mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-25 22:12:01 +00:00
Merge branch 'main' into opengauss-add
This commit is contained in:
commit
39e49ab97a
807 changed files with 79555 additions and 26772 deletions
|
|
@ -395,7 +395,7 @@ That means you'll get fast and efficient vector retrieval.
|
|||
To use PGVector in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Faiss.
|
||||
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
|
@ -410,6 +410,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
|
|
@ -497,6 +498,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|
|||
module="llama_stack.providers.inline.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description=r"""
|
||||
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
|
|
@ -553,6 +555,7 @@ Please refer to the inline provider documentation.
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue