mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
parent
b0cc38b269
commit
3b4f3a6b15
2 changed files with 3058 additions and 560 deletions
File diff suppressed because one or more lines are too long
|
@ -90,6 +90,19 @@
|
|||
}
|
||||
}
|
||||
},
|
||||
"[[], {\"kwargs\": {\"code\": \"import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(code_interpreter.get_file_path(\\\"<TEMP_FILE>\"))\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())\", \"session_id\": \"<UUID>\"}, \"tool_name\": \"code_interpreter\"}]": {
|
||||
"type": "value",
|
||||
"value": {
|
||||
"__module__": "llama_stack.apis.tools.tools",
|
||||
"__pydantic__": "ToolInvocationResult",
|
||||
"data": {
|
||||
"content": "completed\n[stderr]\nTraceback (most recent call last):\n line 5, in <module>\n from bwrap.core import main\nModuleNotFoundError: No module named 'bwrap.core'\n[/stderr]",
|
||||
"error_code": null,
|
||||
"error_message": null,
|
||||
"metadata": null
|
||||
}
|
||||
}
|
||||
},
|
||||
"[[], {\"kwargs\": {\"code\": \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv('inflation.csv')\\n\\n# Convert 'date' column to datetime\\ndf['date'] = pd.to_datetime(df['date'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\\n\\n# Plot the time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\\nplt.title('Average Yearly Inflation')\\nplt.xlabel('Year')\\nplt.ylabel('Average Inflation')\\nplt.grid(True)\\nplt.show()\", \"session_id\": \"<UUID>\"}, \"tool_name\": \"code_interpreter\"}]": {
|
||||
"type": "value",
|
||||
"value": {
|
||||
|
@ -141,23 +154,23 @@
|
|||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 1:\nDocument_id:5c435\nContent: .. _lora_finetune_label:\n\n============================\nFine-Tuning Llama2 with LoRA\n============================\n\nThis guide will teach you about `LoRA <https://arxiv.org/abs/2106.09685>`_, a parameter-efficient finetuning technique,\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\nIf you already know what LoRA is and want to get straight to running\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune<lora_recipe_label>`.\n\n.. grid:: 2\n\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\n\n * What LoRA is and how it saves memory during finetuning\n * An overview of LoRA components in torchtune\n * How to run a LoRA finetune using torchtune\n * How to experiment with different LoRA configurations\n\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\n\n * Be familiar with :ref:`torchtune<overview_label>`\n * Make sure to :ref:`install torchtune<install_label>`\n * Make sure you have downloaded the :ref:`Llama2-7B model weights<download_llama_label>`\n\nWhat is LoRA?\n-------------\n\n`LoRA <https://arxiv.org/abs/2106.09685>`_ is an adapter-based method for\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\ntransformer models, in which case it is common to add the low-rank matrices\nto some of the linear projections in each transformer layer's self-attention.\n\n.. note::\n\n If you're unfamiliar, check out these references for the `definition of rank <https://en.wikipedia.org/wiki/Rank_(linear_algebra)>`_\n and discussion of `low-rank approximations <https://en.wikipedia.org/wiki/Low-rank_approximation>`_.\n\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\nyou can expect to see memory savings due to a substantial reduction in the\nnumber of parameters with gradients. When using an optimizer with momentum,\nlike `AdamW <https://py\n",
|
||||
"text": "Result 1:\nDocument_id:961ff\nContent: .. _lora_finetune_label:\n\n============================\nFine-Tuning Llama2 with LoRA\n============================\n\nThis guide will teach you about `LoRA <https://arxiv.org/abs/2106.09685>`_, a parameter-efficient finetuning technique,\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\nIf you already know what LoRA is and want to get straight to running\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune<lora_recipe_label>`.\n\n.. grid:: 2\n\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\n\n * What LoRA is and how it saves memory during finetuning\n * An overview of LoRA components in torchtune\n * How to run a LoRA finetune using torchtune\n * How to experiment with different LoRA configurations\n\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\n\n * Be familiar with :ref:`torchtune<overview_label>`\n * Make sure to :ref:`install torchtune<install_label>`\n * Make sure you have downloaded the :ref:`Llama2-7B model weights<download_llama_label>`\n\nWhat is LoRA?\n-------------\n\n`LoRA <https://arxiv.org/abs/2106.09685>`_ is an adapter-based method for\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\ntransformer models, in which case it is common to add the low-rank matrices\nto some of the linear projections in each transformer layer's self-attention.\n\n.. note::\n\n If you're unfamiliar, check out these references for the `definition of rank <https://en.wikipedia.org/wiki/Rank_(linear_algebra)>`_\n and discussion of `low-rank approximations <https://en.wikipedia.org/wiki/Low-rank_approximation>`_.\n\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\nyou can expect to see memory savings due to a substantial reduction in the\nnumber of parameters with gradients. When using an optimizer with momentum,\nlike `AdamW <https://py\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 2:\nDocument_id:5c435\nContent: LoRA to Llama2 models\n------------------------------\n\nWith torchtune, we can easily apply LoRA to Llama2 with a variety of different configurations.\nLet's take a look at how to construct Llama2 models in torchtune with and without LoRA.\n\n.. code-block:: python\n\n from torchtune.models.llama2 import llama2_7b, lora_llama2_7b\n\n # Build Llama2 without any LoRA layers\n base_model = llama2_7b()\n\n # The default settings for lora_llama2_7b will match those for llama2_7b\n # We just need to define which layers we want LoRA applied to.\n # Within each self-attention, we can choose from [\"q_proj\", \"k_proj\", \"v_proj\", and \"output_proj\"].\n # We can also set apply_lora_to_mlp=True or apply_lora_to_output=True to apply LoRA to other linear\n # layers outside of the self-attention.\n lora_model = lora_llama2_7b(lora_attn_modules=[\"q_proj\", \"v_proj\"])\n\n.. note::\n\n Calling :func:`lora_llama_2_7b <torchtune.models.llama2.lora_llama2_7b>` alone will not handle the definition of which parameters are trainable.\n See :ref:`below<setting_trainable_params>` for how to do this.\n\nLet's inspect each of these models a bit more closely.\n\n.. code-block:: bash\n\n # Print the first layer's self-attention in the usual Llama2 model\n >>> print(base_model.layers[0].attn)\n MultiHeadAttention(\n (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (output_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (pos_embeddings): RotaryPositionalEmbeddings()\n )\n\n # Print the same for Llama2 with LoRA weights\n >>> print(lora_model.layers[0].attn)\n MultiHeadAttention(\n (q_proj): LoRALinear(\n (dropout): Dropout(p=0.0, inplace=False)\n \n",
|
||||
"text": "Result 2:\nDocument_id:961ff\nContent: LoRA to Llama2 models\n------------------------------\n\nWith torchtune, we can easily apply LoRA to Llama2 with a variety of different configurations.\nLet's take a look at how to construct Llama2 models in torchtune with and without LoRA.\n\n.. code-block:: python\n\n from torchtune.models.llama2 import llama2_7b, lora_llama2_7b\n\n # Build Llama2 without any LoRA layers\n base_model = llama2_7b()\n\n # The default settings for lora_llama2_7b will match those for llama2_7b\n # We just need to define which layers we want LoRA applied to.\n # Within each self-attention, we can choose from [\"q_proj\", \"k_proj\", \"v_proj\", and \"output_proj\"].\n # We can also set apply_lora_to_mlp=True or apply_lora_to_output=True to apply LoRA to other linear\n # layers outside of the self-attention.\n lora_model = lora_llama2_7b(lora_attn_modules=[\"q_proj\", \"v_proj\"])\n\n.. note::\n\n Calling :func:`lora_llama_2_7b <torchtune.models.llama2.lora_llama2_7b>` alone will not handle the definition of which parameters are trainable.\n See :ref:`below<setting_trainable_params>` for how to do this.\n\nLet's inspect each of these models a bit more closely.\n\n.. code-block:: bash\n\n # Print the first layer's self-attention in the usual Llama2 model\n >>> print(base_model.layers[0].attn)\n MultiHeadAttention(\n (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (output_proj): Linear(in_features=4096, out_features=4096, bias=False)\n (pos_embeddings): RotaryPositionalEmbeddings()\n )\n\n # Print the same for Llama2 with LoRA weights\n >>> print(lora_model.layers[0].attn)\n MultiHeadAttention(\n (q_proj): LoRALinear(\n (dropout): Dropout(p=0.0, inplace=False)\n \n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 3:\nDocument_id:5c435\nContent: 06% of all params are trainable.\n\n.. note::\n If you are directly using the LoRA recipe (as detailed :ref:`here<lora_recipe_label>`), you need only pass the\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\n of in the recipe.\n\n\n.. _lora_recipe_label:\n\nLoRA finetuning recipe in torchtune\n-----------------------------------\n\nFinally, we can put it all together and finetune a model using torchtune's `LoRA recipe <https://github.com/pytorch/torchtune/blob/48626d19d2108f92c749411fbd5f0ff140023a25/recipes/lora_finetune.py>`_.\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions<download_llama_label>`.\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\n\n.. code-block:: bash\n\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\n\n.. note::\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\n for more details on how you can easily clone and modify torchtune configs.\n\n.. note::\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\n and (b) the memory constraints of your hardware.\n\nThe preceding command will run a LoRA finetune with torchtune's factory settings, but we may want to experiment a bit.\nLet's take a closer look at some of the :code:`lora_finetune_distributed` config.\n\n.. code-block:: yaml\n\n # Model Arguments\n model:\n _component_: lora_llama2_7b\n lora_attn_modules: ['q_proj', 'v_proj']\n lora_rank: 8\n lora_alpha: 16\n ...\n\nWe see that the\n",
|
||||
"text": "Result 3:\nDocument_id:961ff\nContent: 06% of all params are trainable.\n\n.. note::\n If you are directly using the LoRA recipe (as detailed :ref:`here<lora_recipe_label>`), you need only pass the\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\n of in the recipe.\n\n\n.. _lora_recipe_label:\n\nLoRA finetuning recipe in torchtune\n-----------------------------------\n\nFinally, we can put it all together and finetune a model using torchtune's `LoRA recipe <https://github.com/pytorch/torchtune/blob/48626d19d2108f92c749411fbd5f0ff140023a25/recipes/lora_finetune.py>`_.\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions<download_llama_label>`.\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\n\n.. code-block:: bash\n\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\n\n.. note::\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\n for more details on how you can easily clone and modify torchtune configs.\n\n.. note::\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\n and (b) the memory constraints of your hardware.\n\nThe preceding command will run a LoRA finetune with torchtune's factory settings, but we may want to experiment a bit.\nLet's take a closer look at some of the :code:`lora_finetune_distributed` config.\n\n.. code-block:: yaml\n\n # Model Arguments\n model:\n _component_: lora_llama2_7b\n lora_attn_modules: ['q_proj', 'v_proj']\n lora_rank: 8\n lora_alpha: 16\n ...\n\nWe see that the\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 4:\nDocument_id:5c435\nContent: from our Llama2\nmodel without any wrappers or custom checkpoint conversion logic.\n\n.. code-block:: python\n\n # Assuming that base_model already has the pretrained Llama2 weights,\n # this will directly load them into your LoRA model without any conversion necessary.\n lora_model.load_state_dict(base_model.state_dict(), strict=False)\n\n.. note::\n Whenever loading weights with :code:`strict=False`, you should verify that any missing or extra keys in\n the loaded :code:`state_dict` are as expected. torchtune's LoRA recipes do this by default via\n :func:`validate_missing_and_unexpected_for_lora() <torchtune.modules.peft.validate_missing_and_unexpected_for_lora>`.\n\nOnce we've loaded the base model weights, we also want to set only LoRA parameters to trainable.\n\n.. _setting_trainable_params:\n\n.. code-block:: python\n\n from torchtune.modules.peft.peft_utils import get_adapter_params, set_trainable_params\n\n # Fetch all params from the model that are associated with LoRA.\n lora_params = get_adapter_params(lora_model)\n\n # Set requires_grad=True on lora_params, and requires_grad=False on all others.\n set_trainable_params(lora_model, lora_params)\n\n # Print the total number of parameters\n total_params = sum([p.numel() for p in lora_model.parameters()])\n trainable_params = sum([p.numel() for p in lora_model.parameters() if p.requires_grad])\n print(\n f\"\"\"\n {total_params} total params,\n {trainable_params}\" trainable params,\n {(100.0 * trainable_params / total_params):.2f}% of all params are trainable.\n \"\"\"\n )\n\n 6742609920 total params,\n 4194304 trainable params,\n 0.06% of all params are trainable.\n\n.. note::\n If you are directly using the LoRA recipe (as detailed :ref:`here<lora_recipe_label>`), you need only pass the\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\n of in the recipe.\n\n\n.. _lora_recipe_label:\n\nLoRA finetuning recipe in torchtune\n-----------------------------------\n\nFinally, we can put it all together and finetune a model using torchtune's `LoRA recipe <https://github.com/pytorch/torchtune/blob/48626d19d2108f92\n",
|
||||
"text": "Result 4:\nDocument_id:961ff\nContent: from our Llama2\nmodel without any wrappers or custom checkpoint conversion logic.\n\n.. code-block:: python\n\n # Assuming that base_model already has the pretrained Llama2 weights,\n # this will directly load them into your LoRA model without any conversion necessary.\n lora_model.load_state_dict(base_model.state_dict(), strict=False)\n\n.. note::\n Whenever loading weights with :code:`strict=False`, you should verify that any missing or extra keys in\n the loaded :code:`state_dict` are as expected. torchtune's LoRA recipes do this by default via\n :func:`validate_missing_and_unexpected_for_lora() <torchtune.modules.peft.validate_missing_and_unexpected_for_lora>`.\n\nOnce we've loaded the base model weights, we also want to set only LoRA parameters to trainable.\n\n.. _setting_trainable_params:\n\n.. code-block:: python\n\n from torchtune.modules.peft.peft_utils import get_adapter_params, set_trainable_params\n\n # Fetch all params from the model that are associated with LoRA.\n lora_params = get_adapter_params(lora_model)\n\n # Set requires_grad=True on lora_params, and requires_grad=False on all others.\n set_trainable_params(lora_model, lora_params)\n\n # Print the total number of parameters\n total_params = sum([p.numel() for p in lora_model.parameters()])\n trainable_params = sum([p.numel() for p in lora_model.parameters() if p.requires_grad])\n print(\n f\"\"\"\n {total_params} total params,\n {trainable_params}\" trainable params,\n {(100.0 * trainable_params / total_params):.2f}% of all params are trainable.\n \"\"\"\n )\n\n 6742609920 total params,\n 4194304 trainable params,\n 0.06% of all params are trainable.\n\n.. note::\n If you are directly using the LoRA recipe (as detailed :ref:`here<lora_recipe_label>`), you need only pass the\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\n of in the recipe.\n\n\n.. _lora_recipe_label:\n\nLoRA finetuning recipe in torchtune\n-----------------------------------\n\nFinally, we can put it all together and finetune a model using torchtune's `LoRA recipe <https://github.com/pytorch/torchtune/blob/48626d19d2108f92\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 5:\nDocument_id:5c435\nContent: ,\n and (b) the memory constraints of your hardware.\n\nThe preceding command will run a LoRA finetune with torchtune's factory settings, but we may want to experiment a bit.\nLet's take a closer look at some of the :code:`lora_finetune_distributed` config.\n\n.. code-block:: yaml\n\n # Model Arguments\n model:\n _component_: lora_llama2_7b\n lora_attn_modules: ['q_proj', 'v_proj']\n lora_rank: 8\n lora_alpha: 16\n ...\n\nWe see that the default is to apply LoRA to Q and V projections with a rank of 8.\nSome experiments with LoRA have found that it can be beneficial to apply LoRA to all linear layers in\nthe self-attention, and to increase the rank to 16 or 32. Note that this is likely to increase our max memory,\nbut as long as we keep :code:`rank<<embed_dim`, the impact should be relatively minor.\n\nLet's run this experiment. We can also increase alpha (in general it is good practice to scale alpha and rank together).\n\n.. code-block:: bash\n\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora \\\n lora_attn_modules=['q_proj','k_proj','v_proj','output_proj'] \\\n lora_rank=32 lora_alpha=64 output_dir=./lora_experiment_1\n\nA comparison of the (smoothed) loss curves between this run and our baseline over the first 500 steps can be seen below.\n\n.. image:: /_static/img/lora_experiment_loss_curves.png\n\n.. note::\n The above figure was generated with W&B. You can use torchtune's :class:`~torchtune.training.metric_logging.WandBLogger`\n to generate similar loss curves, but you will need to install W&B and setup an account separately. For more details on\n using W&B in torchtune, see our \":ref:`wandb_logging`\" recipe.\n\n.. _lora_tutorial_memory_tradeoff_label:\n\nTrading off memory and model performance with LoRA\n--------------------------------------------------\n\nIn the preceding example, we ran LoRA on two devices. But given LoRA's low memory footprint, we can run fine-tuning\non a single device using most commodity GPUs which support `bfloat16 <https://\n",
|
||||
"text": "Result 5:\nDocument_id:961ff\nContent: ,\n and (b) the memory constraints of your hardware.\n\nThe preceding command will run a LoRA finetune with torchtune's factory settings, but we may want to experiment a bit.\nLet's take a closer look at some of the :code:`lora_finetune_distributed` config.\n\n.. code-block:: yaml\n\n # Model Arguments\n model:\n _component_: lora_llama2_7b\n lora_attn_modules: ['q_proj', 'v_proj']\n lora_rank: 8\n lora_alpha: 16\n ...\n\nWe see that the default is to apply LoRA to Q and V projections with a rank of 8.\nSome experiments with LoRA have found that it can be beneficial to apply LoRA to all linear layers in\nthe self-attention, and to increase the rank to 16 or 32. Note that this is likely to increase our max memory,\nbut as long as we keep :code:`rank<<embed_dim`, the impact should be relatively minor.\n\nLet's run this experiment. We can also increase alpha (in general it is good practice to scale alpha and rank together).\n\n.. code-block:: bash\n\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora \\\n lora_attn_modules=['q_proj','k_proj','v_proj','output_proj'] \\\n lora_rank=32 lora_alpha=64 output_dir=./lora_experiment_1\n\nA comparison of the (smoothed) loss curves between this run and our baseline over the first 500 steps can be seen below.\n\n.. image:: /_static/img/lora_experiment_loss_curves.png\n\n.. note::\n The above figure was generated with W&B. You can use torchtune's :class:`~torchtune.training.metric_logging.WandBLogger`\n to generate similar loss curves, but you will need to install W&B and setup an account separately. For more details on\n using W&B in torchtune, see our \":ref:`wandb_logging`\" recipe.\n\n.. _lora_tutorial_memory_tradeoff_label:\n\nTrading off memory and model performance with LoRA\n--------------------------------------------------\n\nIn the preceding example, we ran LoRA on two devices. But given LoRA's low memory footprint, we can run fine-tuning\non a single device using most commodity GPUs which support `bfloat16 <https://\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
|
@ -169,11 +182,11 @@
|
|||
"error_message": null,
|
||||
"metadata": {
|
||||
"document_ids": [
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29",
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29",
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29",
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29",
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29"
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932",
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932",
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932",
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932",
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
@ -361,23 +374,23 @@
|
|||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 1:\nDocument_id:ea3f6\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\nlook like so:\n\n.. code-block:: python\n\n from torchtune.datasets import chat_dataset\n from torchtune.models.llama3 import llama3_tokenizer\n\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\n ds = chat_dataset(\n tokenizer=tokenizer,\n source=\"json\",\n data_files=\"data/my_data.json\",\n split=\"train\",\n conversation_column=\"dialogue\",\n conversation_style=\"sharegpt\",\n )\n\n.. code-block:: yaml\n\n # In config\n tokenizer:\n _component_: torchtune.models.llama3.llama3_tokenizer\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\n\n dataset:\n _component_: torchtune.datasets.chat_dataset\n source: json\n data_files: data/my_data.json\n split: train\n conversation_column: dialogue\n conversation_style: sharegpt\n\n.. note::\n You can pass in any keyword argument for `load_dataset <https://huggingface.co/docs/datasets/v2.20.0/en/package_reference/loading_methods#datasets.load_dataset>`_ into all our\n Dataset classes and they will honor them. This is useful for common parameters\n such as specifying the data split with :code:`split` or configuration with\n :code:`name`\n\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\nSince we're fine-tuning Llama3, the tokenizer will handle all formatting for\nus and prompt templates are optional. Other models such as Mistral's :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\nall messages according to their `recommendations <https://\n",
|
||||
"text": "Result 1:\nDocument_id:24443\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\nlook like so:\n\n.. code-block:: python\n\n from torchtune.datasets import chat_dataset\n from torchtune.models.llama3 import llama3_tokenizer\n\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\n ds = chat_dataset(\n tokenizer=tokenizer,\n source=\"json\",\n data_files=\"data/my_data.json\",\n split=\"train\",\n conversation_column=\"dialogue\",\n conversation_style=\"sharegpt\",\n )\n\n.. code-block:: yaml\n\n # In config\n tokenizer:\n _component_: torchtune.models.llama3.llama3_tokenizer\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\n\n dataset:\n _component_: torchtune.datasets.chat_dataset\n source: json\n data_files: data/my_data.json\n split: train\n conversation_column: dialogue\n conversation_style: sharegpt\n\n.. note::\n You can pass in any keyword argument for `load_dataset <https://huggingface.co/docs/datasets/v2.20.0/en/package_reference/loading_methods#datasets.load_dataset>`_ into all our\n Dataset classes and they will honor them. This is useful for common parameters\n such as specifying the data split with :code:`split` or configuration with\n :code:`name`\n\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\nSince we're fine-tuning Llama3, the tokenizer will handle all formatting for\nus and prompt templates are optional. Other models such as Mistral's :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\nall messages according to their `recommendations <https://\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 2:\nDocument_id:5c435\nContent: .. _lora_finetune_label:\n\n============================\nFine-Tuning Llama2 with LoRA\n============================\n\nThis guide will teach you about `LoRA <https://arxiv.org/abs/2106.09685>`_, a parameter-efficient finetuning technique,\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\nIf you already know what LoRA is and want to get straight to running\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune<lora_recipe_label>`.\n\n.. grid:: 2\n\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\n\n * What LoRA is and how it saves memory during finetuning\n * An overview of LoRA components in torchtune\n * How to run a LoRA finetune using torchtune\n * How to experiment with different LoRA configurations\n\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\n\n * Be familiar with :ref:`torchtune<overview_label>`\n * Make sure to :ref:`install torchtune<install_label>`\n * Make sure you have downloaded the :ref:`Llama2-7B model weights<download_llama_label>`\n\nWhat is LoRA?\n-------------\n\n`LoRA <https://arxiv.org/abs/2106.09685>`_ is an adapter-based method for\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\ntransformer models, in which case it is common to add the low-rank matrices\nto some of the linear projections in each transformer layer's self-attention.\n\n.. note::\n\n If you're unfamiliar, check out these references for the `definition of rank <https://en.wikipedia.org/wiki/Rank_(linear_algebra)>`_\n and discussion of `low-rank approximations <https://en.wikipedia.org/wiki/Low-rank_approximation>`_.\n\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\nyou can expect to see memory savings due to a substantial reduction in the\nnumber of parameters with gradients. When using an optimizer with momentum,\nlike `AdamW <https://py\n",
|
||||
"text": "Result 2:\nDocument_id:961ff\nContent: .. _lora_finetune_label:\n\n============================\nFine-Tuning Llama2 with LoRA\n============================\n\nThis guide will teach you about `LoRA <https://arxiv.org/abs/2106.09685>`_, a parameter-efficient finetuning technique,\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\nIf you already know what LoRA is and want to get straight to running\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune<lora_recipe_label>`.\n\n.. grid:: 2\n\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\n\n * What LoRA is and how it saves memory during finetuning\n * An overview of LoRA components in torchtune\n * How to run a LoRA finetune using torchtune\n * How to experiment with different LoRA configurations\n\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\n\n * Be familiar with :ref:`torchtune<overview_label>`\n * Make sure to :ref:`install torchtune<install_label>`\n * Make sure you have downloaded the :ref:`Llama2-7B model weights<download_llama_label>`\n\nWhat is LoRA?\n-------------\n\n`LoRA <https://arxiv.org/abs/2106.09685>`_ is an adapter-based method for\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\ntransformer models, in which case it is common to add the low-rank matrices\nto some of the linear projections in each transformer layer's self-attention.\n\n.. note::\n\n If you're unfamiliar, check out these references for the `definition of rank <https://en.wikipedia.org/wiki/Rank_(linear_algebra)>`_\n and discussion of `low-rank approximations <https://en.wikipedia.org/wiki/Low-rank_approximation>`_.\n\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\nyou can expect to see memory savings due to a substantial reduction in the\nnumber of parameters with gradients. When using an optimizer with momentum,\nlike `AdamW <https://py\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 3:\nDocument_id:91d52\nContent: ` module, which we swap\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\n\n.. _glossary_distrib:\n\n\n.. TODO\n\n.. Distributed\n.. -----------\n\n.. .. _glossary_fsdp:\n\n.. Fully Sharded Data Parallel (FSDP)\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n.. All our ``_distributed`` recipes use `FSDP <https://pytorch.org/docs/stable/fsdp.html>`.\n.. .. _glossary_fsdp2:\n\n",
|
||||
"text": "Result 3:\nDocument_id:b49f7\nContent: ` module, which we swap\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\n\n.. _glossary_distrib:\n\n\n.. TODO\n\n.. Distributed\n.. -----------\n\n.. .. _glossary_fsdp:\n\n.. Fully Sharded Data Parallel (FSDP)\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n.. All our ``_distributed`` recipes use `FSDP <https://pytorch.org/docs/stable/fsdp.html>`.\n.. .. _glossary_fsdp2:\n\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 4:\nDocument_id:5c435\nContent: 06% of all params are trainable.\n\n.. note::\n If you are directly using the LoRA recipe (as detailed :ref:`here<lora_recipe_label>`), you need only pass the\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\n of in the recipe.\n\n\n.. _lora_recipe_label:\n\nLoRA finetuning recipe in torchtune\n-----------------------------------\n\nFinally, we can put it all together and finetune a model using torchtune's `LoRA recipe <https://github.com/pytorch/torchtune/blob/48626d19d2108f92c749411fbd5f0ff140023a25/recipes/lora_finetune.py>`_.\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions<download_llama_label>`.\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\n\n.. code-block:: bash\n\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\n\n.. note::\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\n for more details on how you can easily clone and modify torchtune configs.\n\n.. note::\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\n and (b) the memory constraints of your hardware.\n\nThe preceding command will run a LoRA finetune with torchtune's factory settings, but we may want to experiment a bit.\nLet's take a closer look at some of the :code:`lora_finetune_distributed` config.\n\n.. code-block:: yaml\n\n # Model Arguments\n model:\n _component_: lora_llama2_7b\n lora_attn_modules: ['q_proj', 'v_proj']\n lora_rank: 8\n lora_alpha: 16\n ...\n\nWe see that the\n",
|
||||
"text": "Result 4:\nDocument_id:961ff\nContent: 06% of all params are trainable.\n\n.. note::\n If you are directly using the LoRA recipe (as detailed :ref:`here<lora_recipe_label>`), you need only pass the\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\n of in the recipe.\n\n\n.. _lora_recipe_label:\n\nLoRA finetuning recipe in torchtune\n-----------------------------------\n\nFinally, we can put it all together and finetune a model using torchtune's `LoRA recipe <https://github.com/pytorch/torchtune/blob/48626d19d2108f92c749411fbd5f0ff140023a25/recipes/lora_finetune.py>`_.\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions<download_llama_label>`.\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\n\n.. code-block:: bash\n\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\n\n.. note::\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\n for more details on how you can easily clone and modify torchtune configs.\n\n.. note::\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\n and (b) the memory constraints of your hardware.\n\nThe preceding command will run a LoRA finetune with torchtune's factory settings, but we may want to experiment a bit.\nLet's take a closer look at some of the :code:`lora_finetune_distributed` config.\n\n.. code-block:: yaml\n\n # Model Arguments\n model:\n _component_: lora_llama2_7b\n lora_attn_modules: ['q_proj', 'v_proj']\n lora_rank: 8\n lora_alpha: 16\n ...\n\nWe see that the\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
"text": "Result 5:\nDocument_id:91d52\nContent: etune\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\n\n.. code-block:: bash\n\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\n model.use_dora=True\n\n.. code-block:: yaml\n\n model:\n _component_: torchtune.models.lora_llama3_8b\n use_dora: True\n\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA <glossary_lora>` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\neven more memory savings!\n\n.. code-block:: bash\n\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\n model.apply_lora_to_mlp=True \\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\n model.lora_rank=16 \\\n model.lora_alpha=32 \\\n model.use_dora=True \\\n model.quantize_base=True\n\n.. code-block:: yaml\n\n model:\n _component_: torchtune.models.lora_llama3_8b\n apply_lora_to_mlp: True\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\n lora_rank: 16\n lora_alpha: 32\n use_dora: True\n quantize_base: True\n\n\n.. note::\n\n Under the hood, we've enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\n\n.. _glossary_distrib:\n\n\n.. TODO\n\n.. Distributed\n.. -----------\n\n.. .. _glossary_fsdp:\n\n.. Fully Sharded Data Parallel (FSDP)\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n.. All our ``_distributed`` recipes use `FSDP <https://pytorch.org/docs/stable/fsdp.html>`.\n.. .. _glossary_fsdp2:\n\n",
|
||||
"text": "Result 5:\nDocument_id:b49f7\nContent: etune\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\n\n.. code-block:: bash\n\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\n model.use_dora=True\n\n.. code-block:: yaml\n\n model:\n _component_: torchtune.models.lora_llama3_8b\n use_dora: True\n\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA <glossary_lora>` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\neven more memory savings!\n\n.. code-block:: bash\n\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\n model.apply_lora_to_mlp=True \\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\n model.lora_rank=16 \\\n model.lora_alpha=32 \\\n model.use_dora=True \\\n model.quantize_base=True\n\n.. code-block:: yaml\n\n model:\n _component_: torchtune.models.lora_llama3_8b\n apply_lora_to_mlp: True\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\n lora_rank: 16\n lora_alpha: 32\n use_dora: True\n quantize_base: True\n\n\n.. note::\n\n Under the hood, we've enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\n\n.. _glossary_distrib:\n\n\n.. TODO\n\n.. Distributed\n.. -----------\n\n.. .. _glossary_fsdp:\n\n.. Fully Sharded Data Parallel (FSDP)\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n.. All our ``_distributed`` recipes use `FSDP <https://pytorch.org/docs/stable/fsdp.html>`.\n.. .. _glossary_fsdp2:\n\n",
|
||||
"type": "text"
|
||||
},
|
||||
{
|
||||
|
@ -389,11 +402,11 @@
|
|||
"error_message": null,
|
||||
"metadata": {
|
||||
"document_ids": [
|
||||
"ea3f6e4d-9e11-4bd0-8322-6371f7b0de0c",
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29",
|
||||
"91d525eb-07dc-4cad-8596-dd0e6bd011f1",
|
||||
"5c435311-5dba-4b40-b8c9-9fd37fbd9b29",
|
||||
"91d525eb-07dc-4cad-8596-dd0e6bd011f1"
|
||||
"24443dfb-a0b3-4ce8-820e-3fb1f12364bb",
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932",
|
||||
"b49f7985-6615-4dcf-99be-d1765b6a6fc6",
|
||||
"961ff2d1-8887-41ef-a4fe-fa4cbab7b932",
|
||||
"b49f7985-6615-4dcf-99be-d1765b6a6fc6"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
@ -405,7 +418,7 @@
|
|||
"__module__": "llama_stack.apis.tools.tools",
|
||||
"__pydantic__": "ToolInvocationResult",
|
||||
"data": {
|
||||
"content": "{\"query\": \"current CEO of Meta\", \"top_k\": [{\"title\": \"Meet the Executive CSuite Team of Meta (Facebook) [2025]\", \"url\": \"https://digitaldefynd.com/IQ/meet-the-executive-csuite-team-of-meta-facebook/\", \"content\": \"Harvard University Executive Programs Free Harvard University Courses As a chief financial officer of Meta, Susan Li oversees the firm\\u2019s finance and facilities team to keep track of the company\\u2019s overall financial health. The chief operating officer of Meta, Javier Olivan, oversees the firm\\u2019s business team, infrastructure, and other products. Andrew Bosworth, called Boz, serves as chief technology officer at Meta and is responsible for leading the firm\\u2019s AR/VR organization, Reality Labs. Andrew has also served as engineering director to oversee events, mobile monetization, and feed ads and as VP of ads and business platforms to lead engineering, design, analytics, and product teams. Meta\\u2019s c-suite team comprises experienced and diverse executives, having extensive experience in technology, finance, legal, and all major industries.\", \"score\": 0.7602419, \"raw_content\": null}, {\"title\": \"Mark Zuckerberg - Forbes\", \"url\": \"https://www.forbes.com/profile/mark-zuckerberg/\", \"content\": \"Meta has donated $1 million to President-elect Donald Trump's inaugural fund, the company confirmed to various news outlets on Wednesday, a move that comes just weeks after its CEO Mark\", \"score\": 0.6701125, \"raw_content\": null}, {\"title\": \"Meta - Leadership & Governance\", \"url\": \"https://investor.atmeta.com/leadership-and-governance/\", \"content\": \"Mr. Andreessen was a co-founder of Netscape Communications Corporation, a software company, serving in various positions, including Chief Technology Officer and Executive Vice President of Products. Ms. Killefer also served as Assistant Secretary for Management, Chief Financial Officer, and Chief Operating Officer of the U.S. Department of the Treasury from 1997 to 2000 and as a member of the IRS Oversight Board from 2000 to 2005, including as Chair of the IRS Oversight Board from 2002 to 2004. Ms. Travis has served as Executive Vice President and Chief Financial Officer of The Estee Lauder Companies Inc., a global manufacturer and marketer of skin care, makeup, fragrance and hair care products, since August 2012.\", \"score\": 0.6175132, \"raw_content\": null}, {\"title\": \"META | Meta Platforms Inc. Company Profile & Executives - WSJ\", \"url\": \"https://www.wsj.com/market-data/quotes/META/company-people\", \"content\": \"Company profile for Meta Platforms Inc. including key executives, insider trading, ownership, revenue and average growth rates. View detailed META description & address.\", \"score\": 0.23361932, \"raw_content\": null}, {\"title\": \"Mark Zuckerberg - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Mark_Zuckerberg\", \"content\": \"They began dating in 2003.[175] In September 2010, Chan, who was a medical student at the University of California, San Francisco at the time,[176] moved into his rented house in Palo Alto, California.[177][178] They married on May 19, 2012, in the grounds of his mansion in an event that also celebrated her graduation from medical school.[179][180] Zuckerberg revealed in July 2015 that they were expecting a baby girl and that Chan had previously experienced three miscarriages.[181] Their first daughter was born in December 2015.[182] They announced in a Chinese New Year video that their daughter's Chinese name is Chen Mingyu (Chinese: \\u9648\\u660e\\u5b87).[183] Their second daughter was born in August 2017.[184] Zuckerberg and his wife welcomed their third daughter in March 2023 and announced the news across his social media pages.[185] The couple also have a Puli dog named Beast,[186] who has over two million followers on Facebook.[187] Zuckerberg commissioned the visual artist Daniel Arsham to build a 7-foot-tall sculpture of his wife, which was unveiled in 2024.[188]\", \"score\": 0.05564338, \"raw_content\": null}]}",
|
||||
"content": "{\"query\": \"current CEO of Meta\", \"top_k\": [{\"title\": \"Meta - Leadership & Governance\", \"url\": \"https://investor.atmeta.com/leadership-and-governance/\", \"content\": \"Mark Zuckerberg is the founder, chairman and CEO of Meta, which he originally founded as Facebook in 2004. Mark is responsible for setting the overall direction and product strategy for the company. He leads the design of Meta's services and development of its core technology and infrastructure. Mark studied computer science at Harvard\", \"score\": 0.8342047, \"raw_content\": null}, {\"title\": \"Mark Zuckerberg, Founder, Chairman and Chief Executive Officer - Meta\", \"url\": \"https://about.meta.com/media-gallery/executives/mark-zuckerberg/\", \"content\": \"Mark Zuckerberg, Founder, Chairman and Chief Executive Officer | Meta Meta Quest Ray-Ban Meta Meta Horizon Meta AI Meta Verified Meta Pay Meta Horizon Workrooms Meta and you Learn about our community Shop Meta Meta Quest Meta Portal Meta Horizon Mark Zuckerberg is the founder, chairman and CEO of Meta, which he originally founded as Facebook in 2004. In October 2021, Facebook rebranded to Meta to reflect all of its products and services across its family of apps and a focus on developing social experiences for the metaverse \\u2014 moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. Shop Ray-Ban Meta glassesRay-Ban StoriesPrivacy informationSupported countries \\u00a9 2025 Meta\", \"score\": 0.79099923, \"raw_content\": null}, {\"title\": \"The 11 People Running Meta's $1 Trillion Social Media and ... - Observer\", \"url\": \"https://observer.com/2024/01/meta-facebook-top-executives/\", \"content\": \"Meta has one of the most stable leadership team in the tech industry. Almost all of Meta's top executives have been with the company for well over a decade. ... 39, cofounder, chairman and CEO\", \"score\": 0.45536873, \"raw_content\": null}, {\"title\": \"Executives - Meta\", \"url\": \"https://about.meta.com/media-gallery/executives/\", \"content\": \"Meta leadership: images of senior executives for download to use in articles about the company.\", \"score\": 0.21026355, \"raw_content\": null}, {\"title\": \"Mark Zuckerberg - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Mark_Zuckerberg\", \"content\": \"They began dating in 2003.[175] In September 2010, Chan, who was a medical student at the University of California, San Francisco at the time,[176] moved into his rented house in Palo Alto, California.[177][178] They married on May 19, 2012, in the grounds of his mansion in an event that also celebrated her graduation from medical school.[179][180] Zuckerberg revealed in July 2015 that they were expecting a baby girl and that Chan had previously experienced three miscarriages.[181] Their first daughter was born in December 2015.[182] They announced in a Chinese New Year video that their daughter's Chinese name is Chen Mingyu (Chinese: \\u9648\\u660e\\u5b87).[183] Their second daughter was born in August 2017.[184] Zuckerberg and his wife welcomed their third daughter in March 2023 and announced the news across his social media pages.[185] The couple also have a Puli dog named Beast,[186] who has over two million followers on Facebook.[187] Zuckerberg commissioned the visual artist Daniel Arsham to build a 7-foot-tall sculpture of his wife, which was unveiled in 2024.[188]\", \"score\": 0.05564338, \"raw_content\": null}]}",
|
||||
"error_code": null,
|
||||
"error_message": null,
|
||||
"metadata": null
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue