mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-25 19:38:05 +00:00
Merge branch 'main' into opengauss-add
This commit is contained in:
commit
39e49ab97a
807 changed files with 79555 additions and 26772 deletions
|
|
@ -8,20 +8,32 @@ import random
|
|||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from chromadb import PersistentClient
|
||||
from pymilvus import MilvusClient, connections
|
||||
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
||||
from llama_stack.providers.inline.vector_io.chroma.config import ChromaVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter
|
||||
from llama_stack.providers.inline.vector_io.milvus.config import MilvusVectorIOConfig, SqliteKVStoreConfig
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import SQLiteVecIndex, SQLiteVecVectorIOAdapter
|
||||
from llama_stack.providers.remote.vector_io.chroma.chroma import ChromaIndex, ChromaVectorIOAdapter, maybe_await
|
||||
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusIndex, MilvusVectorIOAdapter
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
|
||||
|
||||
EMBEDDING_DIMENSION = 384
|
||||
COLLECTION_PREFIX = "test_collection"
|
||||
MILVUS_ALIAS = "test_milvus"
|
||||
|
||||
|
||||
@pytest.fixture(params=["milvus", "sqlite_vec", "faiss", "chroma"])
|
||||
def vector_provider(request):
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_db_id() -> str:
|
||||
return f"test-vector-db-{random.randint(1, 100)}"
|
||||
|
|
@ -90,11 +102,6 @@ def sample_embeddings_with_metadata(sample_chunks_with_metadata):
|
|||
return np.array([np.random.rand(EMBEDDING_DIMENSION).astype(np.float32) for _ in sample_chunks_with_metadata])
|
||||
|
||||
|
||||
@pytest.fixture(params=["milvus", "sqlite_vec"])
|
||||
def vector_provider(request):
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def mock_inference_api(embedding_dimension):
|
||||
class MockInferenceAPI:
|
||||
|
|
@ -116,7 +123,7 @@ async def unique_kvstore_config(tmp_path_factory):
|
|||
|
||||
@pytest.fixture(scope="session")
|
||||
def sqlite_vec_db_path(tmp_path_factory):
|
||||
db_path = str(tmp_path_factory.getbasetemp() / "test.db")
|
||||
db_path = str(tmp_path_factory.getbasetemp() / "test_sqlite_vec.db")
|
||||
return db_path
|
||||
|
||||
|
||||
|
|
@ -198,13 +205,145 @@ async def milvus_vec_adapter(milvus_vec_db_path, mock_inference_api):
|
|||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def faiss_vec_db_path(tmp_path_factory):
|
||||
db_path = str(tmp_path_factory.getbasetemp() / "test_faiss.db")
|
||||
return db_path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def faiss_vec_index(embedding_dimension):
|
||||
index = FaissIndex(embedding_dimension)
|
||||
yield index
|
||||
await index.delete()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding_dimension):
|
||||
config = FaissVectorIOConfig(
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
adapter = FaissVectorIOAdapter(
|
||||
config=config,
|
||||
inference_api=mock_inference_api,
|
||||
files_api=None,
|
||||
)
|
||||
await adapter.initialize()
|
||||
await adapter.register_vector_db(
|
||||
VectorDB(
|
||||
identifier=f"faiss_test_collection_{np.random.randint(1e6)}",
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
)
|
||||
yield adapter
|
||||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def chroma_vec_db_path(tmp_path_factory):
|
||||
persist_dir = tmp_path_factory.mktemp(f"chroma_{np.random.randint(1e6)}")
|
||||
return str(persist_dir)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def chroma_vec_index(chroma_vec_db_path, embedding_dimension):
|
||||
client = PersistentClient(path=chroma_vec_db_path)
|
||||
name = f"{COLLECTION_PREFIX}_{np.random.randint(1e6)}"
|
||||
collection = await maybe_await(client.get_or_create_collection(name))
|
||||
index = ChromaIndex(client=client, collection=collection)
|
||||
await index.initialize()
|
||||
yield index
|
||||
await index.delete()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def chroma_vec_adapter(chroma_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
config = ChromaVectorIOConfig(
|
||||
db_path=chroma_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
)
|
||||
adapter = ChromaVectorIOAdapter(
|
||||
config=config,
|
||||
inference_api=mock_inference_api,
|
||||
files_api=None,
|
||||
)
|
||||
await adapter.initialize()
|
||||
await adapter.register_vector_db(
|
||||
VectorDB(
|
||||
identifier=f"chroma_test_collection_{random.randint(1, 1_000_000)}",
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
)
|
||||
yield adapter
|
||||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def qdrant_vec_db_path(tmp_path_factory):
|
||||
import uuid
|
||||
|
||||
db_path = str(tmp_path_factory.getbasetemp() / f"test_qdrant_{uuid.uuid4()}.db")
|
||||
return db_path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def qdrant_vec_adapter(qdrant_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
import uuid
|
||||
|
||||
config = QdrantVectorIOConfig(
|
||||
db_path=qdrant_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
)
|
||||
adapter = QdrantVectorIOAdapter(
|
||||
config=config,
|
||||
inference_api=mock_inference_api,
|
||||
files_api=None,
|
||||
)
|
||||
collection_id = f"qdrant_test_collection_{uuid.uuid4()}"
|
||||
await adapter.initialize()
|
||||
await adapter.register_vector_db(
|
||||
VectorDB(
|
||||
identifier=collection_id,
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
)
|
||||
adapter.test_collection_id = collection_id
|
||||
yield adapter
|
||||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def qdrant_vec_index(qdrant_vec_db_path, embedding_dimension):
|
||||
import uuid
|
||||
|
||||
from qdrant_client import AsyncQdrantClient
|
||||
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantIndex
|
||||
|
||||
client = AsyncQdrantClient(path=qdrant_vec_db_path)
|
||||
collection_name = f"qdrant_test_collection_{uuid.uuid4()}"
|
||||
index = QdrantIndex(client, collection_name)
|
||||
yield index
|
||||
await index.delete()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_io_adapter(vector_provider, request):
|
||||
"""Returns the appropriate vector IO adapter based on the provider parameter."""
|
||||
if vector_provider == "milvus":
|
||||
return request.getfixturevalue("milvus_vec_adapter")
|
||||
else:
|
||||
return request.getfixturevalue("sqlite_vec_adapter")
|
||||
vector_provider_dict = {
|
||||
"milvus": "milvus_vec_adapter",
|
||||
"faiss": "faiss_vec_adapter",
|
||||
"sqlite_vec": "sqlite_vec_adapter",
|
||||
"chroma": "chroma_vec_adapter",
|
||||
"qdrant": "qdrant_vec_adapter",
|
||||
}
|
||||
return request.getfixturevalue(vector_provider_dict[vector_provider])
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
|
|
|||
326
tests/unit/providers/vector_io/remote/test_milvus.py
Normal file
326
tests/unit/providers/vector_io/remote/test_milvus.py
Normal file
|
|
@ -0,0 +1,326 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.vector_io import QueryChunksResponse
|
||||
|
||||
# Mock the entire pymilvus module
|
||||
pymilvus_mock = MagicMock()
|
||||
pymilvus_mock.DataType = MagicMock()
|
||||
pymilvus_mock.MilvusClient = MagicMock
|
||||
pymilvus_mock.RRFRanker = MagicMock
|
||||
pymilvus_mock.WeightedRanker = MagicMock
|
||||
pymilvus_mock.AnnSearchRequest = MagicMock
|
||||
|
||||
# Apply the mock before importing MilvusIndex
|
||||
with patch.dict("sys.modules", {"pymilvus": pymilvus_mock}):
|
||||
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusIndex
|
||||
|
||||
# This test is a unit test for the MilvusVectorIOAdapter class. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
# tests/integration/vector_io/
|
||||
#
|
||||
# How to run this test:
|
||||
#
|
||||
# pytest tests/unit/providers/vector_io/test_milvus.py \
|
||||
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
|
||||
|
||||
MILVUS_PROVIDER = "milvus"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def mock_milvus_client() -> MagicMock:
|
||||
"""Create a mock Milvus client with common method behaviors."""
|
||||
client = MagicMock()
|
||||
|
||||
# Mock collection operations
|
||||
client.has_collection.return_value = False # Initially no collection
|
||||
client.create_collection.return_value = None
|
||||
client.drop_collection.return_value = None
|
||||
|
||||
# Mock insert operation
|
||||
client.insert.return_value = {"insert_count": 10}
|
||||
|
||||
# Mock search operation - return mock results (data should be dict, not JSON string)
|
||||
client.search.return_value = [
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"distance": 0.1,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"distance": 0.2,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
# Mock query operation for keyword search (data should be dict, not JSON string)
|
||||
client.query.return_value = [
|
||||
{
|
||||
"chunk_id": "chunk1",
|
||||
"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}},
|
||||
"score": 0.9,
|
||||
},
|
||||
{
|
||||
"chunk_id": "chunk2",
|
||||
"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}},
|
||||
"score": 0.8,
|
||||
},
|
||||
{
|
||||
"chunk_id": "chunk3",
|
||||
"chunk_content": {"content": "mock chunk 3", "metadata": {"document_id": "doc3"}},
|
||||
"score": 0.7,
|
||||
},
|
||||
]
|
||||
|
||||
return client
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def milvus_index(mock_milvus_client):
|
||||
"""Create a MilvusIndex with mocked client."""
|
||||
index = MilvusIndex(client=mock_milvus_client, collection_name="test_collection")
|
||||
yield index
|
||||
# No real cleanup needed since we're using mocks
|
||||
|
||||
|
||||
async def test_add_chunks(milvus_index, sample_chunks, sample_embeddings, mock_milvus_client):
|
||||
# Setup: collection doesn't exist initially, then exists after creation
|
||||
mock_milvus_client.has_collection.side_effect = [False, True]
|
||||
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Verify collection was created and data was inserted
|
||||
mock_milvus_client.create_collection.assert_called_once()
|
||||
mock_milvus_client.insert.assert_called_once()
|
||||
|
||||
# Verify the insert call had the right number of chunks
|
||||
insert_call = mock_milvus_client.insert.call_args
|
||||
assert len(insert_call[1]["data"]) == len(sample_chunks)
|
||||
|
||||
|
||||
async def test_query_chunks_vector(
|
||||
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
|
||||
):
|
||||
# Setup: Add chunks first
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Test vector search
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
response = await milvus_index.query_vector(query_embedding, k=2, score_threshold=0.0)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
mock_milvus_client.search.assert_called_once()
|
||||
|
||||
|
||||
async def test_query_chunks_keyword_search(milvus_index, sample_chunks, sample_embeddings, mock_milvus_client):
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Test keyword search
|
||||
query_string = "Sentence 5"
|
||||
response = await milvus_index.query_keyword(query_string=query_string, k=2, score_threshold=0.0)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
|
||||
|
||||
async def test_bm25_fallback_to_simple_search(milvus_index, sample_chunks, sample_embeddings, mock_milvus_client):
|
||||
"""Test that when BM25 search fails, the system falls back to simple text search."""
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Force BM25 search to fail
|
||||
mock_milvus_client.search.side_effect = Exception("BM25 search not available")
|
||||
|
||||
# Mock simple text search results
|
||||
mock_milvus_client.query.return_value = [
|
||||
{
|
||||
"chunk_id": "chunk1",
|
||||
"chunk_content": {"content": "Python programming language", "metadata": {"document_id": "doc1"}},
|
||||
},
|
||||
{
|
||||
"chunk_id": "chunk2",
|
||||
"chunk_content": {"content": "Machine learning algorithms", "metadata": {"document_id": "doc2"}},
|
||||
},
|
||||
]
|
||||
|
||||
# Test keyword search that should fall back to simple text search
|
||||
query_string = "Python"
|
||||
response = await milvus_index.query_keyword(query_string=query_string, k=3, score_threshold=0.0)
|
||||
|
||||
# Verify response structure
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) > 0, "Fallback search should return results"
|
||||
|
||||
# Verify that simple text search was used (query method called instead of search)
|
||||
mock_milvus_client.query.assert_called_once()
|
||||
mock_milvus_client.search.assert_called_once() # Called once but failed
|
||||
|
||||
# Verify the query uses parameterized filter with filter_params
|
||||
query_call_args = mock_milvus_client.query.call_args
|
||||
assert "filter" in query_call_args[1], "Query should include filter for text search"
|
||||
assert "filter_params" in query_call_args[1], "Query should use parameterized filter"
|
||||
assert query_call_args[1]["filter_params"]["content"] == "Python", "Filter params should contain the search term"
|
||||
|
||||
# Verify all returned chunks have score 1.0 (simple binary scoring)
|
||||
assert all(score == 1.0 for score in response.scores), "Simple text search should use binary scoring"
|
||||
|
||||
|
||||
async def test_delete_collection(milvus_index, mock_milvus_client):
|
||||
# Test collection deletion
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
|
||||
await milvus_index.delete()
|
||||
|
||||
mock_milvus_client.drop_collection.assert_called_once_with(collection_name=milvus_index.collection_name)
|
||||
|
||||
|
||||
async def test_query_hybrid_search_rrf(
|
||||
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
|
||||
):
|
||||
"""Test hybrid search with RRF reranker."""
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Mock hybrid search results
|
||||
mock_milvus_client.hybrid_search.return_value = [
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"distance": 0.1,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"distance": 0.2,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
# Test hybrid search with RRF reranker
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
query_string = "test query"
|
||||
response = await milvus_index.query_hybrid(
|
||||
embedding=query_embedding,
|
||||
query_string=query_string,
|
||||
k=2,
|
||||
score_threshold=0.0,
|
||||
reranker_type="rrf",
|
||||
reranker_params={"impact_factor": 60.0},
|
||||
)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
assert len(response.scores) == 2
|
||||
|
||||
# Verify hybrid search was called with correct parameters
|
||||
mock_milvus_client.hybrid_search.assert_called_once()
|
||||
call_args = mock_milvus_client.hybrid_search.call_args
|
||||
|
||||
# Check that the request contains both vector and BM25 search requests
|
||||
reqs = call_args[1]["reqs"]
|
||||
assert len(reqs) == 2
|
||||
assert reqs[0].anns_field == "vector"
|
||||
assert reqs[1].anns_field == "sparse"
|
||||
ranker = call_args[1]["ranker"]
|
||||
assert ranker is not None
|
||||
|
||||
|
||||
async def test_query_hybrid_search_weighted(
|
||||
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
|
||||
):
|
||||
"""Test hybrid search with weighted reranker."""
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Mock hybrid search results
|
||||
mock_milvus_client.hybrid_search.return_value = [
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"distance": 0.1,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"distance": 0.2,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
# Test hybrid search with weighted reranker
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
query_string = "test query"
|
||||
response = await milvus_index.query_hybrid(
|
||||
embedding=query_embedding,
|
||||
query_string=query_string,
|
||||
k=2,
|
||||
score_threshold=0.0,
|
||||
reranker_type="weighted",
|
||||
reranker_params={"alpha": 0.7},
|
||||
)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
assert len(response.scores) == 2
|
||||
|
||||
# Verify hybrid search was called with correct parameters
|
||||
mock_milvus_client.hybrid_search.assert_called_once()
|
||||
call_args = mock_milvus_client.hybrid_search.call_args
|
||||
ranker = call_args[1]["ranker"]
|
||||
assert ranker is not None
|
||||
|
||||
|
||||
async def test_query_hybrid_search_default_rrf(
|
||||
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
|
||||
):
|
||||
"""Test hybrid search with default RRF reranker (no reranker_type specified)."""
|
||||
mock_milvus_client.has_collection.return_value = True
|
||||
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
# Mock hybrid search results
|
||||
mock_milvus_client.hybrid_search.return_value = [
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"distance": 0.1,
|
||||
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
# Test hybrid search with default reranker (should be RRF)
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
query_string = "test query"
|
||||
response = await milvus_index.query_hybrid(
|
||||
embedding=query_embedding,
|
||||
query_string=query_string,
|
||||
k=1,
|
||||
score_threshold=0.0,
|
||||
reranker_type="unknown_type", # Should default to RRF
|
||||
reranker_params=None, # Should use default impact_factor
|
||||
)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 1
|
||||
|
||||
# Verify hybrid search was called with RRF reranker
|
||||
mock_milvus_client.hybrid_search.assert_called_once()
|
||||
call_args = mock_milvus_client.hybrid_search.call_args
|
||||
ranker = call_args[1]["ranker"]
|
||||
assert ranker is not None
|
||||
|
|
@ -9,7 +9,6 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
|||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import EmbeddingsResponse, Inference
|
||||
|
|
@ -91,13 +90,13 @@ def faiss_config():
|
|||
return config
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def faiss_index(embedding_dimension):
|
||||
index = await FaissIndex.create(dimension=embedding_dimension)
|
||||
yield index
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def faiss_adapter(faiss_config, mock_inference_api, mock_files_api) -> FaissVectorIOAdapter:
|
||||
# Create the adapter
|
||||
adapter = FaissVectorIOAdapter(config=faiss_config, inference_api=mock_inference_api, files_api=mock_files_api)
|
||||
|
|
@ -113,7 +112,6 @@ async def faiss_adapter(faiss_config, mock_inference_api, mock_files_api) -> Fai
|
|||
yield adapter
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_identical(
|
||||
faiss_index, sample_chunks, sample_embeddings, embedding_dimension
|
||||
):
|
||||
|
|
@ -136,7 +134,6 @@ async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_
|
|||
assert response.chunks[1] == sample_chunks[1]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_health_success():
|
||||
"""Test that the health check returns OK status when faiss is working correctly."""
|
||||
# Create a fresh instance of FaissVectorIOAdapter for testing
|
||||
|
|
@ -160,7 +157,6 @@ async def test_health_success():
|
|||
mock_index_flat.assert_called_once_with(128) # VECTOR_DIMENSION is 128
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_health_failure():
|
||||
"""Test that the health check returns ERROR status when faiss encounters an error."""
|
||||
# Create a fresh instance of FaissVectorIOAdapter for testing
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ from typing import Any
|
|||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.inference import EmbeddingsResponse, Inference
|
||||
from llama_stack.apis.vector_io import (
|
||||
|
|
@ -24,6 +23,7 @@ from llama_stack.providers.inline.vector_io.qdrant.config import (
|
|||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
||||
QdrantVectorIOAdapter,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
|
|
@ -37,7 +37,8 @@ from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
|||
|
||||
@pytest.fixture
|
||||
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
|
||||
kvstore_config = SqliteKVStoreConfig(db_name=os.path.join(tmp_path, "test_kvstore.db"))
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"), kvstore=kvstore_config)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
|
@ -51,6 +52,9 @@ def mock_vector_db(vector_db_id) -> MagicMock:
|
|||
mock_vector_db.embedding_model = "embedding_model"
|
||||
mock_vector_db.identifier = vector_db_id
|
||||
mock_vector_db.embedding_dimension = 384
|
||||
mock_vector_db.model_dump_json.return_value = (
|
||||
'{"identifier": "' + vector_db_id + '", "embedding_model": "embedding_model", "embedding_dimension": 384}'
|
||||
)
|
||||
return mock_vector_db
|
||||
|
||||
|
||||
|
|
@ -68,9 +72,9 @@ def mock_api_service(sample_embeddings):
|
|||
return mock_api_service
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def qdrant_adapter(qdrant_config, mock_vector_db_store, mock_api_service, loop) -> QdrantVectorIOAdapter:
|
||||
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service)
|
||||
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service, files_api=None)
|
||||
adapter.vector_db_store = mock_vector_db_store
|
||||
await adapter.initialize()
|
||||
yield adapter
|
||||
|
|
@ -80,7 +84,6 @@ async def qdrant_adapter(qdrant_config, mock_vector_db_store, mock_api_service,
|
|||
__QUERY = "Sample query"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("max_query_chunks, expected_chunks", [(2, 2), (100, 60)])
|
||||
async def test_qdrant_adapter_returns_expected_chunks(
|
||||
qdrant_adapter: QdrantVectorIOAdapter,
|
||||
|
|
@ -111,7 +114,6 @@ def _prepare_for_json(value: Any) -> str:
|
|||
|
||||
|
||||
@patch("llama_stack.providers.utils.telemetry.trace_protocol._prepare_for_json", new=_prepare_for_json)
|
||||
@pytest.mark.asyncio
|
||||
async def test_qdrant_register_and_unregister_vector_db(
|
||||
qdrant_adapter: QdrantVectorIOAdapter,
|
||||
mock_vector_db,
|
||||
|
|
|
|||
|
|
@ -8,7 +8,6 @@ import asyncio
|
|||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import (
|
||||
|
|
@ -34,23 +33,21 @@ def loop():
|
|||
return asyncio.new_event_loop()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def sqlite_vec_index(embedding_dimension, tmp_path_factory):
|
||||
temp_dir = tmp_path_factory.getbasetemp()
|
||||
db_path = str(temp_dir / "test_sqlite.db")
|
||||
index = await SQLiteVecIndex.create(dimension=embedding_dimension, db_path=db_path, bank_id="test_bank")
|
||||
index = await SQLiteVecIndex.create(dimension=embedding_dimension, db_path=db_path, bank_id="test_bank.123")
|
||||
yield index
|
||||
await index.delete()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunk_metadata(sqlite_vec_index, sample_chunks_with_metadata, sample_embeddings_with_metadata):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks_with_metadata, sample_embeddings_with_metadata)
|
||||
response = await sqlite_vec_index.query_vector(sample_embeddings_with_metadata[-1], k=2, score_threshold=0.0)
|
||||
assert response.chunks[0].chunk_metadata == sample_chunks_with_metadata[-1].chunk_metadata
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
query_string = "Sentence 5"
|
||||
|
|
@ -68,7 +65,6 @@ async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sa
|
|||
assert len(response_no_results.chunks) == 0, f"Expected 0 results, but got {len(response_no_results.chunks)}"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
|
|
@ -90,7 +86,6 @@ async def test_query_chunks_hybrid(sqlite_vec_index, sample_chunks, sample_embed
|
|||
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_full_text_search_k_greater_than_results(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
# Re-initialize with a clean index
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
|
@ -103,7 +98,6 @@ async def test_query_chunks_full_text_search_k_greater_than_results(sqlite_vec_i
|
|||
assert any("Sentence 1 from document 0" in chunk.content for chunk in response.chunks), "Expected chunk not found"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chunk_id_conflict(sqlite_vec_index, sample_chunks, embedding_dimension):
|
||||
"""Test that chunk IDs do not conflict across batches when inserting chunks."""
|
||||
# Reduce batch size to force multiple batches for same document
|
||||
|
|
@ -116,7 +110,7 @@ async def test_chunk_id_conflict(sqlite_vec_index, sample_chunks, embedding_dime
|
|||
cur = connection.cursor()
|
||||
|
||||
# Retrieve all chunk IDs to check for duplicates
|
||||
cur.execute(f"SELECT id FROM {sqlite_vec_index.metadata_table}")
|
||||
cur.execute(f"SELECT id FROM [{sqlite_vec_index.metadata_table}]")
|
||||
chunk_ids = [row[0] for row in cur.fetchall()]
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
|
@ -134,7 +128,6 @@ async def sqlite_vec_adapter(sqlite_connection):
|
|||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_no_keyword_matches(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
"""Test hybrid search when keyword search returns no matches - should still return vector results."""
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
|
@ -163,7 +156,6 @@ async def test_query_chunks_hybrid_no_keyword_matches(sqlite_vec_index, sample_c
|
|||
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_score_threshold(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
"""Test hybrid search with a high score threshold."""
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
|
@ -185,7 +177,6 @@ async def test_query_chunks_hybrid_score_threshold(sqlite_vec_index, sample_chun
|
|||
assert len(response.chunks) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_different_embedding(
|
||||
sqlite_vec_index, sample_chunks, sample_embeddings, embedding_dimension
|
||||
):
|
||||
|
|
@ -211,7 +202,6 @@ async def test_query_chunks_hybrid_different_embedding(
|
|||
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_rrf_ranking(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
"""Test that RRF properly combines rankings when documents appear in both search methods."""
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
|
@ -236,7 +226,6 @@ async def test_query_chunks_hybrid_rrf_ranking(sqlite_vec_index, sample_chunks,
|
|||
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_score_selection(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
|
|
@ -284,7 +273,6 @@ async def test_query_chunks_hybrid_score_selection(sqlite_vec_index, sample_chun
|
|||
assert response.scores[0] == pytest.approx(2.0 / 61.0, rel=1e-6) # Should behave like RRF
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_mixed_results(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
"""Test hybrid search with documents that appear in only one search method."""
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
|
@ -313,7 +301,6 @@ async def test_query_chunks_hybrid_mixed_results(sqlite_vec_index, sample_chunks
|
|||
assert "document-2" in doc_ids # From keyword search
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_weighted_reranker_parametrization(
|
||||
sqlite_vec_index, sample_chunks, sample_embeddings
|
||||
):
|
||||
|
|
@ -369,7 +356,6 @@ async def test_query_chunks_hybrid_weighted_reranker_parametrization(
|
|||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_rrf_impact_factor(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
"""Test RRFReRanker with different impact factors."""
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
|
@ -401,7 +387,6 @@ async def test_query_chunks_hybrid_rrf_impact_factor(sqlite_vec_index, sample_ch
|
|||
assert response.scores[0] == pytest.approx(2.0 / 101.0, rel=1e-6)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_edge_cases(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
|
|
@ -445,7 +430,6 @@ async def test_query_chunks_hybrid_edge_cases(sqlite_vec_index, sample_chunks, s
|
|||
assert len(response.chunks) <= 100
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_hybrid_tie_breaking(
|
||||
sqlite_vec_index, sample_embeddings, embedding_dimension, tmp_path_factory
|
||||
):
|
||||
|
|
|
|||
|
|
@ -25,12 +25,10 @@ from llama_stack.providers.remote.vector_io.milvus.milvus import VECTOR_DBS_PREF
|
|||
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_initialize_index(vector_index):
|
||||
await vector_index.initialize()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_add_chunks_query_vector(vector_index, sample_chunks, sample_embeddings):
|
||||
vector_index.delete()
|
||||
vector_index.initialize()
|
||||
|
|
@ -40,7 +38,6 @@ async def test_add_chunks_query_vector(vector_index, sample_chunks, sample_embed
|
|||
vector_index.delete()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimension):
|
||||
embeddings = np.random.rand(len(sample_chunks), embedding_dimension).astype(np.float32)
|
||||
await vector_index.add_chunks(sample_chunks, embeddings)
|
||||
|
|
@ -54,7 +51,6 @@ async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimensio
|
|||
assert len(contents) == len(set(contents))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter):
|
||||
key = f"{VECTOR_DBS_PREFIX}db1"
|
||||
dummy = VectorDB(
|
||||
|
|
@ -65,7 +61,6 @@ async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter):
|
|||
await vector_io_adapter.initialize()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_persistence_across_adapter_restarts(vector_io_adapter):
|
||||
await vector_io_adapter.initialize()
|
||||
dummy = VectorDB(
|
||||
|
|
@ -79,7 +74,6 @@ async def test_persistence_across_adapter_restarts(vector_io_adapter):
|
|||
await vector_io_adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_register_and_unregister_vector_db(vector_io_adapter):
|
||||
unique_id = f"foo_db_{np.random.randint(1e6)}"
|
||||
dummy = VectorDB(
|
||||
|
|
@ -92,17 +86,19 @@ async def test_register_and_unregister_vector_db(vector_io_adapter):
|
|||
assert dummy.identifier not in vector_io_adapter.cache
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_unregistered_raises(vector_io_adapter):
|
||||
async def test_query_unregistered_raises(vector_io_adapter, vector_provider):
|
||||
fake_emb = np.zeros(8, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
await vector_io_adapter.query_chunks("no_such_db", fake_emb)
|
||||
if vector_provider == "chroma":
|
||||
with pytest.raises(AttributeError):
|
||||
await vector_io_adapter.query_chunks("no_such_db", fake_emb)
|
||||
else:
|
||||
with pytest.raises(ValueError):
|
||||
await vector_io_adapter.query_chunks("no_such_db", fake_emb)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_insert_chunks_calls_underlying_index(vector_io_adapter):
|
||||
fake_index = AsyncMock()
|
||||
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=fake_index)
|
||||
vector_io_adapter.cache["db1"] = fake_index
|
||||
|
||||
chunks = ["chunk1", "chunk2"]
|
||||
await vector_io_adapter.insert_chunks("db1", chunks)
|
||||
|
|
@ -110,7 +106,6 @@ async def test_insert_chunks_calls_underlying_index(vector_io_adapter):
|
|||
fake_index.insert_chunks.assert_awaited_once_with(chunks)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_insert_chunks_missing_db_raises(vector_io_adapter):
|
||||
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None)
|
||||
|
||||
|
|
@ -118,11 +113,10 @@ async def test_insert_chunks_missing_db_raises(vector_io_adapter):
|
|||
await vector_io_adapter.insert_chunks("db_not_exist", [])
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter):
|
||||
expected = QueryChunksResponse(chunks=[Chunk(content="c1")], scores=[0.1])
|
||||
fake_index = AsyncMock(query_chunks=AsyncMock(return_value=expected))
|
||||
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=fake_index)
|
||||
vector_io_adapter.cache["db1"] = fake_index
|
||||
|
||||
response = await vector_io_adapter.query_chunks("db1", "my_query", {"param": 1})
|
||||
|
||||
|
|
@ -130,7 +124,6 @@ async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter
|
|||
assert response is expected
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks_missing_db_raises(vector_io_adapter):
|
||||
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None)
|
||||
|
||||
|
|
@ -138,7 +131,6 @@ async def test_query_chunks_missing_db_raises(vector_io_adapter):
|
|||
await vector_io_adapter.query_chunks("db_missing", "q", None)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_save_openai_vector_store(vector_io_adapter):
|
||||
store_id = "vs_1234"
|
||||
openai_vector_store = {
|
||||
|
|
@ -155,7 +147,6 @@ async def test_save_openai_vector_store(vector_io_adapter):
|
|||
assert vector_io_adapter.openai_vector_stores[openai_vector_store["id"]] == openai_vector_store
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_openai_vector_store(vector_io_adapter):
|
||||
store_id = "vs_1234"
|
||||
openai_vector_store = {
|
||||
|
|
@ -172,7 +163,6 @@ async def test_update_openai_vector_store(vector_io_adapter):
|
|||
assert vector_io_adapter.openai_vector_stores[openai_vector_store["id"]] == openai_vector_store
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_delete_openai_vector_store(vector_io_adapter):
|
||||
store_id = "vs_1234"
|
||||
openai_vector_store = {
|
||||
|
|
@ -188,7 +178,6 @@ async def test_delete_openai_vector_store(vector_io_adapter):
|
|||
assert openai_vector_store["id"] not in vector_io_adapter.openai_vector_stores
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_load_openai_vector_stores(vector_io_adapter):
|
||||
store_id = "vs_1234"
|
||||
openai_vector_store = {
|
||||
|
|
@ -204,7 +193,6 @@ async def test_load_openai_vector_stores(vector_io_adapter):
|
|||
assert loaded_stores[store_id] == openai_vector_store
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_save_openai_vector_store_file(vector_io_adapter, tmp_path_factory):
|
||||
store_id = "vs_1234"
|
||||
file_id = "file_1234"
|
||||
|
|
@ -226,7 +214,6 @@ async def test_save_openai_vector_store_file(vector_io_adapter, tmp_path_factory
|
|||
await vector_io_adapter._save_openai_vector_store_file(store_id, file_id, file_info, file_contents)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_openai_vector_store_file(vector_io_adapter, tmp_path_factory):
|
||||
store_id = "vs_1234"
|
||||
file_id = "file_1234"
|
||||
|
|
@ -260,7 +247,6 @@ async def test_update_openai_vector_store_file(vector_io_adapter, tmp_path_facto
|
|||
assert loaded_contents != file_info
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_load_openai_vector_store_file_contents(vector_io_adapter, tmp_path_factory):
|
||||
store_id = "vs_1234"
|
||||
file_id = "file_1234"
|
||||
|
|
@ -284,7 +270,6 @@ async def test_load_openai_vector_store_file_contents(vector_io_adapter, tmp_pat
|
|||
assert loaded_contents == file_contents
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_delete_openai_vector_store_file_from_storage(vector_io_adapter, tmp_path_factory):
|
||||
store_id = "vs_1234"
|
||||
file_id = "file_1234"
|
||||
|
|
@ -305,5 +290,7 @@ async def test_delete_openai_vector_store_file_from_storage(vector_io_adapter, t
|
|||
await vector_io_adapter._save_openai_vector_store_file(store_id, file_id, file_info, file_contents)
|
||||
await vector_io_adapter._delete_openai_vector_store_file_from_storage(store_id, file_id)
|
||||
|
||||
loaded_file_info = await vector_io_adapter._load_openai_vector_store_file(store_id, file_id)
|
||||
assert loaded_file_info == {}
|
||||
loaded_contents = await vector_io_adapter._load_openai_vector_store_file_contents(store_id, file_id)
|
||||
assert loaded_contents == []
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
||||
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
|
||||
# This test is a unit test for the chunk_utils.py helpers. This should only contain
|
||||
# tests which are specific to this file. More general (API-level) tests should be placed in
|
||||
Loading…
Add table
Add a link
Reference in a new issue