Merge branch 'main' into rag-metadata-support

This commit is contained in:
Francisco Arceo 2025-05-14 17:15:57 -06:00 committed by GitHub
commit 3faaeb0bba
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 76 additions and 2 deletions

View file

@ -7,7 +7,7 @@
import json
import uuid
from collections.abc import AsyncIterator
from typing import cast
from typing import Any, cast
from openai.types.chat import ChatCompletionToolParam
from pydantic import BaseModel
@ -264,7 +264,11 @@ class OpenAIResponsesImpl:
if response_tool_call:
response_tool_call.function.arguments += tool_call.function.arguments
else:
response_tool_call = OpenAIChatCompletionToolCall(**tool_call.model_dump())
tool_call_dict: dict[str, Any] = tool_call.model_dump()
# Ensure we don't have any empty type field in the tool call dict.
# The OpenAI client used by providers often returns a type=None here.
tool_call_dict.pop("type", None)
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
chat_response_tool_calls[tool_call.index] = response_tool_call
# Convert the dict of tool calls by index to a list of tool calls to pass back in our response

View file

@ -7,10 +7,18 @@
from unittest.mock import AsyncMock, patch
import pytest
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk,
Choice,
ChoiceDelta,
ChoiceDeltaToolCall,
ChoiceDeltaToolCallFunction,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputItemList,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputToolFunction,
OpenAIResponseInputToolWebSearch,
OpenAIResponseMessage,
OpenAIResponseObject,
@ -167,6 +175,68 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
assert result.output[1].content[0].text == "Dublin"
@pytest.mark.asyncio
async def test_create_openai_response_with_tool_call_type_none(openai_responses_impl, mock_inference_api):
"""Test creating an OpenAI response with a tool call response that has a type of None."""
# Setup
input_text = "How hot it is in San Francisco today?"
model = "meta-llama/Llama-3.1-8B-Instruct"
async def fake_stream():
yield ChatCompletionChunk(
id="123",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=0,
id="tc_123",
function=ChoiceDeltaToolCallFunction(name="get_weather", arguments="{}"),
type=None,
)
]
),
),
],
created=1,
model=model,
object="chat.completion.chunk",
)
mock_inference_api.openai_chat_completion.return_value = fake_stream()
# Execute
result = await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
stream=True,
temperature=0.1,
tools=[
OpenAIResponseInputToolFunction(
name="get_weather",
description="Get current temperature for a given location.",
parameters={
"location": "string",
},
)
],
)
# Verify
first_call = mock_inference_api.openai_chat_completion.call_args_list[0]
assert first_call.kwargs["messages"][0].content == input_text
assert first_call.kwargs["tools"] is not None
assert first_call.kwargs["temperature"] == 0.1
# Check that we got the content from our mocked tool execution result
chunks = [chunk async for chunk in result]
assert len(chunks) > 0
assert chunks[0].response.output[0].type == "function_call"
assert chunks[0].response.output[0].name == "get_weather"
@pytest.mark.asyncio
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api):
"""Test creating an OpenAI response with multiple messages."""