test: add some tests for Telemetry API (#2787)

# What does this PR do?

## Test Plan
ENABLE_OLLAMA=ollama LLAMA_STACK_CONFIG=starter uv run pytest
tests/integration/telemetry
--text-model="ollama/llama3.2:3b-instruct-fp16"
This commit is contained in:
ehhuang 2025-07-17 16:20:51 -07:00 committed by GitHub
parent 73868ce9e3
commit 3ae4aeb344
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -5,41 +5,183 @@
# the root directory of this source tree.
import time
from datetime import UTC, datetime
from uuid import uuid4
import pytest
from llama_stack_client import Agent
@pytest.mark.skip(reason="telemetry is not stable")
def test_agent_query_spans(llama_stack_client, text_model_id):
@pytest.fixture(scope="module", autouse=True)
def setup_telemetry_data(llama_stack_client, text_model_id):
"""Setup fixture that creates telemetry data before tests run."""
agent = Agent(llama_stack_client, model=text_model_id, instructions="You are a helpful assistant")
session_id = agent.create_session(f"test-session-{uuid4()}")
agent.create_turn(
session_id = agent.create_session(f"test-setup-session-{uuid4()}")
messages = [
{
"role": "user",
"content": "Give me a sentence that contains the word: hello",
}
],
"What is 2 + 2?",
"Tell me a short joke",
]
for msg in messages:
agent.create_turn(
messages=[{"role": "user", "content": msg}],
session_id=session_id,
stream=False,
)
# Wait for the span to be logged
time.sleep(2)
for i in range(2):
llama_stack_client.inference.chat_completion(
model_id=text_model_id, messages=[{"role": "user", "content": f"Test trace {i}"}]
)
agent_logs = []
start_time = time.time()
for span in llama_stack_client.telemetry.query_spans(
attribute_filters=[
{"key": "session_id", "op": "eq", "value": session_id},
],
attributes_to_return=["input", "output"],
):
if span.attributes["output"] != "no shields":
agent_logs.append(span.attributes)
while time.time() - start_time < 30:
traces = llama_stack_client.telemetry.query_traces(limit=10)
if len(traces) >= 4:
break
time.sleep(1)
assert len(agent_logs) == 1
assert "Give me a sentence that contains the word: hello" in agent_logs[0]["input"]
assert "hello" in agent_logs[0]["output"].lower()
if len(traces) < 4:
pytest.fail(f"Failed to create sufficient telemetry data after 30s. Got {len(traces)} traces.")
yield
def test_query_traces_basic(llama_stack_client):
"""Test basic trace querying functionality with proper data validation."""
all_traces = llama_stack_client.telemetry.query_traces(limit=5)
assert isinstance(all_traces, list), "Should return a list of traces"
assert len(all_traces) >= 4, "Should have at least 4 traces from setup"
# Verify trace structure and data quality
first_trace = all_traces[0]
assert hasattr(first_trace, "trace_id"), "Trace should have trace_id"
assert hasattr(first_trace, "start_time"), "Trace should have start_time"
assert hasattr(first_trace, "root_span_id"), "Trace should have root_span_id"
# Validate trace_id is a valid UUID format
assert isinstance(first_trace.trace_id, str) and len(first_trace.trace_id) > 0, (
"trace_id should be non-empty string"
)
# Validate start_time format and not in the future
now = datetime.now(UTC)
if isinstance(first_trace.start_time, str):
trace_time = datetime.fromisoformat(first_trace.start_time.replace("Z", "+00:00"))
else:
# start_time is already a datetime object
trace_time = first_trace.start_time
if trace_time.tzinfo is None:
trace_time = trace_time.replace(tzinfo=UTC)
# Ensure trace time is not in the future (but allow any age in the past for persistent test data)
time_diff = (now - trace_time).total_seconds()
assert time_diff >= 0, f"Trace start_time should not be in the future, got {time_diff}s"
# Validate root_span_id exists and is non-empty
assert isinstance(first_trace.root_span_id, str) and len(first_trace.root_span_id) > 0, (
"root_span_id should be non-empty string"
)
# Test querying specific trace by ID
specific_trace = llama_stack_client.telemetry.get_trace(trace_id=first_trace.trace_id)
assert specific_trace.trace_id == first_trace.trace_id, "Retrieved trace should match requested ID"
assert specific_trace.start_time == first_trace.start_time, "Retrieved trace should have same start_time"
assert specific_trace.root_span_id == first_trace.root_span_id, "Retrieved trace should have same root_span_id"
# Test pagination with proper validation
recent_traces = llama_stack_client.telemetry.query_traces(limit=3, offset=0)
assert len(recent_traces) <= 3, "Should return at most 3 traces when limit=3"
assert len(recent_traces) >= 1, "Should return at least 1 trace"
# Verify all traces have required fields
for trace in recent_traces:
assert hasattr(trace, "trace_id") and trace.trace_id, "Each trace should have non-empty trace_id"
assert hasattr(trace, "start_time") and trace.start_time, "Each trace should have non-empty start_time"
assert hasattr(trace, "root_span_id") and trace.root_span_id, "Each trace should have non-empty root_span_id"
def test_query_spans_basic(llama_stack_client):
"""Test basic span querying functionality with proper validation."""
spans = llama_stack_client.telemetry.query_spans(attribute_filters=[], attributes_to_return=[])
assert isinstance(spans, list), "Should return a list of spans"
assert len(spans) >= 1, "Should have at least one span from setup"
# Verify span structure and data quality
first_span = spans[0]
required_attrs = ["span_id", "name", "trace_id"]
for attr in required_attrs:
assert hasattr(first_span, attr), f"Span should have {attr} attribute"
assert getattr(first_span, attr), f"Span {attr} should not be empty"
# Validate span data types and content
assert isinstance(first_span.span_id, str) and len(first_span.span_id) > 0, "span_id should be non-empty string"
assert isinstance(first_span.name, str) and len(first_span.name) > 0, "span name should be non-empty string"
assert isinstance(first_span.trace_id, str) and len(first_span.trace_id) > 0, "trace_id should be non-empty string"
# Verify span belongs to a valid trace (test with traces we know exist)
all_traces = llama_stack_client.telemetry.query_traces(limit=10)
trace_ids = {t.trace_id for t in all_traces}
if first_span.trace_id in trace_ids:
trace = llama_stack_client.telemetry.get_trace(trace_id=first_span.trace_id)
assert trace is not None, "Should be able to retrieve trace for valid trace_id"
assert trace.trace_id == first_span.trace_id, "Trace ID should match span's trace_id"
# Test with span filtering and validate results
filtered_spans = llama_stack_client.telemetry.query_spans(
attribute_filters=[{"key": "name", "op": "eq", "value": first_span.name}],
attributes_to_return=["name", "span_id"],
)
assert isinstance(filtered_spans, list), "Should return a list with span name filter"
# Validate filtered spans if filtering works
if len(filtered_spans) > 0:
for span in filtered_spans:
assert hasattr(span, "name"), "Filtered spans should have name attribute"
assert hasattr(span, "span_id"), "Filtered spans should have span_id attribute"
assert span.name == first_span.name, "Filtered spans should match the filter criteria"
assert isinstance(span.span_id, str) and len(span.span_id) > 0, "Filtered span_id should be valid"
# Test that all spans have consistent structure
for span in spans:
for attr in required_attrs:
assert hasattr(span, attr) and getattr(span, attr), f"All spans should have non-empty {attr}"
def test_telemetry_pagination(llama_stack_client):
"""Test pagination in telemetry queries."""
# Get total count of traces
all_traces = llama_stack_client.telemetry.query_traces(limit=20)
total_count = len(all_traces)
assert total_count >= 4, "Should have at least 4 traces from setup"
# Test trace pagination
page1 = llama_stack_client.telemetry.query_traces(limit=2, offset=0)
page2 = llama_stack_client.telemetry.query_traces(limit=2, offset=2)
assert len(page1) == 2, "First page should have exactly 2 traces"
assert len(page2) >= 1, "Second page should have at least 1 trace"
# Verify no overlap between pages
page1_ids = {t.trace_id for t in page1}
page2_ids = {t.trace_id for t in page2}
assert len(page1_ids.intersection(page2_ids)) == 0, "Pages should contain different traces"
# Test ordering
ordered_traces = llama_stack_client.telemetry.query_traces(limit=5, order_by=["start_time"])
assert len(ordered_traces) >= 4, "Should have at least 4 traces for ordering test"
# Verify ordering by start_time
for i in range(len(ordered_traces) - 1):
current_time = ordered_traces[i].start_time
next_time = ordered_traces[i + 1].start_time
assert current_time <= next_time, f"Traces should be ordered by start_time: {current_time} > {next_time}"
# Test limit behavior
limited = llama_stack_client.telemetry.query_traces(limit=3)
assert len(limited) == 3, "Should return exactly 3 traces when limit=3"