mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-25 22:28:04 +00:00
Merge branch 'main' into opengauss-add
This commit is contained in:
commit
39e49ab97a
807 changed files with 79555 additions and 26772 deletions
|
|
@ -37,16 +37,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
|
||||
description="Meta's reference implementation of inference with support for various model formats and optimization techniques.",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::vllm",
|
||||
pip_packages=[
|
||||
"vllm",
|
||||
],
|
||||
module="llama_stack.providers.inline.inference.vllm",
|
||||
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
|
||||
description="vLLM inference provider for high-performance model serving with PagedAttention and continuous batching.",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::sentence-transformers",
|
||||
|
|
@ -234,17 +224,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
description="Groq inference provider for ultra-fast inference using Groq's LPU technology.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="fireworks-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.fireworks_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksProviderDataValidator",
|
||||
description="Fireworks AI OpenAI-compatible provider for using Fireworks models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
@ -256,50 +235,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
description="Llama OpenAI-compatible provider for using Llama models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="together-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.together_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherProviderDataValidator",
|
||||
description="Together AI OpenAI-compatible provider for using Together models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="groq-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.groq_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqProviderDataValidator",
|
||||
description="Groq OpenAI-compatible provider for using Groq models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="sambanova-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.sambanova_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaProviderDataValidator",
|
||||
description="SambaNova OpenAI-compatible provider for using SambaNova models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="cerebras-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.cerebras_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasProviderDataValidator",
|
||||
description="Cerebras OpenAI-compatible provider for using Cerebras models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
|
|||
|
|
@ -395,7 +395,7 @@ That means you'll get fast and efficient vector retrieval.
|
|||
To use PGVector in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Faiss.
|
||||
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
|
@ -410,6 +410,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
|
|
@ -497,6 +498,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|
|||
module="llama_stack.providers.inline.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description=r"""
|
||||
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
|
|
@ -553,6 +555,7 @@ Please refer to the inline provider documentation.
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue