fix(context): prevent provider data leak between streaming requests

The preserve_contexts_async_generator function was not cleaning up context
variables after streaming iterations, causing PROVIDER_DATA_VAR to leak
between sequential requests. Provider credentials or configuration from one
request could persist and leak into subsequent requests.

Root cause: Context variables were set at the start of each iteration but
never cleared afterward. When generators were consumed outside their original
context manager (after the with block exited), the context values remained
set indefinitely.

The fix clears context variables by setting them to None after each yield
and when the generator terminates. This works reliably across all scenarios
including when the library client wraps async generators for sync consumption
(which creates new asyncio Contexts per iteration). Direct value setting
avoids Context-scoped token issues that would occur with token-based reset.

Added unit and integration tests that verify context isolation.
This commit is contained in:
Ashwin Bharambe 2025-10-27 13:00:46 -07:00
parent 471b1b248b
commit 3ecb043d59
4 changed files with 345 additions and 9 deletions

View file

@ -0,0 +1,117 @@
"""
Integration test for provider data context isolation in streaming requests.
This test verifies that PROVIDER_DATA_VAR doesn't leak between sequential
streaming requests, ensuring provider credentials and configuration are
properly isolated between requests.
"""
import json
import pytest
@pytest.mark.asyncio
async def test_provider_data_isolation_library_client():
"""
Verifies that provider data context is properly isolated between
sequential streaming requests and cleaned up after each request.
"""
from llama_stack.core.request_headers import PROVIDER_DATA_VAR, request_provider_data_context
from llama_stack.core.utils.context import preserve_contexts_async_generator
async def mock_streaming_provider():
"""Simulates a streaming provider that reads PROVIDER_DATA_VAR"""
provider_data = PROVIDER_DATA_VAR.get()
yield {"provider_data": provider_data, "chunk": 1}
async def sse_generator(gen):
"""Simulates the SSE generator in the server"""
async for item in gen:
yield f"data: {json.dumps(item)}\n\n"
# Request 1: Set provider data to {"key": "value1"}
headers1 = {"X-LlamaStack-Provider-Data": json.dumps({"key": "value1"})}
with request_provider_data_context(headers1):
gen1 = preserve_contexts_async_generator(
sse_generator(mock_streaming_provider()),
[PROVIDER_DATA_VAR]
)
chunks1 = [chunk async for chunk in gen1]
data1 = json.loads(chunks1[0].split("data: ")[1])
assert data1["provider_data"] == {"key": "value1"}
# Context should be cleared after consuming the generator
leaked_data = PROVIDER_DATA_VAR.get()
assert leaked_data is None, f"Context leaked after request 1: {leaked_data}"
# Request 2: Set different provider data {"key": "value2"}
headers2 = {"X-LlamaStack-Provider-Data": json.dumps({"key": "value2"})}
with request_provider_data_context(headers2):
gen2 = preserve_contexts_async_generator(
sse_generator(mock_streaming_provider()),
[PROVIDER_DATA_VAR]
)
chunks2 = [chunk async for chunk in gen2]
data2 = json.loads(chunks2[0].split("data: ")[1])
assert data2["provider_data"] == {"key": "value2"}
leaked_data2 = PROVIDER_DATA_VAR.get()
assert leaked_data2 is None, f"Context leaked after request 2: {leaked_data2}"
# Request 3: No provider data
gen3 = preserve_contexts_async_generator(
sse_generator(mock_streaming_provider()),
[PROVIDER_DATA_VAR]
)
chunks3 = [chunk async for chunk in gen3]
data3 = json.loads(chunks3[0].split("data: ")[1])
assert data3["provider_data"] is None
@pytest.mark.skipif(
True,
reason="Requires custom test provider with context echo capability"
)
def test_provider_data_isolation_with_server(llama_stack_client):
"""
Server-based test for context isolation (currently skipped).
Requires a test inference provider that echoes back PROVIDER_DATA_VAR
in streaming responses to verify proper isolation.
"""
response1 = llama_stack_client.inference.chat_completion(
model_id="context-echo-model",
messages=[{"role": "user", "content": "test"}],
stream=True,
extra_headers={
"X-LlamaStack-Provider-Data": json.dumps({"test_key": "value1"})
},
)
chunks1 = []
for chunk in response1:
if chunk.choices and chunk.choices[0].delta.content:
chunks1.append(chunk.choices[0].delta.content)
response1_data = json.loads("".join(chunks1))
assert response1_data["provider_data"] == {"test_key": "value1"}
response2 = llama_stack_client.inference.chat_completion(
model_id="context-echo-model",
messages=[{"role": "user", "content": "test"}],
stream=True,
extra_headers={
"X-LlamaStack-Provider-Data": json.dumps({"test_key": "value2"})
},
)
chunks2 = []
for chunk in response2:
if chunk.choices and chunk.choices[0].delta.content:
chunks2.append(chunk.choices[0].delta.content)
response2_data = json.loads("".join(chunks2))
assert response2_data["provider_data"] == {"test_key": "value2"}