache
await self.initialize_openai_vector_stores()
async def shutdown(self) -> None:
# nothing to do since we don't maintain a persistent connection
@ -475,11 +509,11 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
return self.cache[vector_db_id]
if self.vector_db_store is None:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
vector_db = self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
index = VectorDBWithIndex(
vector_db=vector_db,
@ -501,179 +535,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
await self.cache[vector_db_id].index.delete()
del self.cache[vector_db_id]
# OpenAI Vector Store Mixin abstract method implementations
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to SQLite database."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
self.openai_vector_stores[store_id] = store_info
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from SQLite database."""
assert self.kvstore is not None
start_key = OPENAI_VECTOR_STORES_PREFIX
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
stores = {}
for store_data in stored_openai_stores:
store_info = json.loads(store_data)
stores[store_info["id"]] = store_info
return stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in SQLite database."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
self.openai_vector_stores[store_id] = store_info
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from SQLite database."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key)
if store_id in self.openai_vector_stores:
del self.openai_vector_stores[store_id]
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to SQLite database."""
def _create_or_store():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
# Create a table to persist OpenAI vector store files.
cur.execute("""
CREATE TABLE IF NOT EXISTS openai_vector_store_files (
store_id TEXT,
file_id TEXT,
metadata TEXT,
PRIMARY KEY (store_id, file_id)
);
""")
cur.execute("""
CREATE TABLE IF NOT EXISTS openai_vector_store_files_contents (
store_id TEXT,
file_id TEXT,
contents TEXT,
PRIMARY KEY (store_id, file_id)
);
""")
connection.commit()
cur.execute(
"INSERT OR REPLACE INTO openai_vector_store_files (store_id, file_id, metadata) VALUES (?, ?, ?)",
(store_id, file_id, json.dumps(file_info)),
)
cur.execute(
"INSERT OR REPLACE INTO openai_vector_store_files_contents (store_id, file_id, contents) VALUES (?, ?, ?)",
(store_id, file_id, json.dumps(file_contents)),
)
connection.commit()
except Exception as e:
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
raise
finally:
cur.close()
connection.close()
try:
await asyncio.to_thread(_create_or_store)
except Exception as e:
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
raise
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from SQLite database."""
def _load():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"SELECT metadata FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?",
(store_id, file_id),
)
row = cur.fetchone()
if row is None:
return None
(metadata,) = row
return metadata
finally:
cur.close()
connection.close()
stored_data = await asyncio.to_thread(_load)
return json.loads(stored_data) if stored_data else {}
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from SQLite database."""
def _load():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"SELECT contents FROM openai_vector_store_files_contents WHERE store_id = ? AND file_id = ?",
(store_id, file_id),
)
row = cur.fetchone()
if row is None:
return None
(contents,) = row
return contents
finally:
cur.close()
connection.close()
stored_contents = await asyncio.to_thread(_load)
return json.loads(stored_contents) if stored_contents else []
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in SQLite database."""
def _update():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"UPDATE openai_vector_store_files SET metadata = ? WHERE store_id = ? AND file_id = ?",
(json.dumps(file_info), store_id, file_id),
)
connection.commit()
finally:
cur.close()
connection.close()
await asyncio.to_thread(_update)
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from SQLite database."""
def _delete():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"DELETE FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?", (store_id, file_id)
)
cur.execute(
"DELETE FROM openai_vector_store_files_contents WHERE store_id = ? AND file_id = ?",
(store_id, file_id),
)
connection.commit()
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete)
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
# The VectorDBWithIndex helper is expected to compute embeddings via the inference_api
# and then call our index's add_chunks.
await index.insert_chunks(chunks)
@ -683,5 +548,15 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a sqlite_vec index."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)

View file

@ -37,16 +37,6 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
description="Meta's reference implementation of inference with support for various model formats and optimization techniques.",
),
InlineProviderSpec(
api=Api.inference,
provider_type="inline::vllm",
pip_packages=[
"vllm",
],
module="llama_stack.providers.inline.inference.vllm",
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
description="vLLM inference provider for high-performance model serving with PagedAttention and continuous batching.",
),
InlineProviderSpec(
api=Api.inference,
provider_type="inline::sentence-transformers",
@ -234,17 +224,6 @@ def available_providers() -> list[ProviderSpec]:
description="Groq inference provider for ultra-fast inference using Groq's LPU technology.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="fireworks-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.fireworks_openai_compat",
config_class="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksProviderDataValidator",
description="Fireworks AI OpenAI-compatible provider for using Fireworks models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
@ -256,50 +235,6 @@ def available_providers() -> list[ProviderSpec]:
description="Llama OpenAI-compatible provider for using Llama models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="together-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.together_openai_compat",
config_class="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherProviderDataValidator",
description="Together AI OpenAI-compatible provider for using Together models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="groq-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.groq_openai_compat",
config_class="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqProviderDataValidator",
description="Groq OpenAI-compatible provider for using Groq models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="sambanova-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.sambanova_openai_compat",
config_class="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaProviderDataValidator",
description="SambaNova OpenAI-compatible provider for using SambaNova models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="cerebras-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.cerebras_openai_compat",
config_class="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasProviderDataValidator",
description="Cerebras OpenAI-compatible provider for using Cerebras models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -395,7 +395,7 @@ That means you'll get fast and efficient vector retrieval.
To use PGVector in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use Faiss.
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
3. Start storing and querying vectors.
## Installation
@ -410,6 +410,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
remote_provider_spec(
Api.vector_io,
@ -497,6 +498,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
module="llama_stack.providers.inline.vector_io.qdrant",
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
description=r"""
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
@ -553,6 +555,7 @@ Please refer to the inline provider documentation.
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
remote_provider_spec(
Api.vector_io,

View file

@ -6,8 +6,6 @@
from typing import Any
from urllib.parse import parse_qs, urlparse
import datasets as hf_datasets
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Dataset
@ -73,6 +71,8 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
import datasets as hf_datasets
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
@ -81,6 +81,8 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
return paginate_records(records, start_index, limit)
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
import datasets as hf_datasets
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)

View file

@ -20,7 +20,7 @@ This provider enables dataset management using NVIDIA's NeMo Customizer service.
Build the NVIDIA environment:
```bash
llama stack build --template nvidia --image-type conda
llama stack build --distro nvidia --image-type venv
```
### Basic Usage using the LlamaStack Python Client
@ -34,7 +34,7 @@ os.environ["NVIDIA_API_KEY"] = "your-api-key"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from typing import Any
from llama_stack.distribution.datatypes import Api
from llama_stack.core.datatypes import Api
from .config import NVIDIAEvalConfig

View file

@ -15,6 +15,7 @@ class AnthropicInferenceAdapter(LiteLLMOpenAIMixin):
LiteLLMOpenAIMixin.__init__(
self,
MODEL_ENTRIES,
litellm_provider_name="anthropic",
api_key_from_config=config.api_key,
provider_data_api_key_field="anthropic_api_key",
)

View file

@ -26,7 +26,7 @@ class AnthropicConfig(BaseModel):
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {
"api_key": api_key,
}

View file

@ -10,9 +10,9 @@ from llama_stack.providers.utils.inference.model_registry import (
)
LLM_MODEL_IDS = [
"anthropic/claude-3-5-sonnet-latest",
"anthropic/claude-3-7-sonnet-latest",
"anthropic/claude-3-5-haiku-latest",
"claude-3-5-sonnet-latest",
"claude-3-7-sonnet-latest",
"claude-3-5-haiku-latest",
]
SAFETY_MODELS_ENTRIES = []
@ -21,17 +21,17 @@ MODEL_ENTRIES = (
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
+ [
ProviderModelEntry(
provider_model_id="anthropic/voyage-3",
provider_model_id="voyage-3",
model_type=ModelType.embedding,
metadata={"embedding_dimension": 1024, "context_length": 32000},
),
ProviderModelEntry(
provider_model_id="anthropic/voyage-3-lite",
provider_model_id="voyage-3-lite",
model_type=ModelType.embedding,
metadata={"embedding_dimension": 512, "context_length": 32000},
),
ProviderModelEntry(
provider_model_id="anthropic/voyage-code-3",
provider_model_id="voyage-code-3",
model_type=ModelType.embedding,
metadata={"embedding_dimension": 1024, "context_length": 32000},
),

View file

@ -63,18 +63,20 @@ class BedrockInferenceAdapter(
def __init__(self, config: BedrockConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
self._config = config
self._client = create_bedrock_client(config)
self._client = None
@property
def client(self) -> BaseClient:
if self._client is None:
self._client = create_bedrock_client(self._config)
return self._client
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
self.client.close()
if self._client is not None:
self._client.close()
async def completion(
self,

View file

@ -65,6 +65,7 @@ class CerebrasInferenceAdapter(
)
self.config = config
# TODO: make this use provider data, etc. like other providers
self.client = AsyncCerebras(
base_url=self.config.base_url,
api_key=self.config.api_key.get_secret_value(),

View file

@ -26,7 +26,7 @@ class CerebrasImplConfig(BaseModel):
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {
"base_url": DEFAULT_BASE_URL,
"api_key": api_key,

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import InferenceProvider
from .config import CerebrasCompatConfig
async def get_adapter_impl(config: CerebrasCompatConfig, _deps) -> InferenceProvider:
# import dynamically so the import is used only when it is needed
from .cerebras import CerebrasCompatInferenceAdapter
adapter = CerebrasCompatInferenceAdapter(config)
return adapter

View file

@ -1,30 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.remote.inference.cerebras_openai_compat.config import CerebrasCompatConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from ..cerebras.models import MODEL_ENTRIES
class CerebrasCompatInferenceAdapter(LiteLLMOpenAIMixin):
_config: CerebrasCompatConfig
def __init__(self, config: CerebrasCompatConfig):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
api_key_from_config=config.api_key,
provider_data_api_key_field="cerebras_api_key",
openai_compat_api_base=config.openai_compat_api_base,
)
self.config = config
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()

View file

@ -1,38 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class CerebrasProviderDataValidator(BaseModel):
cerebras_api_key: str | None = Field(
default=None,
description="API key for Cerebras models",
)
@json_schema_type
class CerebrasCompatConfig(BaseModel):
api_key: str | None = Field(
default=None,
description="The Cerebras API key",
)
openai_compat_api_base: str = Field(
default="https://api.cerebras.ai/v1",
description="The URL for the Cerebras API server",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY}", **kwargs) -> dict[str, Any]:
return {
"openai_compat_api_base": "https://api.cerebras.ai/v1",
"api_key": api_key,
}

View file

@ -25,8 +25,8 @@ class DatabricksImplConfig(BaseModel):
@classmethod
def sample_run_config(
cls,
url: str = "${env.DATABRICKS_URL}",
api_token: str = "${env.DATABRICKS_API_TOKEN}",
url: str = "${env.DATABRICKS_URL:=}",
api_token: str = "${env.DATABRICKS_API_TOKEN:=}",
**kwargs: Any,
) -> dict[str, Any]:
return {

View file

@ -6,13 +6,14 @@
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from pydantic import Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class FireworksImplConfig(BaseModel):
class FireworksImplConfig(RemoteInferenceProviderConfig):
url: str = Field(
default="https://api.fireworks.ai/inference/v1",
description="The URL for the Fireworks server",
@ -23,7 +24,7 @@ class FireworksImplConfig(BaseModel):
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {
"url": "https://api.fireworks.ai/inference/v1",
"api_key": api_key,

View file

@ -39,7 +39,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
@ -70,7 +70,7 @@ logger = get_logger(name=__name__, category="inference")
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
def __init__(self, config: FireworksImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
self.config = config
async def initialize(self) -> None:

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import InferenceProvider
from .config import FireworksCompatConfig
async def get_adapter_impl(config: FireworksCompatConfig, _deps) -> InferenceProvider:
# import dynamically so the import is used only when it is needed
from .fireworks import FireworksCompatInferenceAdapter
adapter = FireworksCompatInferenceAdapter(config)
return adapter

View file

@ -1,38 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class FireworksProviderDataValidator(BaseModel):
fireworks_api_key: str | None = Field(
default=None,
description="API key for Fireworks models",
)
@json_schema_type
class FireworksCompatConfig(BaseModel):
api_key: str | None = Field(
default=None,
description="The Fireworks API key",
)
openai_compat_api_base: str = Field(
default="https://api.fireworks.ai/inference/v1",
description="The URL for the Fireworks API server",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> dict[str, Any]:
return {
"openai_compat_api_base": "https://api.fireworks.ai/inference/v1",
"api_key": api_key,
}

View file

@ -1,30 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.remote.inference.fireworks_openai_compat.config import FireworksCompatConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from ..fireworks.models import MODEL_ENTRIES
class FireworksCompatInferenceAdapter(LiteLLMOpenAIMixin):
_config: FireworksCompatConfig
def __init__(self, config: FireworksCompatConfig):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
api_key_from_config=config.api_key,
provider_data_api_key_field="fireworks_api_key",
openai_compat_api_base=config.openai_compat_api_base,
)
self.config = config
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()

View file

@ -26,7 +26,7 @@ class GeminiConfig(BaseModel):
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {
"api_key": api_key,
}

View file

@ -15,6 +15,7 @@ class GeminiInferenceAdapter(LiteLLMOpenAIMixin):
LiteLLMOpenAIMixin.__init__(
self,
MODEL_ENTRIES,
litellm_provider_name="gemini",
api_key_from_config=config.api_key,
provider_data_api_key_field="gemini_api_key",
)

View file

@ -10,11 +10,11 @@ from llama_stack.providers.utils.inference.model_registry import (
)
LLM_MODEL_IDS = [
"gemini/gemini-1.5-flash",
"gemini/gemini-1.5-pro",
"gemini/gemini-2.0-flash",
"gemini/gemini-2.5-flash",
"gemini/gemini-2.5-pro",
"gemini-1.5-flash",
"gemini-1.5-pro",
"gemini-2.0-flash",
"gemini-2.5-flash",
"gemini-2.5-pro",
]
SAFETY_MODELS_ENTRIES = []
@ -23,7 +23,7 @@ MODEL_ENTRIES = (
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
+ [
ProviderModelEntry(
provider_model_id="gemini/text-embedding-004",
provider_model_id="text-embedding-004",
model_type=ModelType.embedding,
metadata={"embedding_dimension": 768, "context_length": 2048},
),

View file

@ -32,7 +32,7 @@ class GroqConfig(BaseModel):
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {
"url": "https://api.groq.com",
"api_key": api_key,

View file

@ -34,28 +34,23 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
litellm_provider_name="groq",
api_key_from_config=config.api_key,
provider_data_api_key_field="groq_api_key",
)
self.config = config
self._openai_client = None
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()
if self._openai_client:
await self._openai_client.close()
self._openai_client = None
def _get_openai_client(self) -> AsyncOpenAI:
if not self._openai_client:
self._openai_client = AsyncOpenAI(
base_url=f"{self.config.url}/openai/v1",
api_key=self.config.api_key,
)
return self._openai_client
return AsyncOpenAI(
base_url=f"{self.config.url}/openai/v1",
api_key=self.get_api_key(),
)
async def openai_chat_completion(
self,
@ -102,7 +97,7 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
tool_choice = "required"
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id.replace("groq/", ""),
model=model_obj.provider_resource_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,

View file

@ -14,19 +14,19 @@ SAFETY_MODELS_ENTRIES = []
MODEL_ENTRIES = [
build_hf_repo_model_entry(
"groq/llama3-8b-8192",
"llama3-8b-8192",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_entry(
"groq/llama-3.1-8b-instant",
"llama-3.1-8b-instant",
CoreModelId.llama3_1_8b_instruct.value,
),
build_hf_repo_model_entry(
"groq/llama3-70b-8192",
"llama3-70b-8192",
CoreModelId.llama3_70b_instruct.value,
),
build_hf_repo_model_entry(
"groq/llama-3.3-70b-versatile",
"llama-3.3-70b-versatile",
CoreModelId.llama3_3_70b_instruct.value,
),
# Groq only contains a preview version for llama-3.2-3b
@ -34,23 +34,15 @@ MODEL_ENTRIES = [
# to pass the test fixture
# TODO(aidand): Replace this with a stable model once Groq supports it
build_hf_repo_model_entry(
"groq/llama-3.2-3b-preview",
"llama-3.2-3b-preview",
CoreModelId.llama3_2_3b_instruct.value,
),
build_hf_repo_model_entry(
"groq/llama-4-scout-17b-16e-instruct",
"meta-llama/llama-4-scout-17b-16e-instruct",
CoreModelId.llama4_scout_17b_16e_instruct.value,
),
build_hf_repo_model_entry(
"groq/meta-llama/llama-4-scout-17b-16e-instruct",
CoreModelId.llama4_scout_17b_16e_instruct.value,
),
build_hf_repo_model_entry(
"groq/llama-4-maverick-17b-128e-instruct",
CoreModelId.llama4_maverick_17b_128e_instruct.value,
),
build_hf_repo_model_entry(
"groq/meta-llama/llama-4-maverick-17b-128e-instruct",
"meta-llama/llama-4-maverick-17b-128e-instruct",
CoreModelId.llama4_maverick_17b_128e_instruct.value,
),
] + SAFETY_MODELS_ENTRIES

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import InferenceProvider
from .config import GroqCompatConfig
async def get_adapter_impl(config: GroqCompatConfig, _deps) -> InferenceProvider:
# import dynamically so the import is used only when it is needed
from .groq import GroqCompatInferenceAdapter
adapter = GroqCompatInferenceAdapter(config)
return adapter

View file

@ -1,38 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class GroqProviderDataValidator(BaseModel):
groq_api_key: str | None = Field(
default=None,
description="API key for Groq models",
)
@json_schema_type
class GroqCompatConfig(BaseModel):
api_key: str | None = Field(
default=None,
description="The Groq API key",
)
openai_compat_api_base: str = Field(
default="https://api.groq.com/openai/v1",
description="The URL for the Groq API server",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> dict[str, Any]:
return {
"openai_compat_api_base": "https://api.groq.com/openai/v1",
"api_key": api_key,
}

View file

@ -1,30 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.remote.inference.groq_openai_compat.config import GroqCompatConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from ..groq.models import MODEL_ENTRIES
class GroqCompatInferenceAdapter(LiteLLMOpenAIMixin):
_config: GroqCompatConfig
def __init__(self, config: GroqCompatConfig):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
api_key_from_config=config.api_key,
provider_data_api_key_field="groq_api_key",
openai_compat_api_base=config.openai_compat_api_base,
)
self.config = config
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()

View file

@ -3,30 +3,53 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from llama_stack.providers.remote.inference.llama_openai_compat.config import (
LlamaCompatConfig,
)
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
LiteLLMOpenAIMixin,
)
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .models import MODEL_ENTRIES
logger = logging.getLogger(__name__)
class LlamaCompatInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
"""
Llama API Inference Adapter for Llama Stack.
Note: The inheritance order is important here. OpenAIMixin must come before
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
is used instead of ModelRegistryHelper.check_model_availability().
- OpenAIMixin.check_model_availability() queries the Llama API to check if a model exists
- ModelRegistryHelper.check_model_availability() (inherited by LiteLLMOpenAIMixin) just returns False and shows a warning
"""
class LlamaCompatInferenceAdapter(LiteLLMOpenAIMixin):
_config: LlamaCompatConfig
def __init__(self, config: LlamaCompatConfig):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
litellm_provider_name="meta_llama",
api_key_from_config=config.api_key,
provider_data_api_key_field="llama_api_key",
openai_compat_api_base=config.openai_compat_api_base,
)
self.config = config
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
get_api_key = LiteLLMOpenAIMixin.get_api_key
def get_base_url(self) -> str:
"""
Get the base URL for OpenAI mixin.
:return: The Llama API base URL
"""
return self.config.openai_compat_api_base
async def initialize(self):
await super().initialize()

View file

@ -18,7 +18,7 @@ This provider enables running inference using NVIDIA NIM.
Build the NVIDIA environment:
```bash
llama stack build --template nvidia --image-type conda
llama stack build --distro nvidia --image-type venv
```
### Basic Usage using the LlamaStack Python Client
@ -33,7 +33,7 @@ os.environ["NVIDIA_API_KEY"] = (
)
os.environ["NVIDIA_BASE_URL"] = "http://nim.test" # NIM URL
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
@ -42,8 +42,8 @@ client.initialize()
### Create Completion
```python
response = client.completion(
model_id="meta-llama/Llama-3.1-8b-Instruct",
response = client.inference.completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
content="Complete the sentence using one word: Roses are red, violets are :",
stream=False,
sampling_params={
@ -56,8 +56,8 @@ print(f"Response: {response.content}")
### Create Chat Completion
```python
response = client.chat_completion(
model_id="meta-llama/Llama-3.1-8b-Instruct",
response = client.inference.chat_completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
messages=[
{
"role": "system",
@ -78,8 +78,10 @@ print(f"Response: {response.completion_message.content}")
### Create Embeddings
```python
response = client.embeddings(
model_id="meta-llama/Llama-3.1-8b-Instruct", contents=["foo", "bar", "baz"]
response = client.inference.embeddings(
model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
contents=["What is the capital of France?"],
task_type="query",
)
print(f"Embeddings: {response.embeddings}")
```
```

View file

@ -7,10 +7,8 @@
import logging
import warnings
from collections.abc import AsyncIterator
from functools import lru_cache
from typing import Any
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
from openai import APIConnectionError, BadRequestError
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -29,31 +27,21 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat
from llama_stack.providers.utils.inference import (
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
prepare_openai_completion_params,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
from . import NVIDIAConfig
@ -69,7 +57,20 @@ from .utils import _is_nvidia_hosted
logger = logging.getLogger(__name__)
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
"""
NVIDIA Inference Adapter for Llama Stack.
Note: The inheritance order is important here. OpenAIMixin must come before
ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability()
is used instead of ModelRegistryHelper.check_model_availability(). It also
must come before Inference to ensure that OpenAIMixin methods are available
in the Inference interface.
- OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
"""
def __init__(self, config: NVIDIAConfig) -> None:
# TODO(mf): filter by available models
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
@ -93,49 +94,21 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
self._config = config
@lru_cache # noqa: B019
def _get_client(self, provider_model_id: str) -> AsyncOpenAI:
def get_api_key(self) -> str:
"""
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
some models are hosted on different URLs. This function returns the appropriate client
for the given provider_model_id.
Get the API key for OpenAI mixin.
This relies on lru_cache and self._default_client to avoid creating a new client for each request
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
:param provider_model_id: The provider model ID
:return: An OpenAI client
:return: The NVIDIA API key
"""
return self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"
@lru_cache # noqa: B019
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
"""
Maintain a single OpenAI client per base_url.
"""
return AsyncOpenAI(
base_url=base_url,
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
timeout=self._config.timeout,
)
def get_base_url(self) -> str:
"""
Get the base URL for OpenAI mixin.
special_model_urls = {
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
}
base_url = f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
base_url = special_model_urls[provider_model_id]
return _get_client_for_base_url(base_url)
async def _get_provider_model_id(self, model_id: str) -> str:
if not self.model_store:
raise RuntimeError("Model store is not set")
model = await self.model_store.get_model(model_id)
if model is None:
raise ValueError(f"Model {model_id} is unknown")
return model.provider_model_id
:return: The NVIDIA API base URL
"""
return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
async def completion(
self,
@ -169,7 +142,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
)
try:
response = await self._get_client(provider_model_id).completions.create(**request)
response = await self.client.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
@ -222,7 +195,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
extra_body["input_type"] = task_type_options[task_type]
try:
response = await self._get_client(provider_model_id).embeddings.create(
response = await self.client.embeddings.create(
model=provider_model_id,
input=input,
extra_body=extra_body,
@ -237,16 +210,6 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
#
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
@ -283,7 +246,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
)
try:
response = await self._get_client(provider_model_id).chat.completions.create(**request)
response = await self.client.chat.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
@ -292,153 +255,3 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
else:
# we pass n=1 to get only one completion
return convert_openai_chat_completion_choice(response.choices[0])
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
provider_model_id = await self._get_provider_model_id(model)
params = await prepare_openai_completion_params(
model=provider_model_id,
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
)
try:
return await self._get_client(provider_model_id).completions.create(**params)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
provider_model_id = await self._get_provider_model_id(model)
params = await prepare_openai_completion_params(
model=provider_model_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
try:
return await self._get_client(provider_model_id).chat.completions.create(**params)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
async def register_model(self, model: Model) -> Model:
"""
Allow non-llama model registration.
Non-llama model registration: API Catalogue models, post-training models, etc.
client = LlamaStackAsLibraryClient("nvidia")
client.models.register(
model_id="mistralai/mixtral-8x7b-instruct-v0.1",
model_type=ModelType.llm,
provider_id="nvidia",
provider_model_id="mistralai/mixtral-8x7b-instruct-v0.1"
)
NOTE: Only supports models endpoints compatible with AsyncOpenAI base_url format.
"""
if model.model_type == ModelType.embedding:
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
provider_resource_id = model.provider_resource_id
else:
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
if provider_resource_id:
model.provider_resource_id = provider_resource_id
else:
llama_model = model.metadata.get("llama_model")
existing_llama_model = self.get_llama_model(model.provider_resource_id)
if existing_llama_model:
if existing_llama_model != llama_model:
raise ValueError(
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
)
else:
# not llama model
if llama_model in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model]
)
else:
self.alias_to_provider_id_map[model.provider_model_id] = model.provider_model_id
return model

View file

@ -6,13 +6,17 @@
from typing import Any
from pydantic import BaseModel
from pydantic import BaseModel, Field
DEFAULT_OLLAMA_URL = "http://localhost:11434"
class OllamaImplConfig(BaseModel):
url: str = DEFAULT_OLLAMA_URL
refresh_models: bool = Field(
default=False,
description="Whether to refresh models periodically",
)
@classmethod
def sample_run_config(cls, url: str = "${env.OLLAMA_URL:=http://localhost:11434}", **kwargs) -> dict[str, Any]:

View file

@ -12,6 +12,19 @@ from llama_stack.providers.utils.inference.model_registry import (
build_model_entry,
)
SAFETY_MODELS_ENTRIES = [
# The Llama Guard models don't have their full fp16 versions
# so we are going to alias their default version to the canonical SKU
build_hf_repo_model_entry(
"llama-guard3:8b",
CoreModelId.llama_guard_3_8b.value,
),
build_hf_repo_model_entry(
"llama-guard3:1b",
CoreModelId.llama_guard_3_1b.value,
),
]
MODEL_ENTRIES = [
build_hf_repo_model_entry(
"llama3.1:8b-instruct-fp16",
@ -73,16 +86,6 @@ MODEL_ENTRIES = [
"llama3.3:70b",
CoreModelId.llama3_3_70b_instruct.value,
),
# The Llama Guard models don't have their full fp16 versions
# so we are going to alias their default version to the canonical SKU
build_hf_repo_model_entry(
"llama-guard3:8b",
CoreModelId.llama_guard_3_8b.value,
),
build_hf_repo_model_entry(
"llama-guard3:1b",
CoreModelId.llama_guard_3_1b.value,
),
ProviderModelEntry(
provider_model_id="all-minilm:l6-v2",
aliases=["all-minilm"],
@ -100,4 +103,4 @@ MODEL_ENTRIES = [
"context_length": 8192,
},
),
]
] + SAFETY_MODELS_ENTRIES

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import asyncio
import base64
import uuid
from collections.abc import AsyncGenerator, AsyncIterator
@ -91,23 +92,93 @@ class OllamaInferenceAdapter(
InferenceProvider,
ModelsProtocolPrivate,
):
# automatically set by the resolver when instantiating the provider
__provider_id__: str
def __init__(self, config: OllamaImplConfig) -> None:
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
self.url = config.url
self.config = config
self._clients: dict[asyncio.AbstractEventLoop, AsyncClient] = {}
self._openai_client = None
@property
def client(self) -> AsyncClient:
return AsyncClient(host=self.url)
# ollama client attaches itself to the current event loop (sadly?)
loop = asyncio.get_running_loop()
if loop not in self._clients:
self._clients[loop] = AsyncClient(host=self.config.url)
return self._clients[loop]
@property
def openai_client(self) -> AsyncOpenAI:
return AsyncOpenAI(base_url=f"{self.url}/v1", api_key="ollama")
if self._openai_client is None:
url = self.config.url.rstrip("/")
self._openai_client = AsyncOpenAI(base_url=f"{url}/v1", api_key="ollama")
return self._openai_client
async def initialize(self) -> None:
logger.debug(f"checking connectivity to Ollama at `{self.url}`...")
logger.info(f"checking connectivity to Ollama at `{self.config.url}`...")
health_response = await self.health()
if health_response["status"] == HealthStatus.ERROR:
raise RuntimeError("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
logger.warning(
"Ollama Server is not running, make sure to start it using `ollama serve` in a separate terminal"
)
async def should_refresh_models(self) -> bool:
return self.config.refresh_models
async def list_models(self) -> list[Model] | None:
provider_id = self.__provider_id__
response = await self.client.list()
# always add the two embedding models which can be pulled on demand
models = [
Model(
identifier="all-minilm:l6-v2",
provider_resource_id="all-minilm:l6-v2",
provider_id=provider_id,
metadata={
"embedding_dimension": 384,
"context_length": 512,
},
model_type=ModelType.embedding,
),
# add all-minilm alias
Model(
identifier="all-minilm",
provider_resource_id="all-minilm:l6-v2",
provider_id=provider_id,
metadata={
"embedding_dimension": 384,
"context_length": 512,
},
model_type=ModelType.embedding,
),
Model(
identifier="nomic-embed-text",
provider_resource_id="nomic-embed-text",
provider_id=provider_id,
metadata={
"embedding_dimension": 768,
"context_length": 8192,
},
model_type=ModelType.embedding,
),
]
for m in response.models:
# kill embedding models since we don't know dimensions for them
if "bert" in m.details.family:
continue
models.append(
Model(
identifier=m.model,
provider_resource_id=m.model,
provider_id=provider_id,
metadata={},
model_type=ModelType.llm,
)
)
return models
async def health(self) -> HealthResponse:
"""
@ -124,7 +195,7 @@ class OllamaInferenceAdapter(
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
async def shutdown(self) -> None:
pass
self._clients.clear()
async def unregister_model(self, model_id: str) -> None:
pass
@ -350,12 +421,7 @@ class OllamaInferenceAdapter(
except ValueError:
pass # Ignore statically unknown model, will check live listing
if model.provider_resource_id is None:
raise ValueError("Model provider_resource_id cannot be None")
if model.model_type == ModelType.embedding:
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
# TODO: you should pull here only if the model is not found in a list
response = await self.client.list()
if model.provider_resource_id not in [m.model for m in response.models]:
await self.client.pull(model.provider_resource_id)
@ -365,9 +431,9 @@ class OllamaInferenceAdapter(
# - models not currently running are run by the ollama server as needed
response = await self.client.list()
available_models = [m.model for m in response.models]
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
if provider_resource_id is None:
provider_resource_id = model.provider_resource_id
provider_resource_id = model.provider_resource_id
assert provider_resource_id is not None # mypy
if provider_resource_id not in available_models:
available_models_latest = [m.model.split(":latest")[0] for m in response.models]
if provider_resource_id in available_models_latest:
@ -375,7 +441,9 @@ class OllamaInferenceAdapter(
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
)
return model
raise UnsupportedModelError(model.provider_resource_id, available_models)
raise UnsupportedModelError(provider_resource_id, available_models)
# mutating this should be considered an anti-pattern
model.provider_resource_id = provider_resource_id
return model

View file

@ -24,9 +24,19 @@ class OpenAIConfig(BaseModel):
default=None,
description="API key for OpenAI models",
)
base_url: str = Field(
default="https://api.openai.com/v1",
description="Base URL for OpenAI API",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.OPENAI_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(
cls,
api_key: str = "${env.OPENAI_API_KEY:=}",
base_url: str = "${env.OPENAI_BASE_URL:=https://api.openai.com/v1}",
**kwargs,
) -> dict[str, Any]:
return {
"api_key": api_key,
"base_url": base_url,
}

View file

@ -12,11 +12,6 @@ from llama_stack.providers.utils.inference.model_registry import (
)
LLM_MODEL_IDS = [
# the models w/ "openai/" prefix are the litellm specific model names.
# they should be deprecated in favor of the canonical openai model names.
"openai/gpt-4o",
"openai/gpt-4o-mini",
"openai/chatgpt-4o-latest",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo",
"gpt-3.5-turbo-instruct",
@ -43,8 +38,6 @@ class EmbeddingModelInfo:
EMBEDDING_MODEL_IDS: dict[str, EmbeddingModelInfo] = {
"openai/text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
"openai/text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
"text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
"text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
}

View file

@ -5,23 +5,9 @@
# the root directory of this source tree.
import logging
from collections.abc import AsyncIterator
from typing import Any
from openai import AsyncOpenAI
from llama_stack.apis.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import OpenAIConfig
from .models import MODEL_ENTRIES
@ -30,7 +16,7 @@ logger = logging.getLogger(__name__)
#
# This OpenAI adapter implements Inference methods using two clients -
# This OpenAI adapter implements Inference methods using two mixins -
#
# | Inference Method | Implementation Source |
# |----------------------------|--------------------------|
@ -39,15 +25,27 @@ logger = logging.getLogger(__name__)
# | embedding | LiteLLMOpenAIMixin |
# | batch_completion | LiteLLMOpenAIMixin |
# | batch_chat_completion | LiteLLMOpenAIMixin |
# | openai_completion | AsyncOpenAI |
# | openai_chat_completion | AsyncOpenAI |
# | openai_embeddings | AsyncOpenAI |
# | openai_completion | OpenAIMixin |
# | openai_chat_completion | OpenAIMixin |
# | openai_embeddings | OpenAIMixin |
#
class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
class OpenAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
"""
OpenAI Inference Adapter for Llama Stack.
Note: The inheritance order is important here. OpenAIMixin must come before
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
is used instead of ModelRegistryHelper.check_model_availability().
- OpenAIMixin.check_model_availability() queries the OpenAI API to check if a model exists
- ModelRegistryHelper.check_model_availability() (inherited by LiteLLMOpenAIMixin) just returns False and shows a warning
"""
def __init__(self, config: OpenAIConfig) -> None:
LiteLLMOpenAIMixin.__init__(
self,
MODEL_ENTRIES,
litellm_provider_name="openai",
api_key_from_config=config.api_key,
provider_data_api_key_field="openai_api_key",
)
@ -59,169 +57,20 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
# if we do not set this, users will be exposed to the
# litellm specific model names, an abstraction leak.
self.is_openai_compat = True
self._openai_client = AsyncOpenAI(
api_key=self.config.api_key,
)
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
get_api_key = LiteLLMOpenAIMixin.get_api_key
def get_base_url(self) -> str:
"""
Get the OpenAI API base URL.
Returns the OpenAI API base URL from the configuration.
"""
return self.config.base_url
async def initialize(self) -> None:
await super().initialize()
async def shutdown(self) -> None:
await super().shutdown()
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
if guided_choice is not None:
logging.warning("guided_choice is not supported by the OpenAI API. Ignoring.")
if prompt_logprobs is not None:
logging.warning("prompt_logprobs is not supported by the OpenAI API. Ignoring.")
model_id = (await self.model_store.get_model(model)).provider_resource_id
if model_id.startswith("openai/"):
model_id = model_id[len("openai/") :]
params = await prepare_openai_completion_params(
model=model_id,
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
suffix=suffix,
)
return await self._openai_client.completions.create(**params)
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
model_id = (await self.model_store.get_model(model)).provider_resource_id
if model_id.startswith("openai/"):
model_id = model_id[len("openai/") :]
params = await prepare_openai_completion_params(
model=model_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
return await self._openai_client.chat.completions.create(**params)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
model_id = (await self.model_store.get_model(model)).provider_resource_id
if model_id.startswith("openai/"):
model_id = model_id[len("openai/") :]
# Prepare parameters for OpenAI embeddings API
params = {
"model": model_id,
"input": input,
}
if encoding_format is not None:
params["encoding_format"] = encoding_format
if dimensions is not None:
params["dimensions"] = dimensions
if user is not None:
params["user"] = user
# Call OpenAI embeddings API
response = await self._openai_client.embeddings.create(**params)
data = []
for i, embedding_data in enumerate(response.data):
data.append(
OpenAIEmbeddingData(
embedding=embedding_data.embedding,
index=i,
)
)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
return OpenAIEmbeddingsResponse(
data=data,
model=response.model,
usage=usage,
)

View file

@ -34,7 +34,7 @@ from llama_stack.apis.inference import (
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
from llama_stack.core.library_client import convert_pydantic_to_json_value, convert_to_pydantic
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params

View file

@ -30,7 +30,7 @@ class SambaNovaImplConfig(BaseModel):
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {
"url": "https://api.sambanova.ai/v1",
"api_key": api_key,

View file

@ -9,49 +9,20 @@ from llama_stack.providers.utils.inference.model_registry import (
build_hf_repo_model_entry,
)
SAFETY_MODELS_ENTRIES = [
build_hf_repo_model_entry(
"sambanova/Meta-Llama-Guard-3-8B",
CoreModelId.llama_guard_3_8b.value,
),
]
SAFETY_MODELS_ENTRIES = []
MODEL_ENTRIES = [
build_hf_repo_model_entry(
"sambanova/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
CoreModelId.llama3_1_8b_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Meta-Llama-3.1-405B-Instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Meta-Llama-3.2-1B-Instruct",
CoreModelId.llama3_2_1b_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Meta-Llama-3.2-3B-Instruct",
CoreModelId.llama3_2_3b_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Meta-Llama-3.3-70B-Instruct",
"Meta-Llama-3.3-70B-Instruct",
CoreModelId.llama3_3_70b_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Llama-3.2-11B-Vision-Instruct",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Llama-3.2-90B-Vision-Instruct",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Llama-4-Scout-17B-16E-Instruct",
CoreModelId.llama4_scout_17b_16e_instruct.value,
),
build_hf_repo_model_entry(
"sambanova/Llama-4-Maverick-17B-128E-Instruct",
"Llama-4-Maverick-17B-128E-Instruct",
CoreModelId.llama4_maverick_17b_128e_instruct.value,
),
] + SAFETY_MODELS_ENTRIES

View file

@ -4,250 +4,23 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from collections.abc import Iterable
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
)
from openai.types.chat import (
ChatCompletionContentPartImageParam as OpenAIChatCompletionContentPartImageParam,
)
from openai.types.chat import (
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam,
)
from openai.types.chat import (
ChatCompletionContentPartTextParam as OpenAIChatCompletionContentPartTextParam,
)
from openai.types.chat import (
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
)
from openai.types.chat import (
ChatCompletionMessageToolCallParam as OpenAIChatCompletionMessageToolCall,
)
from openai.types.chat import (
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
)
from openai.types.chat import (
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
)
from openai.types.chat import (
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
)
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
Function as OpenAIFunction,
)
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
TextContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
CompletionMessage,
JsonSchemaResponseFormat,
Message,
SystemMessage,
ToolChoice,
ToolResponseMessage,
UserMessage,
)
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import BuiltinTool
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_compat import (
convert_tooldef_to_openai_tool,
get_sampling_options,
)
from llama_stack.providers.utils.inference.prompt_adapter import convert_image_content_to_url
from .config import SambaNovaImplConfig
from .models import MODEL_ENTRIES
logger = get_logger(name=__name__, category="inference")
async def convert_message_to_openai_dict_with_b64_images(
message: Message | dict,
) -> OpenAIChatCompletionMessage:
"""
Convert a Message to an OpenAI API-compatible dictionary.
"""
# users can supply a dict instead of a Message object, we'll
# convert it to a Message object and proceed with some type safety.
if isinstance(message, dict):
if "role" not in message:
raise ValueError("role is required in message")
if message["role"] == "user":
message = UserMessage(**message)
elif message["role"] == "assistant":
message = CompletionMessage(**message)
elif message["role"] == "tool":
message = ToolResponseMessage(**message)
elif message["role"] == "system":
message = SystemMessage(**message)
else:
raise ValueError(f"Unsupported message role: {message['role']}")
# Map Llama Stack spec to OpenAI spec -
# str -> str
# {"type": "text", "text": ...} -> {"type": "text", "text": ...}
# {"type": "image", "image": {"url": {"uri": ...}}} -> {"type": "image_url", "image_url": {"url": ...}}
# {"type": "image", "image": {"data": ...}} -> {"type": "image_url", "image_url": {"url": "data:image/?;base64,..."}}
# List[...] -> List[...]
async def _convert_message_content(
content: InterleavedContent,
) -> str | Iterable[OpenAIChatCompletionContentPartParam]:
async def impl(
content_: InterleavedContent,
) -> str | OpenAIChatCompletionContentPartParam | list[OpenAIChatCompletionContentPartParam]:
# Llama Stack and OpenAI spec match for str and text input
if isinstance(content_, str):
return content_
elif isinstance(content_, TextContentItem):
return OpenAIChatCompletionContentPartTextParam(
type="text",
text=content_.text,
)
elif isinstance(content_, ImageContentItem):
return OpenAIChatCompletionContentPartImageParam(
type="image_url",
image_url=OpenAIImageURL(url=await convert_image_content_to_url(content_, download=True)),
)
elif isinstance(content_, list):
return [await impl(item) for item in content_]
else:
raise ValueError(f"Unsupported content type: {type(content_)}")
ret = await impl(content)
# OpenAI*Message expects a str or list
if isinstance(ret, str) or isinstance(ret, list):
return ret
else:
return [ret]
out: OpenAIChatCompletionMessage = None
if isinstance(message, UserMessage):
out = OpenAIChatCompletionUserMessage(
role="user",
content=await _convert_message_content(message.content),
)
elif isinstance(message, CompletionMessage):
out = OpenAIChatCompletionAssistantMessage(
role="assistant",
content=await _convert_message_content(message.content),
tool_calls=[
OpenAIChatCompletionMessageToolCall(
id=tool.call_id,
function=OpenAIFunction(
name=tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value,
arguments=json.dumps(tool.arguments),
),
type="function",
)
for tool in message.tool_calls
]
or None,
)
elif isinstance(message, ToolResponseMessage):
out = OpenAIChatCompletionToolMessage(
role="tool",
tool_call_id=message.call_id,
content=await _convert_message_content(message.content),
)
elif isinstance(message, SystemMessage):
out = OpenAIChatCompletionSystemMessage(
role="system",
content=await _convert_message_content(message.content),
)
else:
raise ValueError(f"Unsupported message type: {type(message)}")
return out
class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
_config: SambaNovaImplConfig
def __init__(self, config: SambaNovaImplConfig):
self.config = config
self.environment_available_models = []
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
api_key_from_config=self.config.api_key,
litellm_provider_name="sambanova",
api_key_from_config=self.config.api_key.get_secret_value() if self.config.api_key else None,
provider_data_api_key_field="sambanova_api_key",
openai_compat_api_base=self.config.url,
download_images=True, # SambaNova requires base64 image encoding
json_schema_strict=False, # SambaNova doesn't support strict=True yet
)
def _get_api_key(self) -> str:
config_api_key = self.config.api_key if self.config.api_key else None
if config_api_key:
return config_api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.sambanova_api_key:
raise ValueError(
'Pass Sambanova API Key in the header X-LlamaStack-Provider-Data as { "sambanova_api_key": <your api key> }'
)
return provider_data.sambanova_api_key
async def _get_params(self, request: ChatCompletionRequest) -> dict:
input_dict = {}
input_dict["messages"] = [await convert_message_to_openai_dict_with_b64_images(m) for m in request.messages]
if fmt := request.response_format:
if not isinstance(fmt, JsonSchemaResponseFormat):
raise ValueError(
f"Unsupported response format: {type(fmt)}. Only JsonSchemaResponseFormat is supported."
)
fmt = fmt.json_schema
name = fmt["title"]
del fmt["title"]
fmt["additionalProperties"] = False
# Apply additionalProperties: False recursively to all objects
fmt = self._add_additional_properties_recursive(fmt)
input_dict["response_format"] = {
"type": "json_schema",
"json_schema": {
"name": name,
"schema": fmt,
"strict": False,
},
}
if request.tools:
input_dict["tools"] = [convert_tooldef_to_openai_tool(tool) for tool in request.tools]
if request.tool_config.tool_choice:
input_dict["tool_choice"] = (
request.tool_config.tool_choice.value
if isinstance(request.tool_config.tool_choice, ToolChoice)
else request.tool_config.tool_choice
)
provider_data = self.get_request_provider_data()
key_field = self.provider_data_api_key_field
if provider_data and getattr(provider_data, key_field, None):
api_key = getattr(provider_data, key_field)
else:
api_key = self._get_api_key()
return {
"model": request.model,
"api_key": api_key,
"api_base": self.config.url,
**input_dict,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import InferenceProvider
from .config import SambaNovaCompatConfig
async def get_adapter_impl(config: SambaNovaCompatConfig, _deps) -> InferenceProvider:
# import dynamically so the import is used only when it is needed
from .sambanova import SambaNovaCompatInferenceAdapter
adapter = SambaNovaCompatInferenceAdapter(config)
return adapter

View file

@ -1,38 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class SambaNovaProviderDataValidator(BaseModel):
sambanova_api_key: str | None = Field(
default=None,
description="API key for SambaNova models",
)
@json_schema_type
class SambaNovaCompatConfig(BaseModel):
api_key: str | None = Field(
default=None,
description="The SambaNova API key",
)
openai_compat_api_base: str = Field(
default="https://api.sambanova.ai/v1",
description="The URL for the SambaNova API server",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
return {
"openai_compat_api_base": "https://api.sambanova.ai/v1",
"api_key": api_key,
}

View file

@ -1,30 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.remote.inference.sambanova_openai_compat.config import SambaNovaCompatConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from ..sambanova.models import MODEL_ENTRIES
class SambaNovaCompatInferenceAdapter(LiteLLMOpenAIMixin):
_config: SambaNovaCompatConfig
def __init__(self, config: SambaNovaCompatConfig):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
api_key_from_config=config.api_key,
provider_data_api_key_field="sambanova_api_key",
openai_compat_api_base=config.openai_compat_api_base,
)
self.config = config
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()

View file

@ -19,7 +19,7 @@ class TGIImplConfig(BaseModel):
@classmethod
def sample_run_config(
cls,
url: str = "${env.TGI_URL}",
url: str = "${env.TGI_URL:=}",
**kwargs,
):
return {

View file

@ -305,6 +305,8 @@ class _HfAdapter(
class TGIAdapter(_HfAdapter):
async def initialize(self, config: TGIImplConfig) -> None:
if not config.url:
raise ValueError("You must provide a URL in run.yaml (or via the TGI_URL environment variable) to use TGI.")
log.info(f"Initializing TGI client with url={config.url}")
self.client = AsyncInferenceClient(
model=config.url,

View file

@ -6,13 +6,14 @@
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from pydantic import Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class TogetherImplConfig(BaseModel):
class TogetherImplConfig(RemoteInferenceProviderConfig):
url: str = Field(
default="https://api.together.xyz/v1",
description="The URL for the Together AI server",
@ -26,5 +27,5 @@ class TogetherImplConfig(BaseModel):
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
return {
"url": "https://api.together.xyz/v1",
"api_key": "${env.TOGETHER_API_KEY}",
"api_key": "${env.TOGETHER_API_KEY:=}",
}

View file

@ -69,15 +69,9 @@ MODEL_ENTRIES = [
build_hf_repo_model_entry(
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
CoreModelId.llama4_scout_17b_16e_instruct.value,
additional_aliases=[
"together/meta-llama/Llama-4-Scout-17B-16E-Instruct",
],
),
build_hf_repo_model_entry(
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
CoreModelId.llama4_maverick_17b_128e_instruct.value,
additional_aliases=[
"together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
],
),
] + SAFETY_MODELS_ENTRIES

View file

@ -38,7 +38,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
@ -66,21 +66,14 @@ logger = get_logger(name=__name__, category="inference")
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
def __init__(self, config: TogetherImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
self.config = config
self._client = None
self._openai_client = None
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
if self._client:
# Together client has no close method, so just set to None
self._client = None
if self._openai_client:
await self._openai_client.close()
self._openai_client = None
pass
async def completion(
self,
@ -108,29 +101,25 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
return await self._nonstream_completion(request)
def _get_client(self) -> AsyncTogether:
if not self._client:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
self._client = AsyncTogether(api_key=together_api_key)
return self._client
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
return AsyncTogether(api_key=together_api_key)
def _get_openai_client(self) -> AsyncOpenAI:
if not self._openai_client:
together_client = self._get_client().client
self._openai_client = AsyncOpenAI(
base_url=together_client.base_url,
api_key=together_client.api_key,
)
return self._openai_client
together_client = self._get_client().client
return AsyncOpenAI(
base_url=together_client.base_url,
api_key=together_client.api_key,
)
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import InferenceProvider
from .config import TogetherCompatConfig
async def get_adapter_impl(config: TogetherCompatConfig, _deps) -> InferenceProvider:
# import dynamically so the import is used only when it is needed
from .together import TogetherCompatInferenceAdapter
adapter = TogetherCompatInferenceAdapter(config)
return adapter

View file

@ -1,38 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class TogetherProviderDataValidator(BaseModel):
together_api_key: str | None = Field(
default=None,
description="API key for Together models",
)
@json_schema_type
class TogetherCompatConfig(BaseModel):
api_key: str | None = Field(
default=None,
description="The Together API key",
)
openai_compat_api_base: str = Field(
default="https://api.together.xyz/v1",
description="The URL for the Together API server",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.TOGETHER_API_KEY}", **kwargs) -> dict[str, Any]:
return {
"openai_compat_api_base": "https://api.together.xyz/v1",
"api_key": api_key,
}

View file

@ -1,30 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.remote.inference.together_openai_compat.config import TogetherCompatConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from ..together.models import MODEL_ENTRIES
class TogetherCompatInferenceAdapter(LiteLLMOpenAIMixin):
_config: TogetherCompatConfig
def __init__(self, config: TogetherCompatConfig):
LiteLLMOpenAIMixin.__init__(
self,
model_entries=MODEL_ENTRIES,
api_key_from_config=config.api_key,
provider_data_api_key_field="together_api_key",
openai_compat_api_base=config.openai_compat_api_base,
)
self.config = config
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()

View file

@ -29,6 +29,10 @@ class VLLMInferenceAdapterConfig(BaseModel):
default=True,
description="Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file.",
)
refresh_models: bool = Field(
default=False,
description="Whether to refresh models periodically",
)
@field_validator("tls_verify")
@classmethod
@ -46,7 +50,7 @@ class VLLMInferenceAdapterConfig(BaseModel):
@classmethod
def sample_run_config(
cls,
url: str = "${env.VLLM_URL}",
url: str = "${env.VLLM_URL:=}",
**kwargs,
):
return {

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
@ -38,6 +37,7 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
ModelStore,
OpenAIChatCompletion,
OpenAICompletion,
OpenAIEmbeddingData,
@ -54,6 +54,7 @@ from llama_stack.apis.inference import (
ToolPromptFormat,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import (
@ -84,7 +85,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import VLLMInferenceAdapterConfig
log = logging.getLogger(__name__)
log = get_logger(name=__name__, category="inference")
def build_hf_repo_model_entries():
@ -288,13 +289,40 @@ async def _process_vllm_chat_completion_stream_response(
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
# automatically set by the resolver when instantiating the provider
__provider_id__: str
model_store: ModelStore | None = None
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
self.config = config
self.client = None
async def initialize(self) -> None:
pass
if not self.config.url:
raise ValueError(
"You must provide a URL in run.yaml (or via the VLLM_URL environment variable) to use vLLM."
)
async def should_refresh_models(self) -> bool:
return self.config.refresh_models
async def list_models(self) -> list[Model] | None:
self._lazy_initialize_client()
assert self.client is not None # mypy
models = []
async for m in self.client.models.list():
model_type = ModelType.llm # unclear how to determine embedding vs. llm models
models.append(
Model(
identifier=m.id,
provider_resource_id=m.id,
provider_id=self.__provider_id__,
metadata={},
model_type=model_type,
)
)
return models
async def shutdown(self) -> None:
pass

View file

@ -22,7 +22,7 @@ This provider enables fine-tuning of LLMs using NVIDIA's NeMo Customizer service
Build the NVIDIA environment:
```bash
llama stack build --template nvidia --image-type conda
llama stack build --distro nvidia --image-type venv
```
### Basic Usage using the LlamaStack Python Client
@ -40,7 +40,7 @@ os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
os.environ["NVIDIA_OUTPUT_MODEL_DIR"] = "test-example-model@v1"
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()

Some files were not shown because too many files have changed in this diff Show more