mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-07 19:12:09 +00:00
scoring updates
This commit is contained in:
parent
7b50fdb2b1
commit
3a87562e8d
6 changed files with 1346 additions and 1466 deletions
1497
docs/_static/llama-stack-spec.html
vendored
1497
docs/_static/llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
1161
docs/_static/llama-stack-spec.yaml
vendored
1161
docs/_static/llama-stack-spec.yaml
vendored
File diff suppressed because it is too large
Load diff
|
@ -8,7 +8,6 @@ from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkab
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from llama_stack.apis.resource import Resource, ResourceType
|
from llama_stack.apis.resource import Resource, ResourceType
|
||||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
|
||||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -13,7 +13,6 @@ from llama_stack.apis.agents import AgentConfig
|
||||||
from llama_stack.apis.common.job_types import Job, JobStatus
|
from llama_stack.apis.common.job_types import Job, JobStatus
|
||||||
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
||||||
from llama_stack.apis.scoring import ScoringResult
|
from llama_stack.apis.scoring import ScoringResult
|
||||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
|
||||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||||
|
|
||||||
|
|
||||||
|
@ -49,27 +48,6 @@ EvalCandidate = register_schema(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
|
||||||
class BenchmarkConfig(BaseModel):
|
|
||||||
"""A benchmark configuration for evaluation.
|
|
||||||
|
|
||||||
:param eval_candidate: The candidate to evaluate.
|
|
||||||
:param scoring_params: Map between scoring function id and parameters for each scoring function you want to run
|
|
||||||
:param num_examples: (Optional) The number of examples to evaluate. If not provided, all examples in the dataset will be evaluated
|
|
||||||
"""
|
|
||||||
|
|
||||||
eval_candidate: EvalCandidate
|
|
||||||
scoring_params: Dict[str, ScoringFnParams] = Field(
|
|
||||||
description="Map between scoring function id and parameters for each scoring function you want to run",
|
|
||||||
default_factory=dict,
|
|
||||||
)
|
|
||||||
num_examples: Optional[int] = Field(
|
|
||||||
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
# we could optinally add any specific dataset config here
|
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class EvaluateResponse(BaseModel):
|
class EvaluateResponse(BaseModel):
|
||||||
"""The response from an evaluation.
|
"""The response from an evaluation.
|
||||||
|
@ -87,32 +65,30 @@ class Eval(Protocol):
|
||||||
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
||||||
|
|
||||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
|
||||||
async def run_eval(
|
async def evaluate_benchmark(
|
||||||
self,
|
self,
|
||||||
benchmark_id: str,
|
benchmark_id: str,
|
||||||
benchmark_config: BenchmarkConfig,
|
candidate: EvalCandidate,
|
||||||
) -> Job:
|
) -> Job:
|
||||||
"""Run an evaluation on a benchmark.
|
"""Run an evaluation on a benchmark.
|
||||||
|
|
||||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||||
:param benchmark_config: The configuration for the benchmark.
|
:param candidate: The candidate to evaluate on.
|
||||||
:return: The job that was created to run the evaluation.
|
:return: The job that was created to run the evaluation.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
|
@webmethod(route="/eval/rows", method="POST")
|
||||||
async def evaluate_rows(
|
async def evaluate_rows(
|
||||||
self,
|
self,
|
||||||
benchmark_id: str,
|
dataset_rows: List[Dict[str, Any]],
|
||||||
input_rows: List[Dict[str, Any]],
|
scoring_fn_ids: List[str],
|
||||||
scoring_functions: List[str],
|
candidate: EvalCandidate,
|
||||||
benchmark_config: BenchmarkConfig,
|
|
||||||
) -> EvaluateResponse:
|
) -> EvaluateResponse:
|
||||||
"""Evaluate a list of rows on a benchmark.
|
"""Evaluate a list of rows on a candidate.
|
||||||
|
|
||||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
:param dataset_rows: The rows to evaluate.
|
||||||
:param input_rows: The rows to evaluate.
|
:param scoring_fn_ids: The scoring function ids to use for the evaluation.
|
||||||
:param scoring_functions: The scoring functions to use for the evaluation.
|
:param candidate: The candidate to evaluate on.
|
||||||
:param benchmark_config: The configuration for the benchmark.
|
|
||||||
:return: EvaluateResponse object containing generations and scores
|
:return: EvaluateResponse object containing generations and scores
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
|
@ -8,7 +8,7 @@ from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||||
|
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
from llama_stack.apis.scoring_functions import ScoringFn
|
||||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||||
|
|
||||||
# mapping of metric to value
|
# mapping of metric to value
|
||||||
|
@ -56,23 +56,22 @@ class Scoring(Protocol):
|
||||||
scoring_function_store: ScoringFunctionStore
|
scoring_function_store: ScoringFunctionStore
|
||||||
|
|
||||||
@webmethod(route="/scoring/score-batch", method="POST")
|
@webmethod(route="/scoring/score-batch", method="POST")
|
||||||
async def score_batch(
|
async def score_dataset(
|
||||||
self,
|
self,
|
||||||
dataset_id: str,
|
dataset_id: str,
|
||||||
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
scoring_fn_ids: List[str],
|
||||||
save_results_dataset: bool = False,
|
|
||||||
) -> ScoreBatchResponse: ...
|
) -> ScoreBatchResponse: ...
|
||||||
|
|
||||||
@webmethod(route="/scoring/score", method="POST")
|
@webmethod(route="/scoring/score", method="POST")
|
||||||
async def score(
|
async def score(
|
||||||
self,
|
self,
|
||||||
input_rows: List[Dict[str, Any]],
|
dataset_rows: List[Dict[str, Any]],
|
||||||
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
scoring_fn_ids: List[str],
|
||||||
) -> ScoreResponse:
|
) -> ScoreResponse:
|
||||||
"""Score a list of rows.
|
"""Score a list of rows.
|
||||||
|
|
||||||
:param input_rows: The rows to score.
|
:param dataset_rows: The rows to score.
|
||||||
:param scoring_functions: The scoring functions to use for the scoring.
|
:param scoring_fn_ids: The scoring function ids to use for the scoring.
|
||||||
:return: ScoreResponse object containing rows and aggregated results
|
:return: ScoreResponse object containing rows and aggregated results
|
||||||
"""
|
"""
|
||||||
...
|
...
|
||||||
|
|
|
@ -67,7 +67,7 @@ class AggregationFunctionType(Enum):
|
||||||
accuracy = "accuracy"
|
accuracy = "accuracy"
|
||||||
|
|
||||||
|
|
||||||
class BasicScoringFnParamsFields(BaseModel):
|
class BasicScoringFnParams(BaseModel):
|
||||||
"""
|
"""
|
||||||
:param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. If not provided, no aggregation will be performed.
|
:param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. If not provided, no aggregation will be performed.
|
||||||
"""
|
"""
|
||||||
|
@ -78,7 +78,7 @@ class BasicScoringFnParamsFields(BaseModel):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class RegexParserScoringFnParamsFields(BaseModel):
|
class RegexParserScoringFnParams(BaseModel):
|
||||||
"""
|
"""
|
||||||
:param parsing_regexes: (Optional) Regexes to extract the answer from generated response.
|
:param parsing_regexes: (Optional) Regexes to extract the answer from generated response.
|
||||||
:param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. If not provided, no aggregation will be performed.
|
:param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. If not provided, no aggregation will be performed.
|
||||||
|
@ -93,7 +93,7 @@ class RegexParserScoringFnParamsFields(BaseModel):
|
||||||
default_factory=list,
|
default_factory=list,
|
||||||
)
|
)
|
||||||
|
|
||||||
class CustomLLMAsJudgeScoringFnParamsFields(BaseModel):
|
class CustomLLMAsJudgeScoringFnParams(BaseModel):
|
||||||
type: Literal["custom_llm_as_judge"] = "custom_llm_as_judge"
|
type: Literal["custom_llm_as_judge"] = "custom_llm_as_judge"
|
||||||
judge_model: str
|
judge_model: str
|
||||||
prompt_template: Optional[str] = None
|
prompt_template: Optional[str] = None
|
||||||
|
@ -103,103 +103,103 @@ class CustomLLMAsJudgeScoringFnParamsFields(BaseModel):
|
||||||
)
|
)
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class RegexParserScoringFnParams(BaseModel):
|
class RegexParserScoringFn(BaseModel):
|
||||||
type: Literal["regex_parser"] = "regex_parser"
|
type: Literal["regex_parser"] = "regex_parser"
|
||||||
regex_parser: RegexParserScoringFnParamsFields
|
regex_parser: RegexParserScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class RegexParserMathScoringFnParams(BaseModel):
|
class RegexParserMathScoringFn(BaseModel):
|
||||||
type: Literal["regex_parser_math_response"] = "regex_parser_math_response"
|
type: Literal["regex_parser_math_response"] = "regex_parser_math_response"
|
||||||
regex_parser_math_response: RegexParserScoringFnParamsFields
|
regex_parser_math_response: RegexParserScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class EqualityScoringFnParams(BaseModel):
|
class EqualityScoringFn(BaseModel):
|
||||||
type: Literal["equality"] = "equality"
|
type: Literal["equality"] = "equality"
|
||||||
equality: BasicScoringFnParamsFields
|
equality: BasicScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class SubsetOfcoringFnParams(BaseModel):
|
class SubsetOfScoringFn(BaseModel):
|
||||||
type: Literal["subset_of"] = "subset_of"
|
type: Literal["subset_of"] = "subset_of"
|
||||||
subset_of: BasicScoringFnParamsFields
|
subset_of: BasicScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class FactualityScoringFnParams(BaseModel):
|
class FactualityScoringFn(BaseModel):
|
||||||
type: Literal["factuality"] = "factuality"
|
type: Literal["factuality"] = "factuality"
|
||||||
factuality: BasicScoringFnParamsFields
|
factuality: BasicScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class FaithfulnessScoringFnParams(BaseModel):
|
class FaithfulnessScoringFn(BaseModel):
|
||||||
type: Literal["faithfulness"] = "faithfulness"
|
type: Literal["faithfulness"] = "faithfulness"
|
||||||
faithfulness: BasicScoringFnParamsFields
|
faithfulness: BasicScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class AnswerCorrectnessScoringFnParams(BaseModel):
|
class AnswerCorrectnessScoringFn(BaseModel):
|
||||||
type: Literal["answer_correctness"] = "answer_correctness"
|
type: Literal["answer_correctness"] = "answer_correctness"
|
||||||
answer_correctness: BasicScoringFnParamsFields
|
answer_correctness: BasicScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class AnswerRelevancyScoringFnParams(BaseModel):
|
class AnswerRelevancyScoringFn(BaseModel):
|
||||||
type: Literal["answer_relevancy"] = "answer_relevancy"
|
type: Literal["answer_relevancy"] = "answer_relevancy"
|
||||||
answer_relevancy: BasicScoringFnParamsFields
|
answer_relevancy: BasicScoringFnParams
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class AnswerSimilarityScoringFnParams(BaseModel):
|
class AnswerSimilarityScoringFn(BaseModel):
|
||||||
type: Literal["answer_similarity"] = "answer_similarity"
|
type: Literal["answer_similarity"] = "answer_similarity"
|
||||||
answer_similarity: BasicScoringFnParamsFields
|
answer_similarity: BasicScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class ContextEntityRecallScoringFnParams(BaseModel):
|
class ContextEntityRecallScoringFn(BaseModel):
|
||||||
type: Literal["context_entity_recall"] = "context_entity_recall"
|
type: Literal["context_entity_recall"] = "context_entity_recall"
|
||||||
context_entity_recall: BasicScoringFnParamsFields
|
context_entity_recall: BasicScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class ContextPrecisionScoringFnParams(BaseModel):
|
class ContextPrecisionScoringFn(BaseModel):
|
||||||
type: Literal["context_precision"] = "context_precision"
|
type: Literal["context_precision"] = "context_precision"
|
||||||
context_precision: BasicScoringFnParamsFields
|
context_precision: BasicScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class ContextRecallScoringFnParams(BaseModel):
|
class ContextRecallScoringFn(BaseModel):
|
||||||
type: Literal["context_recall"] = "context_recall"
|
type: Literal["context_recall"] = "context_recall"
|
||||||
context_recall: BasicScoringFnParamsFields
|
context_recall: BasicScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class ContextRelevancyScoringFnParams(BaseModel):
|
class ContextRelevancyScoringFn(BaseModel):
|
||||||
type: Literal["context_relevancy"] = "context_relevancy"
|
type: Literal["context_relevancy"] = "context_relevancy"
|
||||||
context_relevancy: BasicScoringFnParamsFields
|
context_relevancy: BasicScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class CustomLLMAsJudgeScoringFnParams(BaseModel):
|
class CustomLLMAsJudgeScoringFn(BaseModel):
|
||||||
type: Literal["custom_llm_as_judge"] = "custom_llm_as_judge"
|
type: Literal["custom_llm_as_judge"] = "custom_llm_as_judge"
|
||||||
custom_llm_as_judge: CustomLLMAsJudgeScoringFnParamsFields
|
custom_llm_as_judge: CustomLLMAsJudgeScoringFnParams
|
||||||
|
|
||||||
|
|
||||||
ScoringFnParams = register_schema(
|
ScoringFnDefinition = register_schema(
|
||||||
Annotated[
|
Annotated[
|
||||||
Union[
|
Union[
|
||||||
CustomLLMAsJudgeScoringFnParams,
|
CustomLLMAsJudgeScoringFn,
|
||||||
RegexParserScoringFnParams,
|
RegexParserScoringFn,
|
||||||
RegexParserMathScoringFnParams,
|
RegexParserMathScoringFn,
|
||||||
EqualityScoringFnParams,
|
EqualityScoringFn,
|
||||||
SubsetOfcoringFnParams,
|
SubsetOfScoringFn,
|
||||||
FactualityScoringFnParams,
|
FactualityScoringFn,
|
||||||
FaithfulnessScoringFnParams,
|
FaithfulnessScoringFn,
|
||||||
AnswerCorrectnessScoringFnParams,
|
AnswerCorrectnessScoringFn,
|
||||||
AnswerRelevancyScoringFnParams,
|
AnswerRelevancyScoringFn,
|
||||||
AnswerSimilarityScoringFnParams,
|
AnswerSimilarityScoringFn,
|
||||||
ContextEntityRecallScoringFnParams,
|
ContextEntityRecallScoringFn,
|
||||||
ContextPrecisionScoringFnParams,
|
ContextPrecisionScoringFn,
|
||||||
ContextRecallScoringFnParams,
|
ContextRecallScoringFn,
|
||||||
ContextRelevancyScoringFnParams,
|
ContextRelevancyScoringFn,
|
||||||
],
|
],
|
||||||
Field(discriminator="type"),
|
Field(discriminator="type"),
|
||||||
],
|
],
|
||||||
name="ScoringFnParams",
|
name="ScoringFnDefinition",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -208,7 +208,7 @@ class CommonScoringFnFields(BaseModel):
|
||||||
:param fn: The scoring function type and parameters.
|
:param fn: The scoring function type and parameters.
|
||||||
:param metadata: (Optional) Any additional metadata for this definition (e.g. description).
|
:param metadata: (Optional) Any additional metadata for this definition (e.g. description).
|
||||||
"""
|
"""
|
||||||
fn: ScoringFnParams
|
fn: ScoringFnDefinition
|
||||||
metadata: Dict[str, Any] = Field(
|
metadata: Dict[str, Any] = Field(
|
||||||
default_factory=dict,
|
default_factory=dict,
|
||||||
description="Any additional metadata for this definition (e.g. description)",
|
description="Any additional metadata for this definition (e.g. description)",
|
||||||
|
@ -288,7 +288,7 @@ class ScoringFunctions(Protocol):
|
||||||
@webmethod(route="/scoring-functions", method="POST")
|
@webmethod(route="/scoring-functions", method="POST")
|
||||||
async def register_scoring_function(
|
async def register_scoring_function(
|
||||||
self,
|
self,
|
||||||
fn: ScoringFnParams,
|
fn: ScoringFnDefinition,
|
||||||
scoring_fn_id: Optional[str] = None,
|
scoring_fn_id: Optional[str] = None,
|
||||||
metadata: Optional[Dict[str, Any]] = None,
|
metadata: Optional[Dict[str, Any]] = None,
|
||||||
) -> ScoringFn:
|
) -> ScoringFn:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue