This commit is contained in:
Xi Yan 2024-10-04 00:25:57 -07:00
parent 4f07aca309
commit 3cbe3a72e8
10 changed files with 230 additions and 76 deletions

View file

@ -33,6 +33,7 @@ class EvaluationClient(Evals):
"task": task,
},
headers={"Content-Type": "application/json"},
timeout=3600,
)
response.raise_for_status()
return EvaluateResponse(**response.json())
@ -43,7 +44,7 @@ async def run_main(host: str, port: int):
response = await client.run_evals(
"Llama3.1-8B-Instruct",
"mmlu.csv",
"mmlu-simple-eval-en",
"mmlu",
)
cprint(f"evaluate response={response}", "green")

View file

@ -109,7 +109,7 @@ async def run_main(host: str, port: int, stream: bool):
cprint(f"User>{message.content}", "green")
iterator = client.chat_completion(
model="Llama3.1-8B-Instruct",
messages=[message],
messages=[message, UserMessage(content="write me 3 sentence about the sun.")],
stream=stream,
)
async for log in EventLogger().log(iterator):

View file

@ -3,17 +3,22 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .datasets import CustomDataset
from .datasets import CustomDataset, HFDataset
# TODO: make this into a config based registry
DATASETS_REGISTRY = {
"mmlu_eval": CustomDataset(
"mmlu-simple-eval-en": CustomDataset(
name="mmlu_eval",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
),
"mmmu-accounting": HFDataset(
name="mmlu_eval",
url="hf://hellaswag?split=validation&trust_remote_code=True",
),
}
def get_dataset(dataset_id: str):
# get dataset concrete dataset implementation
return DATASETS_REGISTRY[dataset_id]
dataset = DATASETS_REGISTRY[dataset_id]
dataset.load()
return dataset

View file

@ -4,23 +4,35 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import ABC, abstractmethod
from urllib.parse import parse_qs, urlparse
import pandas
from datasets import Dataset, load_dataset
class BaseDataset:
class BaseDataset(ABC):
def __init__(self, name: str):
self.dataset = None
self.dataset_id = name
self.type = self.__class__.__name__
def __iter__(self):
return iter(self.dataset)
@abstractmethod
def load(self):
pass
class CustomDataset(BaseDataset):
def __init__(self, name, url):
super().__init__(name)
self.url = url
def load(self):
if self.dataset:
return
df = pandas.read_csv(self.url)
self.dataset = Dataset.from_pandas(df)
@ -28,13 +40,18 @@ class CustomDataset(BaseDataset):
class HFDataset(BaseDataset):
def __init__(self, name, url):
super().__init__(name)
# URL following OpenAI's evals - hf://hendrycks_test?name=business_ethics&split=validation
self.url = url
parsed = urlparse(url)
query = parse_qs(parsed.query)
query = {k: v[0] for k, v in query.items()}
def load(self):
if self.dataset:
return
parsed = urlparse(self.url)
if parsed.scheme != "hf":
raise ValueError(f"Unknown HF dataset: {url}")
raise ValueError(f"Unknown HF dataset: {self.url}")
query = parse_qs(parsed.query)
query = {k: v[0] for k, v in query.items()}
path = parsed.netloc
self.dataset = load_dataset(path, **query)

View file

@ -8,10 +8,10 @@ from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
from termcolor import cprint
from llama_stack.providers.impls.meta_reference.evals.datas.utils import ( # noqa: F403
from llama_stack.providers.impls.meta_reference.evals.datas.dataset_registry import (
get_dataset,
)
from llama_stack.providers.impls.meta_reference.evals.tasks.utils import ( # noqa: F403
from llama_stack.providers.impls.meta_reference.evals.tasks.task_registry import (
get_task,
)
@ -35,27 +35,25 @@ class MetaReferenceEvalsImpl(Evals):
task: str,
) -> EvaluateResponse:
cprint(f"model={model}, dataset={dataset}, task={task}", "red")
dataset = get_dataset("mmlu-simple-eval-en")
# resolve dataset
# - either a custom URL dataset or HF URL dataset
dataset = get_dataset("mmlu_eval")
print(dataset.dataset)
# # resolve task and execute task
task_impl = get_task(task, dataset)
print(task_impl)
x1 = task_impl.preprocess()
# # F1: this will generate a preprocessed list of input messages for model
# x1 = task_impl.preprocess(dataset)
# TODO: replace w/ batch inference & async return eval job
generation_outputs = []
for msg in x1[:5]:
response = self.inference_api.chat_completion(
model=model,
messages=[msg],
stream=False,
)
async for x in response:
generation_outputs.append(x.completion_message.content)
# # call inference API w/ model
# generation_outputs = ["response1", "response2", "response3"]
# # F2: post process
# x2 = task_impl.postprocess(generation_outputs)
# # F3: score generation outputs
# scores = task_impl.score(x2)
x2 = task_impl.postprocess(generation_outputs)
scores = task_impl.score(x2)
print(scores)
return EvaluateResponse(
metrics={

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,152 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from .task import BaseTask
QUERY_TEMPLATE_MULTICHOICE = """
Answer the following multiple choice question and make the answer very simple. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD.
{Question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
MULTILINGUAL_ANSWER_REGEXES = [
r"Answer\s*:",
r"Answer\s*:", # Korean invisible character
r"উত্তর\s*:",
r"उत्तर\s*:",
r"উত্তরঃ",
r"উত্তর\s*:",
r"Antwort\s*:",
r"답변\s*:",
r"정답\s*:",
r"\s*:",
r"答案\s*",
r"答案\s*:",
r"\s*",
r"\s*:",
r"答复\s*",
r"答曰\s*",
r"الإجابة:",
r"الجواب:",
r"إجابة:",
r"الإجابة النهائية:",
r"الإجابة الصحيحة:",
r"الإجابة الصحيحة هي:",
r"الإجابة هي:",
r"Respuesta\s*:",
r"Risposta\s*:",
r"答え\s*:",
r"答え\s*",
r"回答\s*:",
r"回答\s*",
r"解答\s*:",
r"Jawaban\s*:",
r"Réponse\s*:",
r"Resposta\s*:",
r"Jibu\s*:",
r"Idahun\s*:",
r"Ìdáhùn\s*:",
r"Idáhùn\s*:",
r"Àmọ̀nà\s*:",
r"Àdáhùn\s*:",
r"Ànúgọ\s*:",
r"Àṣàyàn\s*:",
]
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[]|[]|[]|[])"
)
def normalize_response(response: str) -> str:
"""
Normalize the response by removing markdown and LaTeX formatting that may prevent a match.
"""
return (
response.replace("**", "")
.replace("$\\boxed{", "")
.replace("}$", "")
.replace("\\$", "")
.replace("$\\text{", "")
.replace("$", "")
.replace("\\mathrm{", "")
.replace("\\{", "")
.replace("\\text", "")
.replace("\\(", "")
.replace("\\mathbf{", "")
.replace("{", "")
.replace("\\boxed", "")
)
def normalize_extracted_answer(extracted_answer: str) -> str:
return (
# In arabic these are the letters used for A-D in multiple choice questions
extracted_answer.replace("أ", " A")
.replace("ب", " B")
.replace("ج", " C")
.replace("د", " D")
# In Bengali these are the letters used for A-D in multiple choice questions
.replace("", " A")
.replace("", " B")
.replace("", " C")
.replace("", " D")
# In Japanese these are the letters sometimes used for A-D in multiple choice questions
.replace("", " A")
.replace("", " B")
.replace("", " C")
.replace("", " D")
.strip()
)
class MMLUTask(BaseTask):
"""
MMLU Task.
"""
def __init__(self, dataset, *args, **kwargs):
super().__init__(dataset, *args, **kwargs)
def preprocess_sample(self, sample):
"""
F1: preprocess sample
"""
content = QUERY_TEMPLATE_MULTICHOICE.format(**sample)
return {
"role": "user",
"content": content,
}
def postprocess_sample(self, sample):
"""
F2: postprocess sample
"""
normalized = normalize_response(sample)
return normalized
def score_sample(self, sample, expected):
"""
F3: score sample
"""
extracted_answer = None
for answer_regex in MULTILINGUAL_ANSWER_REGEXES:
regex = MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(answer_regex)
match = re.search(regex, sample)
if match:
extracted_answer = normalize_extracted_answer(match.group(1))
break
score = (
1.0 if extracted_answer and extracted_answer == expected["Answer"] else 0.0
)
return score

View file

@ -8,8 +8,7 @@ from abc import ABC, abstractmethod
class BaseTask(ABC):
"""
Base class for all evaluation tasks.
Each task needs to implement the following methods:
Base class for all evaluation tasks. Each task needs to implement the following methods:
- F1: preprocess_sample(self)
- F2: postprocess_sample(self)
- F3: score_sample(self)
@ -42,40 +41,13 @@ class BaseTask(ABC):
raise NotImplementedError()
def preprocess(self):
pass
return [self.preprocess_sample(sample) for sample in self.dataset]
def postprocess(self):
pass
def postprocess(self, generation):
return [self.postprocess_sample(sample) for sample in generation]
def score(self, generation):
pass
class MMLUTask(BaseTask):
"""
MMLU Task. Each task needs to implement the following methods:
- F1: preprocess_sample(self)
- F2: postprocess_sample(self)
- F3: score_sample(self)
"""
def __init__(self, dataset, *args, **kwargs):
super().__init__(dataset, *args, **kwargs)
def preprocess_sample(self, sample):
"""
F1: preprocess sample
"""
pass
def postprocess_sample(self, sample):
"""
F2: postprocess sample
"""
pass
def score_sample(self, sample):
"""
F3: score sample
"""
pass
def score(self, postprocessed):
return [
self.score_sample(sample, ground_truth)
for sample, ground_truth in zip(postprocessed, self.dataset)
]

View file

@ -3,7 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .tasks import * # noqa: F403
from .mmlu_task import MMLUTask
# TODO: make this into a config based registry
TASKS_REGISTRY = {

View file

@ -36,14 +36,18 @@ api_providers:
config: {}
routing_table:
inference:
- provider_type: meta-reference
# - provider_type: meta-reference
# config:
# model: Llama3.2-1B-Instruct
# quantization: null
# torch_seed: null
# max_seq_len: 4096
# max_batch_size: 1
# routing_key: Llama3.2-1B-Instruct
- provider_type: remote::tgi
config:
model: Llama3.2-1B
quantization: null
torch_seed: null
max_seq_len: 4096
max_batch_size: 1
routing_key: Llama3.2-1B
url: http://127.0.0.1:5009
routing_key: Llama3.1-8B-Instruct
safety:
- provider_type: meta-reference
config: