Merge branch 'main' into opengauss-add

This commit is contained in:
windy 2025-08-08 20:58:48 +08:00 committed by GitHub
commit 39e49ab97a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
807 changed files with 79555 additions and 26772 deletions

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .meta_reference import get_distribution_template # noqa: F401

View file

@ -1,34 +0,0 @@
version: 2
distribution_spec:
description: Use Meta Reference for running LLM inference
providers:
inference:
- inline::meta-reference
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,113 +0,0 @@
---
orphan: true
---
# Meta Reference Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations:
{{ providers_table }}
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
## Prerequisite: Downloading Models
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
```
$ llama model list --downloaded
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model ┃ Size ┃ Modified Time ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘
```
## Running the Distribution
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
--gpu all \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
docker run \
-it \
--pull always \
--gpu all \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template {{ name }} --image-type conda
llama stack run distributions/{{ name }}/run.yaml \
--port 8321 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run distributions/{{ name }}/run-with-safety.yaml \
--port 8321 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
```

View file

@ -1,152 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.meta_reference import (
MetaReferenceInferenceConfig,
)
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::meta-reference"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
name = "meta-reference-gpu"
inference_provider = Provider(
provider_id="meta-reference-inference",
provider_type="inline::meta-reference",
config=MetaReferenceInferenceConfig.sample_run_config(
model="${env.INFERENCE_MODEL}",
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:=null}",
),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="meta-reference-inference",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="meta-reference-safety",
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use Meta Reference for running LLM inference",
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
embedding_provider,
Provider(
provider_id="meta-reference-safety",
provider_type="inline::meta-reference",
config=MetaReferenceInferenceConfig.sample_run_config(
model="${env.SAFETY_MODEL}",
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:=null}",
),
),
],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,
safety_model,
embedding_model,
],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the Meta Reference server",
),
"INFERENCE_CHECKPOINT_DIR": (
"null",
"Directory containing the Meta Reference model checkpoint",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Name of the safety (Llama-Guard) model to use",
),
"SAFETY_CHECKPOINT_DIR": (
"null",
"Directory containing the Llama-Guard model checkpoint",
),
},
)

View file

@ -1,148 +0,0 @@
version: 2
image_name: meta-reference-gpu
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: meta-reference-inference
provider_type: inline::meta-reference
config:
model: ${env.INFERENCE_MODEL}
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
quantization:
type: ${env.QUANTIZATION_TYPE:=bf16}
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
max_batch_size: ${env.MAX_BATCH_SIZE:=1}
max_seq_len: ${env.MAX_SEQ_LEN:=4096}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
- provider_id: meta-reference-safety
provider_type: inline::meta-reference
config:
model: ${env.SAFETY_MODEL}
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:=null}
quantization:
type: ${env.QUANTIZATION_TYPE:=bf16}
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
max_batch_size: ${env.MAX_BATCH_SIZE:=1}
max_seq_len: ${env.MAX_SEQ_LEN:=4096}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: meta-reference-inference
model_type: llm
- metadata: {}
model_id: ${env.SAFETY_MODEL}
provider_id: meta-reference-safety
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields:
- shield_id: ${env.SAFETY_MODEL}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,133 +0,0 @@
version: 2
image_name: meta-reference-gpu
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: meta-reference-inference
provider_type: inline::meta-reference
config:
model: ${env.INFERENCE_MODEL}
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
quantization:
type: ${env.QUANTIZATION_TYPE:=bf16}
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
max_batch_size: ${env.MAX_BATCH_SIZE:=1}
max_seq_len: ${env.MAX_SEQ_LEN:=4096}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: meta-reference-inference
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .nvidia import get_distribution_template # noqa: F401

View file

@ -1,29 +0,0 @@
version: 2
distribution_spec:
description: Use NVIDIA NIM for running LLM inference, evaluation and safety
providers:
inference:
- remote::nvidia
vector_io:
- inline::faiss
safety:
- remote::nvidia
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- remote::nvidia
post_training:
- remote::nvidia
datasetio:
- inline::localfs
- remote::nvidia
scoring:
- inline::basic
tool_runtime:
- inline::rag-runtime
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,149 +0,0 @@
# NVIDIA Distribution
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }} {{ model.doc_string }}`
{% endfor %}
{% endif %}
## Prerequisites
### NVIDIA API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable.
### Deploy NeMo Microservices Platform
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform.
## Supported Services
Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints.
### Inference: NVIDIA NIM
NVIDIA NIM is used for running inference with registered models. There are two ways to access NVIDIA NIMs:
1. Hosted (default): Preview APIs hosted at https://integrate.api.nvidia.com (Requires an API key)
2. Self-hosted: NVIDIA NIMs that run on your own infrastructure.
The deployed platform includes the NIM Proxy microservice, which is the service that provides to access your NIMs (for example, to run inference on a model). Set the `NVIDIA_BASE_URL` environment variable to use your NVIDIA NIM Proxy deployment.
### Datasetio API: NeMo Data Store
The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint.
See the {repopath}`NVIDIA Datasetio docs::llama_stack/providers/remote/datasetio/nvidia/README.md` for supported features and example usage.
### Eval API: NeMo Evaluator
The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint.
See the {repopath}`NVIDIA Eval docs::llama_stack/providers/remote/eval/nvidia/README.md` for supported features and example usage.
### Post-Training API: NeMo Customizer
The NeMo Customizer microservice supports fine-tuning models. You can reference {repopath}`this list of supported models::llama_stack/providers/remote/post_training/nvidia/models.py` that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint.
See the {repopath}`NVIDIA Post-Training docs::llama_stack/providers/remote/post_training/nvidia/README.md` for supported features and example usage.
### Safety API: NeMo Guardrails
The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint.
See the {repopath}`NVIDIA Safety docs::llama_stack/providers/remote/safety/nvidia/README.md` for supported features and example usage.
## Deploying models
In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`.
Note: For improved inference speeds, we need to use NIM with `fast_outlines` guided decoding system (specified in the request body). This is the default if you deployed the platform with the NeMo Microservices Helm Chart.
```sh
# URL to NeMo NIM Proxy service
export NEMO_URL="http://nemo.test"
curl --location "$NEMO_URL/v1/deployment/model-deployments" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "llama-3.2-1b-instruct",
"namespace": "meta",
"config": {
"model": "meta/llama-3.2-1b-instruct",
"nim_deployment": {
"image_name": "nvcr.io/nim/meta/llama-3.2-1b-instruct",
"image_tag": "1.8.3",
"pvc_size": "25Gi",
"gpu": 1,
"additional_envs": {
"NIM_GUIDED_DECODING_BACKEND": "fast_outlines"
}
}
}
}'
```
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference.
You can also remove a deployed NIM to free up GPU resources, if needed.
```sh
export NEMO_URL="http://nemo.test"
curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-instruct"
```
## Running Llama Stack with NVIDIA
You can do this via Conda or venv (build code), or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
```
### Via Conda
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
### Via venv
If you've set up your local development environment, you can also build the image using your local virtual environment.
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
llama stack build --template nvidia --image-type venv
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
## Example Notebooks
For examples of how to use the NVIDIA Distribution to run inference, fine-tune, evaluate, and run safety checks on your LLMs, you can reference the example notebooks in {repopath}`docs/notebooks/nvidia`.

View file

@ -1,150 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
from llama_stack.providers.remote.datasetio.nvidia import NvidiaDatasetIOConfig
from llama_stack.providers.remote.eval.nvidia import NVIDIAEvalConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::nvidia"],
"vector_io": ["inline::faiss"],
"safety": ["remote::nvidia"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["remote::nvidia"],
"post_training": ["remote::nvidia"],
"datasetio": ["inline::localfs", "remote::nvidia"],
"scoring": ["inline::basic"],
"tool_runtime": ["inline::rag-runtime"],
}
inference_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIAConfig.sample_run_config(),
)
safety_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIASafetyConfig.sample_run_config(),
)
datasetio_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NvidiaDatasetIOConfig.sample_run_config(),
)
eval_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIAEvalConfig.sample_run_config(),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="nvidia",
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="nvidia",
)
available_models = {
"nvidia": MODEL_ENTRIES,
}
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
default_models = get_model_registry(available_models)
return DistributionTemplate(
name="nvidia",
distro_type="self_hosted",
description="Use NVIDIA NIM for running LLM inference, evaluation and safety",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
"datasetio": [datasetio_provider],
"eval": [eval_provider],
},
default_models=default_models,
default_tool_groups=default_tool_groups,
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
safety_provider,
],
"eval": [eval_provider],
},
default_models=[inference_model, safety_model],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}", provider_id="nvidia")],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"NVIDIA_API_KEY": (
"",
"NVIDIA API Key",
),
"NVIDIA_APPEND_API_VERSION": (
"True",
"Whether to append the API version to the base_url",
),
## Nemo Customizer related variables
"NVIDIA_DATASET_NAMESPACE": (
"default",
"NVIDIA Dataset Namespace",
),
"NVIDIA_PROJECT_ID": (
"test-project",
"NVIDIA Project ID",
),
"NVIDIA_CUSTOMIZER_URL": (
"https://customizer.api.nvidia.com",
"NVIDIA Customizer URL",
),
"NVIDIA_OUTPUT_MODEL_DIR": (
"test-example-model@v1",
"NVIDIA Output Model Directory",
),
"GUARDRAILS_SERVICE_URL": (
"http://0.0.0.0:7331",
"URL for the NeMo Guardrails Service",
),
"NVIDIA_GUARDRAILS_CONFIG_ID": (
"self-check",
"NVIDIA Guardrail Configuration ID",
),
"NVIDIA_EVALUATOR_URL": (
"http://0.0.0.0:7331",
"URL for the NeMo Evaluator Service",
),
"INFERENCE_MODEL": (
"Llama3.1-8B-Instruct",
"Inference model",
),
"SAFETY_MODEL": (
"meta/llama-3.1-8b-instruct",
"Name of the model to use for safety",
),
},
)

View file

@ -1,119 +0,0 @@
version: 2
image_name: nvidia
apis:
- agents
- datasetio
- eval
- inference
- post_training
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: nvidia
provider_type: remote::nvidia
config:
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
api_key: ${env.NVIDIA_API_KEY:=}
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
- provider_id: nvidia
provider_type: remote::nvidia
config:
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
safety:
- provider_id: nvidia
provider_type: remote::nvidia
config:
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: nvidia
provider_type: remote::nvidia
config:
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:=http://localhost:7331}
post_training:
- provider_id: nvidia
provider_type: remote::nvidia
config:
api_key: ${env.NVIDIA_API_KEY:=}
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
customizer_url: ${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}
datasetio:
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/localfs_datasetio.db
- provider_id: nvidia
provider_type: remote::nvidia
config:
api_key: ${env.NVIDIA_API_KEY:=}
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
datasets_url: ${env.NVIDIA_DATASETS_URL:=http://nemo.test}
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
tool_runtime:
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: nvidia
model_type: llm
- metadata: {}
model_id: ${env.SAFETY_MODEL}
provider_id: nvidia
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL}
provider_id: nvidia
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,226 +0,0 @@
version: 2
image_name: nvidia
apis:
- agents
- datasetio
- eval
- inference
- post_training
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: nvidia
provider_type: remote::nvidia
config:
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
api_key: ${env.NVIDIA_API_KEY:=}
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
safety:
- provider_id: nvidia
provider_type: remote::nvidia
config:
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: nvidia
provider_type: remote::nvidia
config:
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:=http://localhost:7331}
post_training:
- provider_id: nvidia
provider_type: remote::nvidia
config:
api_key: ${env.NVIDIA_API_KEY:=}
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
customizer_url: ${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}
datasetio:
- provider_id: nvidia
provider_type: remote::nvidia
config:
api_key: ${env.NVIDIA_API_KEY:=}
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
datasets_url: ${env.NVIDIA_DATASETS_URL:=http://nemo.test}
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
tool_runtime:
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
models:
- metadata: {}
model_id: meta/llama3-8b-instruct
provider_id: nvidia
provider_model_id: meta/llama3-8b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3-8B-Instruct
provider_id: nvidia
provider_model_id: meta/llama3-8b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama3-70b-instruct
provider_id: nvidia
provider_model_id: meta/llama3-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3-70B-Instruct
provider_id: nvidia
provider_model_id: meta/llama3-70b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.1-8b-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.1-8b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.1-8b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.1-70b-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.1-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-70B-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.1-70b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.1-405b-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.1-405b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
provider_id: nvidia
provider_model_id: meta/llama-3.1-405b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.2-1b-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-1b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-1B-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-1b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.2-3b-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-3b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-3b-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.2-11b-vision-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-11b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-11b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.2-90b-vision-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-90b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.2-90b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta/llama-3.3-70b-instruct
provider_id: nvidia
provider_model_id: meta/llama-3.3-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: nvidia
provider_model_id: meta/llama-3.3-70b-instruct
model_type: llm
- metadata:
embedding_dimension: 2048
context_length: 8192
model_id: nvidia/llama-3.2-nv-embedqa-1b-v2
provider_id: nvidia
provider_model_id: nvidia/llama-3.2-nv-embedqa-1b-v2
model_type: embedding
- metadata:
embedding_dimension: 1024
context_length: 512
model_id: nvidia/nv-embedqa-e5-v5
provider_id: nvidia
provider_model_id: nvidia/nv-embedqa-e5-v5
model_type: embedding
- metadata:
embedding_dimension: 4096
context_length: 512
model_id: nvidia/nv-embedqa-mistral-7b-v2
provider_id: nvidia
provider_model_id: nvidia/nv-embedqa-mistral-7b-v2
model_type: embedding
- metadata:
embedding_dimension: 1024
context_length: 512
model_id: snowflake/arctic-embed-l
provider_id: nvidia
provider_model_id: snowflake/arctic-embed-l
model_type: embedding
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .open_benchmark import get_distribution_template # noqa: F401

View file

@ -1,38 +0,0 @@
version: 2
distribution_spec:
description: Distribution for running open benchmarks
providers:
inference:
- remote::openai
- remote::anthropic
- remote::gemini
- remote::groq
- remote::together
vector_io:
- inline::sqlite-vec
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,300 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.datasets import DatasetPurpose, URIDataSource
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
BenchmarkInput,
DatasetInput,
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
SQLiteVectorIOConfig,
)
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector.config import (
PGVectorVectorIOConfig,
)
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
get_model_registry,
)
def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
# in this template, we allow each API key to be optional
providers = [
(
"openai",
[
ProviderModelEntry(
provider_model_id="openai/gpt-4o",
model_type=ModelType.llm,
)
],
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:=}"),
),
(
"anthropic",
[
ProviderModelEntry(
provider_model_id="anthropic/claude-3-5-sonnet-latest",
model_type=ModelType.llm,
)
],
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:=}"),
),
(
"gemini",
[
ProviderModelEntry(
provider_model_id="gemini/gemini-1.5-flash",
model_type=ModelType.llm,
)
],
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:=}"),
),
(
"groq",
[],
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:=}"),
),
(
"together",
[],
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:=}"),
),
]
inference_providers = []
available_models = {}
for provider_id, model_entries, config in providers:
inference_providers.append(
Provider(
provider_id=provider_id,
provider_type=f"remote::{provider_id}",
config=config,
)
)
available_models[provider_id] = model_entries
return inference_providers, available_models
def get_distribution_template() -> DistributionTemplate:
inference_providers, available_models = get_inference_providers()
providers = {
"inference": [p.provider_type for p in inference_providers],
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
name = "open-benchmark"
vector_io_providers = [
Provider(
provider_id="sqlite-vec",
provider_type="inline::sqlite-vec",
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:=}"),
),
Provider(
provider_id="${env.ENABLE_PGVECTOR:+pgvector}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
db="${env.PGVECTOR_DB:=}",
user="${env.PGVECTOR_USER:=}",
password="${env.PGVECTOR_PASSWORD:=}",
),
),
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
default_models = get_model_registry(available_models) + [
ModelInput(
model_id="meta-llama/Llama-3.3-70B-Instruct",
provider_id="groq",
provider_model_id="groq/llama-3.3-70b-versatile",
model_type=ModelType.llm,
),
ModelInput(
model_id="meta-llama/Llama-3.1-405B-Instruct",
provider_id="together",
provider_model_id="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
model_type=ModelType.llm,
),
]
default_datasets = [
DatasetInput(
dataset_id="simpleqa",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/simpleqa?split=train",
),
),
DatasetInput(
dataset_id="mmlu_cot",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/mmlu_cot?split=test&name=all",
),
),
DatasetInput(
dataset_id="gpqa_cot",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main",
),
),
DatasetInput(
dataset_id="math_500",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/math_500?split=test",
),
),
DatasetInput(
dataset_id="bfcl",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/bfcl_v3?split=train",
),
),
DatasetInput(
dataset_id="ifeval",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/IfEval?split=train",
),
),
DatasetInput(
dataset_id="docvqa",
purpose=DatasetPurpose.eval_messages_answer,
source=URIDataSource(
uri="huggingface://datasets/llamastack/docvqa?split=val",
),
),
]
default_benchmarks = [
BenchmarkInput(
benchmark_id="meta-reference-simpleqa",
dataset_id="simpleqa",
scoring_functions=["llm-as-judge::405b-simpleqa"],
),
BenchmarkInput(
benchmark_id="meta-reference-mmlu-cot",
dataset_id="mmlu_cot",
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
),
BenchmarkInput(
benchmark_id="meta-reference-gpqa-cot",
dataset_id="gpqa_cot",
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
),
BenchmarkInput(
benchmark_id="meta-reference-math-500",
dataset_id="math_500",
scoring_functions=["basic::regex_parser_math_response"],
),
BenchmarkInput(
benchmark_id="meta-reference-bfcl",
dataset_id="bfcl",
scoring_functions=["basic::bfcl"],
),
BenchmarkInput(
benchmark_id="meta-reference-ifeval",
dataset_id="ifeval",
scoring_functions=["basic::ifeval"],
),
BenchmarkInput(
benchmark_id="meta-reference-docvqa",
dataset_id="docvqa",
scoring_functions=["basic::docvqa"],
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Distribution for running open benchmarks",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers,
"vector_io": vector_io_providers,
},
default_models=default_models,
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
default_datasets=default_datasets,
default_benchmarks=default_benchmarks,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"TOGETHER_API_KEY": (
"",
"Together API Key",
),
"OPENAI_API_KEY": (
"",
"OpenAI API Key",
),
"GEMINI_API_KEY": (
"",
"Gemini API Key",
),
"ANTHROPIC_API_KEY": (
"",
"Anthropic API Key",
),
"GROQ_API_KEY": (
"",
"Groq API Key",
),
},
)

View file

@ -1,249 +0,0 @@
version: 2
image_name: open-benchmark
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: openai
provider_type: remote::openai
config:
api_key: ${env.OPENAI_API_KEY:=}
- provider_id: anthropic
provider_type: remote::anthropic
config:
api_key: ${env.ANTHROPIC_API_KEY:=}
- provider_id: gemini
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: groq
provider_type: remote::groq
config:
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY:=}
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY}
vector_io:
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec_registry.db
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
- provider_id: ${env.ENABLE_PGVECTOR:+pgvector}
provider_type: remote::pgvector
config:
host: ${env.PGVECTOR_HOST:=localhost}
port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/inference_store.db
models:
- metadata: {}
model_id: openai/gpt-4o
provider_id: openai
provider_model_id: openai/gpt-4o
model_type: llm
- metadata: {}
model_id: anthropic/claude-3-5-sonnet-latest
provider_id: anthropic
provider_model_id: anthropic/claude-3-5-sonnet-latest
model_type: llm
- metadata: {}
model_id: gemini/gemini-1.5-flash
provider_id: gemini
provider_model_id: gemini/gemini-1.5-flash
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: groq
provider_model_id: groq/llama-3.3-70b-versatile
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-405B-Instruct
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
model_type: llm
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
vector_dbs: []
datasets:
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/simpleqa?split=train
metadata: {}
dataset_id: simpleqa
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/mmlu_cot?split=test&name=all
metadata: {}
dataset_id: mmlu_cot
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main
metadata: {}
dataset_id: gpqa_cot
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/math_500?split=test
metadata: {}
dataset_id: math_500
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/bfcl_v3?split=train
metadata: {}
dataset_id: bfcl
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/IfEval?split=train
metadata: {}
dataset_id: ifeval
- purpose: eval/messages-answer
source:
type: uri
uri: huggingface://datasets/llamastack/docvqa?split=val
metadata: {}
dataset_id: docvqa
scoring_fns: []
benchmarks:
- dataset_id: simpleqa
scoring_functions:
- llm-as-judge::405b-simpleqa
metadata: {}
benchmark_id: meta-reference-simpleqa
- dataset_id: mmlu_cot
scoring_functions:
- basic::regex_parser_multiple_choice_answer
metadata: {}
benchmark_id: meta-reference-mmlu-cot
- dataset_id: gpqa_cot
scoring_functions:
- basic::regex_parser_multiple_choice_answer
metadata: {}
benchmark_id: meta-reference-gpqa-cot
- dataset_id: math_500
scoring_functions:
- basic::regex_parser_math_response
metadata: {}
benchmark_id: meta-reference-math-500
- dataset_id: bfcl
scoring_functions:
- basic::bfcl
metadata: {}
benchmark_id: meta-reference-bfcl
- dataset_id: ifeval
scoring_functions:
- basic::ifeval
metadata: {}
benchmark_id: meta-reference-ifeval
- dataset_id: docvqa
scoring_functions:
- basic::docvqa
metadata: {}
benchmark_id: meta-reference-docvqa
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .postgres_demo import get_distribution_template # noqa: F401

View file

@ -1,25 +0,0 @@
version: 2
distribution_spec:
description: Quick start template for running Llama Stack with several popular providers
providers:
inference:
- remote::vllm
- inline::sentence-transformers
vector_io:
- remote::chromadb
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda
additional_pip_packages:
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -1,137 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.sentence_transformers import SentenceTransformersInferenceConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.utils.kvstore.config import PostgresKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
)
def get_distribution_template() -> DistributionTemplate:
inference_providers = [
Provider(
provider_id="vllm-inference",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.VLLM_URL:=http://localhost:8000/v1}",
),
),
]
providers = {
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
"vector_io": ["remote::chromadb"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
name = "postgres-demo"
vector_io_providers = [
Provider(
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:=}"),
),
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
default_models = [
ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm-inference",
)
]
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id=embedding_provider.provider_id,
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
postgres_config = PostgresSqlStoreConfig.sample_run_config()
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Quick start template for running Llama Stack with several popular providers",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider={},
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
"agents": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=dict(
persistence_store=postgres_config,
responses_store=postgres_config,
),
)
],
"telemetry": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=dict(
service_name="${env.OTEL_SERVICE_NAME:=\u200b}",
sinks="${env.TELEMETRY_SINKS:=console,otel_trace}",
otel_trace_endpoint="${env.OTEL_TRACE_ENDPOINT:=http://localhost:4318/v1/traces}",
),
)
],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
metadata_store=PostgresKVStoreConfig.sample_run_config(),
inference_store=postgres_config,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
},
)

View file

@ -1,111 +0,0 @@
version: 2
image_name: postgres-demo
apis:
- agents
- inference
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,otel_trace}
otel_trace_endpoint: ${env.OTEL_TRACE_ENDPOINT:=http://localhost:4318/v1/traces}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .starter import get_distribution_template # noqa: F401

View file

@ -1,65 +0,0 @@
version: 2
distribution_spec:
description: Quick start template for running Llama Stack with several popular providers
providers:
inference:
- remote::cerebras
- remote::ollama
- remote::vllm
- remote::tgi
- remote::hf::serverless
- remote::hf::endpoint
- remote::fireworks
- remote::together
- remote::bedrock
- remote::databricks
- remote::nvidia
- remote::runpod
- remote::openai
- remote::anthropic
- remote::gemini
- remote::groq
- remote::fireworks-openai-compat
- remote::llama-openai-compat
- remote::together-openai-compat
- remote::groq-openai-compat
- remote::sambanova-openai-compat
- remote::cerebras-openai-compat
- remote::sambanova
- remote::passthrough
- inline::sentence-transformers
vector_io:
- inline::faiss
- inline::sqlite-vec
- inline::milvus
- remote::chromadb
- remote::pgvector
files:
- inline::localfs
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
post_training:
- inline::huggingface
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda
additional_pip_packages:
- aiosqlite
- asyncpg
- sqlalchemy[asyncio]

File diff suppressed because it is too large Load diff

View file

@ -1,443 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ProviderSpec,
ShieldInput,
ToolGroupInput,
)
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.inline.vector_io.milvus.config import (
MilvusVectorIOConfig,
)
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
SQLiteVectorIOConfig,
)
from llama_stack.providers.registry.inference import available_providers
from llama_stack.providers.remote.inference.anthropic.models import (
MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.anthropic.models import (
SAFETY_MODELS_ENTRIES as ANTHROPIC_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.bedrock.models import (
MODEL_ENTRIES as BEDROCK_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.bedrock.models import (
SAFETY_MODELS_ENTRIES as BEDROCK_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.cerebras.models import (
MODEL_ENTRIES as CEREBRAS_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.cerebras.models import (
SAFETY_MODELS_ENTRIES as CEREBRAS_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.databricks.databricks import (
MODEL_ENTRIES as DATABRICKS_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.databricks.databricks import (
SAFETY_MODELS_ENTRIES as DATABRICKS_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.fireworks.models import (
MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.fireworks.models import (
SAFETY_MODELS_ENTRIES as FIREWORKS_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.gemini.models import (
MODEL_ENTRIES as GEMINI_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.gemini.models import (
SAFETY_MODELS_ENTRIES as GEMINI_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.groq.models import (
MODEL_ENTRIES as GROQ_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.groq.models import (
SAFETY_MODELS_ENTRIES as GROQ_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.nvidia.models import (
MODEL_ENTRIES as NVIDIA_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.nvidia.models import (
SAFETY_MODELS_ENTRIES as NVIDIA_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.openai.models import (
MODEL_ENTRIES as OPENAI_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.openai.models import (
SAFETY_MODELS_ENTRIES as OPENAI_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.runpod.runpod import (
MODEL_ENTRIES as RUNPOD_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.runpod.runpod import (
SAFETY_MODELS_ENTRIES as RUNPOD_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.sambanova.models import (
MODEL_ENTRIES as SAMBANOVA_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.sambanova.models import (
SAFETY_MODELS_ENTRIES as SAMBANOVA_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.inference.together.models import (
MODEL_ENTRIES as TOGETHER_MODEL_ENTRIES,
)
from llama_stack.providers.remote.inference.together.models import (
SAFETY_MODELS_ENTRIES as TOGETHER_SAFETY_MODELS_ENTRIES,
)
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector.config import (
PGVectorVectorIOConfig,
)
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
get_model_registry,
)
def _get_model_entries_for_provider(provider_type: str) -> list[ProviderModelEntry]:
"""Get model entries for a specific provider type."""
model_entries_map = {
"openai": OPENAI_MODEL_ENTRIES,
"fireworks": FIREWORKS_MODEL_ENTRIES,
"together": TOGETHER_MODEL_ENTRIES,
"anthropic": ANTHROPIC_MODEL_ENTRIES,
"gemini": GEMINI_MODEL_ENTRIES,
"groq": GROQ_MODEL_ENTRIES,
"sambanova": SAMBANOVA_MODEL_ENTRIES,
"cerebras": CEREBRAS_MODEL_ENTRIES,
"bedrock": BEDROCK_MODEL_ENTRIES,
"databricks": DATABRICKS_MODEL_ENTRIES,
"nvidia": NVIDIA_MODEL_ENTRIES,
"runpod": RUNPOD_MODEL_ENTRIES,
}
# Special handling for providers with dynamic model entries
if provider_type == "ollama":
return [
ProviderModelEntry(
provider_model_id="${env.OLLAMA_INFERENCE_MODEL:=__disabled__}",
model_type=ModelType.llm,
),
ProviderModelEntry(
provider_model_id="${env.SAFETY_MODEL:=__disabled__}",
model_type=ModelType.llm,
),
ProviderModelEntry(
provider_model_id="${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": "${env.OLLAMA_EMBEDDING_DIMENSION:=384}",
},
),
]
elif provider_type == "vllm":
return [
ProviderModelEntry(
provider_model_id="${env.VLLM_INFERENCE_MODEL:=__disabled__}",
model_type=ModelType.llm,
),
]
return model_entries_map.get(provider_type, [])
def _get_model_safety_entries_for_provider(provider_type: str) -> list[ProviderModelEntry]:
"""Get model entries for a specific provider type."""
safety_model_entries_map = {
"openai": OPENAI_SAFETY_MODELS_ENTRIES,
"fireworks": FIREWORKS_SAFETY_MODELS_ENTRIES,
"together": TOGETHER_SAFETY_MODELS_ENTRIES,
"anthropic": ANTHROPIC_SAFETY_MODELS_ENTRIES,
"gemini": GEMINI_SAFETY_MODELS_ENTRIES,
"groq": GROQ_SAFETY_MODELS_ENTRIES,
"sambanova": SAMBANOVA_SAFETY_MODELS_ENTRIES,
"cerebras": CEREBRAS_SAFETY_MODELS_ENTRIES,
"bedrock": BEDROCK_SAFETY_MODELS_ENTRIES,
"databricks": DATABRICKS_SAFETY_MODELS_ENTRIES,
"nvidia": NVIDIA_SAFETY_MODELS_ENTRIES,
"runpod": RUNPOD_SAFETY_MODELS_ENTRIES,
}
# Special handling for providers with dynamic model entries
if provider_type == "ollama":
return [
ProviderModelEntry(
provider_model_id="llama-guard3:1b",
model_type=ModelType.llm,
),
]
return safety_model_entries_map.get(provider_type, [])
def _get_config_for_provider(provider_spec: ProviderSpec) -> dict[str, Any]:
"""Get configuration for a provider using its adapter's config class."""
config_class = instantiate_class_type(provider_spec.config_class)
if hasattr(config_class, "sample_run_config"):
config: dict[str, Any] = config_class.sample_run_config()
return config
return {}
def get_remote_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
all_providers = available_providers()
# Filter out inline providers and watsonx - the starter distro only exposes remote providers
remote_providers = [
provider
for provider in all_providers
# TODO: re-add once the Python 3.13 issue is fixed
# discussion: https://github.com/meta-llama/llama-stack/pull/2327#discussion_r2156883828
if hasattr(provider, "adapter") and provider.adapter.adapter_type != "watsonx"
]
providers = []
available_models = {}
for provider_spec in remote_providers:
provider_type = provider_spec.adapter.adapter_type
# Build the environment variable name for enabling this provider
env_var = f"ENABLE_{provider_type.upper().replace('-', '_').replace('::', '_')}"
model_entries = _get_model_entries_for_provider(provider_type)
config = _get_config_for_provider(provider_spec)
providers.append(
(
f"${{env.{env_var}:=__disabled__}}",
provider_type,
model_entries,
config,
)
)
available_models[f"${{env.{env_var}:=__disabled__}}"] = model_entries
inference_providers = []
for provider_id, provider_type, model_entries, config in providers:
inference_providers.append(
Provider(
provider_id=provider_id,
provider_type=f"remote::{provider_type}",
config=config,
)
)
available_models[provider_id] = model_entries
return inference_providers, available_models
# build a list of shields for all possible providers
def get_shields_for_providers(providers: list[Provider]) -> list[ShieldInput]:
shields = []
for provider in providers:
provider_type = provider.provider_type.split("::")[1]
safety_model_entries = _get_model_safety_entries_for_provider(provider_type)
if len(safety_model_entries) == 0:
continue
if provider.provider_id:
shield_id = provider.provider_id
else:
raise ValueError(f"Provider {provider.provider_type} has no provider_id")
for safety_model_entry in safety_model_entries:
print(f"provider.provider_id: {provider.provider_id}")
print(f"safety_model_entry.provider_model_id: {safety_model_entry.provider_model_id}")
shields.append(
ShieldInput(
provider_id="llama-guard",
shield_id=shield_id,
provider_shield_id=f"{provider.provider_id}/${{env.SAFETY_MODEL:={safety_model_entry.provider_model_id}}}",
)
)
return shields
def get_distribution_template() -> DistributionTemplate:
remote_inference_providers, available_models = get_remote_inference_providers()
name = "starter"
vector_io_providers = [
Provider(
provider_id="${env.ENABLE_FAISS:=faiss}",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.ENABLE_SQLITE_VEC:=__disabled__}",
provider_type="inline::sqlite-vec",
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.ENABLE_MILVUS:=__disabled__}",
provider_type="inline::milvus",
config=MilvusVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.ENABLE_CHROMADB:=__disabled__}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:=}"),
),
Provider(
provider_id="${env.ENABLE_PGVECTOR:=__disabled__}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
db="${env.PGVECTOR_DB:=}",
user="${env.PGVECTOR_USER:=}",
password="${env.PGVECTOR_PASSWORD:=}",
),
),
]
shields = get_shields_for_providers(remote_inference_providers)
providers = {
"inference": ([p.provider_type for p in remote_inference_providers] + ["inline::sentence-transformers"]),
"vector_io": ([p.provider_type for p in vector_io_providers]),
"files": ["inline::localfs"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"post_training": ["inline::huggingface"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
files_provider = Provider(
provider_id="meta-reference-files",
provider_type="inline::localfs",
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
embedding_provider = Provider(
provider_id="${env.ENABLE_SENTENCE_TRANSFORMERS:=sentence-transformers}",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
post_training_provider = Provider(
provider_id="huggingface",
provider_type="inline::huggingface",
config=HuggingFacePostTrainingConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id=embedding_provider.provider_id,
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_models = get_model_registry(available_models)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Quick start template for running Llama Stack with several popular providers",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider=available_models,
additional_pip_packages=PostgresSqlStoreConfig.pip_packages(),
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": remote_inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
"files": [files_provider],
"post_training": [post_training_provider],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
# TODO: add a way to enable/disable shields on the fly
default_shields=shields,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"FIREWORKS_API_KEY": (
"",
"Fireworks API Key",
),
"OPENAI_API_KEY": (
"",
"OpenAI API Key",
),
"GROQ_API_KEY": (
"",
"Groq API Key",
),
"ANTHROPIC_API_KEY": (
"",
"Anthropic API Key",
),
"GEMINI_API_KEY": (
"",
"Gemini API Key",
),
"SAMBANOVA_API_KEY": (
"",
"SambaNova API Key",
),
"VLLM_URL": (
"http://localhost:8000/v1",
"vLLM URL",
),
"VLLM_INFERENCE_MODEL": (
"",
"Optional vLLM Inference Model to register on startup",
),
"OLLAMA_URL": (
"http://localhost:11434",
"Ollama URL",
),
"OLLAMA_INFERENCE_MODEL": (
"",
"Optional Ollama Inference Model to register on startup",
),
"OLLAMA_EMBEDDING_MODEL": (
"",
"Optional Ollama Embedding Model to register on startup",
),
"OLLAMA_EMBEDDING_DIMENSION": (
"384",
"Ollama Embedding Dimension",
),
},
)

View file

@ -1,311 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from typing import Literal
import jinja2
import rich
import yaml
from pydantic import BaseModel, Field
from llama_stack.apis.datasets import DatasetPurpose
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
LLAMA_STACK_RUN_CONFIG_VERSION,
Api,
BenchmarkInput,
BuildConfig,
DatasetInput,
DistributionSpec,
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore.config import get_pip_packages as get_kv_pip_packages
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import get_pip_packages as get_sql_pip_packages
def get_model_registry(
available_models: dict[str, list[ProviderModelEntry]],
) -> list[ModelInput]:
models = []
# check for conflicts in model ids
all_ids = set()
ids_conflict = False
for _, entries in available_models.items():
for entry in entries:
ids = [entry.provider_model_id] + entry.aliases
for model_id in ids:
if model_id in all_ids:
ids_conflict = True
rich.print(
f"[yellow]Model id {model_id} conflicts; all model ids will be prefixed with provider id[/yellow]"
)
break
all_ids.update(ids)
if ids_conflict:
break
if ids_conflict:
break
for provider_id, entries in available_models.items():
for entry in entries:
ids = [entry.provider_model_id] + entry.aliases
for model_id in ids:
identifier = f"{provider_id}/{model_id}" if ids_conflict and provider_id not in model_id else model_id
models.append(
ModelInput(
model_id=identifier,
provider_model_id=entry.provider_model_id,
provider_id=provider_id,
model_type=entry.model_type,
metadata=entry.metadata,
)
)
return models
class DefaultModel(BaseModel):
model_id: str
doc_string: str
class RunConfigSettings(BaseModel):
provider_overrides: dict[str, list[Provider]] = Field(default_factory=dict)
default_models: list[ModelInput] | None = None
default_shields: list[ShieldInput] | None = None
default_tool_groups: list[ToolGroupInput] | None = None
default_datasets: list[DatasetInput] | None = None
default_benchmarks: list[BenchmarkInput] | None = None
metadata_store: dict | None = None
inference_store: dict | None = None
def run_config(
self,
name: str,
providers: dict[str, list[str]],
container_image: str | None = None,
) -> dict:
provider_registry = get_provider_registry()
provider_configs = {}
for api_str, provider_types in providers.items():
if api_providers := self.provider_overrides.get(api_str):
# Convert Provider objects to dicts for YAML serialization
provider_configs[api_str] = [
p.model_dump(exclude_none=True) if isinstance(p, Provider) else p for p in api_providers
]
continue
provider_configs[api_str] = []
for provider_type in provider_types:
provider_id = provider_type.split("::")[-1]
api = Api(api_str)
if provider_type not in provider_registry[api]:
raise ValueError(f"Unknown provider type: {provider_type} for API: {api_str}")
config_class = provider_registry[api][provider_type].config_class
assert config_class is not None, (
f"No config class for provider type: {provider_type} for API: {api_str}"
)
config_class = instantiate_class_type(config_class)
if hasattr(config_class, "sample_run_config"):
config = config_class.sample_run_config(__distro_dir__=f"~/.llama/distributions/{name}")
else:
config = {}
provider_configs[api_str].append(
Provider(
provider_id=provider_id,
provider_type=provider_type,
config=config,
).model_dump(exclude_none=True)
)
# Get unique set of APIs from providers
apis = sorted(providers.keys())
# Return a dict that matches StackRunConfig structure
return {
"version": LLAMA_STACK_RUN_CONFIG_VERSION,
"image_name": name,
"container_image": container_image,
"apis": apis,
"providers": provider_configs,
"metadata_store": self.metadata_store
or SqliteKVStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="registry.db",
),
"inference_store": self.inference_store
or SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="inference_store.db",
),
"models": [m.model_dump(exclude_none=True) for m in (self.default_models or [])],
"shields": [s.model_dump(exclude_none=True) for s in (self.default_shields or [])],
"vector_dbs": [],
"datasets": [d.model_dump(exclude_none=True) for d in (self.default_datasets or [])],
"scoring_fns": [],
"benchmarks": [b.model_dump(exclude_none=True) for b in (self.default_benchmarks or [])],
"tool_groups": [t.model_dump(exclude_none=True) for t in (self.default_tool_groups or [])],
"server": {
"port": 8321,
},
}
class DistributionTemplate(BaseModel):
"""
Represents a Llama Stack distribution instance that can generate configuration
and documentation files.
"""
name: str
description: str
distro_type: Literal["self_hosted", "remote_hosted", "ondevice"]
providers: dict[str, list[str]]
run_configs: dict[str, RunConfigSettings]
template_path: Path | None = None
# Optional configuration
run_config_env_vars: dict[str, tuple[str, str]] | None = None
container_image: str | None = None
available_models_by_provider: dict[str, list[ProviderModelEntry]] | None = None
# we may want to specify additional pip packages without necessarily indicating a
# specific "default" inference store (which is what typically used to dictate additional
# pip packages)
additional_pip_packages: list[str] | None = None
def build_config(self) -> BuildConfig:
additional_pip_packages: list[str] = []
for run_config in self.run_configs.values():
run_config_ = run_config.run_config(self.name, self.providers, self.container_image)
# TODO: This is a hack to get the dependencies for internal APIs into build
# We should have a better way to do this by formalizing the concept of "internal" APIs
# and providers, with a way to specify dependencies for them.
if run_config_.get("inference_store"):
additional_pip_packages.extend(get_sql_pip_packages(run_config_["inference_store"]))
if run_config_.get("metadata_store"):
additional_pip_packages.extend(get_kv_pip_packages(run_config_["metadata_store"]))
if self.additional_pip_packages:
additional_pip_packages.extend(self.additional_pip_packages)
return BuildConfig(
distribution_spec=DistributionSpec(
description=self.description,
container_image=self.container_image,
providers=self.providers,
),
image_type="conda", # default to conda, can be overridden
additional_pip_packages=sorted(set(additional_pip_packages)),
)
def generate_markdown_docs(self) -> str:
providers_table = "| API | Provider(s) |\n"
providers_table += "|-----|-------------|\n"
for api, providers in sorted(self.providers.items()):
providers_str = ", ".join(f"`{p}`" for p in providers)
providers_table += f"| {api} | {providers_str} |\n"
template = self.template_path.read_text()
comment = "<!-- This file was auto-generated by distro_codegen.py, please edit source -->\n"
orphantext = "---\norphan: true\n---\n"
if template.startswith(orphantext):
template = template.replace(orphantext, orphantext + comment)
else:
template = comment + template
# Render template with rich-generated table
env = jinja2.Environment(
trim_blocks=True,
lstrip_blocks=True,
# NOTE: autoescape is required to prevent XSS attacks
autoescape=True,
)
template = env.from_string(template)
default_models = []
if self.available_models_by_provider:
has_multiple_providers = len(self.available_models_by_provider.keys()) > 1
for provider_id, model_entries in self.available_models_by_provider.items():
for model_entry in model_entries:
doc_parts = []
if model_entry.aliases:
doc_parts.append(f"aliases: {', '.join(model_entry.aliases)}")
if has_multiple_providers:
doc_parts.append(f"provider: {provider_id}")
default_models.append(
DefaultModel(
model_id=model_entry.provider_model_id,
doc_string=(f"({' -- '.join(doc_parts)})" if doc_parts else ""),
)
)
return template.render(
name=self.name,
description=self.description,
providers=self.providers,
providers_table=providers_table,
run_config_env_vars=self.run_config_env_vars,
default_models=default_models,
)
def save_distribution(self, yaml_output_dir: Path, doc_output_dir: Path) -> None:
def enum_representer(dumper, data):
return dumper.represent_scalar("tag:yaml.org,2002:str", data.value)
# Register YAML representer for ModelType
yaml.add_representer(ModelType, enum_representer)
yaml.add_representer(DatasetPurpose, enum_representer)
yaml.SafeDumper.add_representer(ModelType, enum_representer)
yaml.SafeDumper.add_representer(DatasetPurpose, enum_representer)
for output_dir in [yaml_output_dir, doc_output_dir]:
output_dir.mkdir(parents=True, exist_ok=True)
build_config = self.build_config()
with open(yaml_output_dir / "build.yaml", "w") as f:
yaml.safe_dump(
build_config.model_dump(exclude_none=True),
f,
sort_keys=False,
)
for yaml_pth, settings in self.run_configs.items():
run_config = settings.run_config(self.name, self.providers, self.container_image)
with open(yaml_output_dir / yaml_pth, "w") as f:
yaml.safe_dump(
{k: v for k, v in run_config.items() if v is not None},
f,
sort_keys=False,
)
if self.template_path:
docs = self.generate_markdown_docs()
with open(doc_output_dir / f"{self.name}.md", "w") as f:
f.write(docs if docs.endswith("\n") else docs + "\n")

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .vllm import get_distribution_template # noqa: F401

View file

@ -1,35 +0,0 @@
version: 2
distribution_spec:
description: Use a built-in vLLM engine for running LLM inference
providers:
inference:
- inline::vllm
- inline::sentence-transformers
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,132 +0,0 @@
version: 2
image_name: vllm-gpu
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm
provider_type: inline::vllm
config:
tensor_parallel_size: ${env.TENSOR_PARALLEL_SIZE:=1}
max_tokens: ${env.MAX_TOKENS:=4096}
max_model_len: ${env.MAX_MODEL_LEN:=4096}
max_num_seqs: ${env.MAX_NUM_SEQS:=4}
enforce_eager: ${env.ENFORCE_EAGER:=False}
gpu_memory_utilization: ${env.GPU_MEMORY_UTILIZATION:=0.3}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/vllm-gpu}/inference_store.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,122 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.inference.vllm import VLLMConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
ToolGroupInput,
)
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::vllm", "inline::sentence-transformers"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
name = "vllm-gpu"
inference_provider = Provider(
provider_id="vllm",
provider_type="inline::vllm",
config=VLLMConfig.sample_run_config(),
)
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use a built-in vLLM engine for running LLM inference",
container_image=None,
template_path=None,
providers=providers,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the vLLM engine",
),
"TENSOR_PARALLEL_SIZE": (
"1",
"Number of tensor parallel replicas (number of GPUs to use).",
),
"MAX_TOKENS": (
"4096",
"Maximum number of tokens to generate.",
),
"ENFORCE_EAGER": (
"False",
"Whether to use eager mode for inference (otherwise cuda graphs are used).",
),
"GPU_MEMORY_UTILIZATION": (
"0.7",
"GPU memory utilization for the vLLM engine.",
),
},
)

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,33 +0,0 @@
version: 2
distribution_spec:
description: Use watsonx for running LLM inference
providers:
inference:
- remote::watsonx
- inline::sentence-transformers
vector_io:
- inline::faiss
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,215 +0,0 @@
version: 2
image_name: watsonx
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: watsonx
provider_type: remote::watsonx
config:
url: ${env.WATSONX_BASE_URL:=https://us-south.ml.cloud.ibm.com}
api_key: ${env.WATSONX_API_KEY:=}
project_id: ${env.WATSONX_PROJECT_ID:=}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/trace_store.db
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/inference_store.db
models:
- metadata: {}
model_id: meta-llama/llama-3-3-70b-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-3-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-3-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-2-13b-chat
provider_id: watsonx
provider_model_id: meta-llama/llama-2-13b-chat
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-2-13b
provider_id: watsonx
provider_model_id: meta-llama/llama-2-13b-chat
model_type: llm
- metadata: {}
model_id: meta-llama/llama-3-1-70b-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-1-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-70B-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-1-70b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-3-1-8b-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-1-8b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-1-8b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-3-2-11b-vision-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-11b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-11b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-3-2-1b-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-1b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-1B-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-1b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-3-2-3b-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-3b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-3b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-3-2-90b-vision-instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-90b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
provider_id: watsonx
provider_model_id: meta-llama/llama-3-2-90b-vision-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/llama-guard-3-11b-vision
provider_id: watsonx
provider_model_id: meta-llama/llama-guard-3-11b-vision
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-Guard-3-11B-Vision
provider_id: watsonx
provider_model_id: meta-llama/llama-guard-3-11b-vision
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321

View file

@ -1,104 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupInput
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.remote.inference.watsonx import WatsonXConfig
from llama_stack.providers.remote.inference.watsonx.models import MODEL_ENTRIES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::watsonx", "inline::sentence-transformers"],
"vector_io": ["inline::faiss"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
inference_provider = Provider(
provider_id="watsonx",
provider_type="remote::watsonx",
config=WatsonXConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
available_models = {
"watsonx": MODEL_ENTRIES,
}
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_models = get_model_registry(available_models)
return DistributionTemplate(
name="watsonx",
distro_type="remote_hosted",
description="Use watsonx for running LLM inference",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"WATSONX_API_KEY": (
"",
"watsonx API Key",
),
"WATSONX_PROJECT_ID": (
"",
"watsonx Project ID",
),
},
)