mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-06 02:32:40 +00:00
add test cases
This commit is contained in:
parent
6a0c38f123
commit
409383ae5f
5 changed files with 425 additions and 29 deletions
|
@ -55,7 +55,7 @@ from .openai_utils import (
|
|||
convert_openai_completion_choice,
|
||||
convert_openai_completion_stream,
|
||||
)
|
||||
from .utils import _is_nvidia_hosted, check_health
|
||||
from .utils import _is_nvidia_hosted
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -134,7 +134,9 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
if content_has_media(content):
|
||||
raise NotImplementedError("Media is not supported")
|
||||
|
||||
await check_health(self._config) # this raises errors
|
||||
# ToDo: check health of NeMo endpoints and enable this
|
||||
# removing this health check as NeMo customizer endpoint health check is returning 404
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
request = convert_completion_request(
|
||||
|
@ -236,7 +238,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
if tool_prompt_format:
|
||||
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2)
|
||||
|
||||
await check_health(self._config) # this raises errors
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
request = await convert_chat_completion_request(
|
||||
|
|
|
@ -1,13 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, IAny, nc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
## ToDo: add supported models list, model validation logic
|
|
@ -82,6 +82,9 @@ class NvidiaPostTrainingImpl:
|
|||
for _ in range(self.config.max_retries):
|
||||
async with aiohttp.ClientSession(headers=request_headers, timeout=self.timeout) as session:
|
||||
async with session.request(method, url, params=params, json=json, **kwargs) as response:
|
||||
if response.status >= 400:
|
||||
error_data = await response.json()
|
||||
raise Exception(f"API request failed: {error_data}")
|
||||
return await response.json()
|
||||
|
||||
@webmethod(route="/post-training/jobs", method="GET")
|
||||
|
@ -175,9 +178,9 @@ class NvidiaPostTrainingImpl:
|
|||
Fine-tunes a model on a dataset.
|
||||
Currently only supports Lora finetuning for standlone docker container.
|
||||
Assumptions:
|
||||
- model is a valid Nvidia model
|
||||
- nemo microservice is running and endpoint is set in config.customizer_url
|
||||
- dataset is registered separately in nemo datastore
|
||||
- model checkpoint is downloaded from ngc and exists in the local directory
|
||||
- model checkpoint is downloaded as per nemo customizer requirements
|
||||
|
||||
Parameters:
|
||||
training_config: TrainingConfig - Configuration for training
|
||||
|
|
59
llama_stack/providers/remote/post_training/nvidia/utils.py
Normal file
59
llama_stack/providers/remote/post_training/nvidia/utils.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, IAny, nc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
from .config import NvidiaPostTrainingConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def _get_health(url: str) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Query {url}/v1/health/{live,ready} to check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Returns:
|
||||
Tuple[bool, bool]: (is_live, is_ready)
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
live = await client.get(f"{url}/v1/health/live")
|
||||
ready = await client.get(f"{url}/v1/health/ready")
|
||||
return live.status_code == 200, ready.status_code == 200
|
||||
|
||||
|
||||
async def check_health(config: NvidiaPostTrainingConfig) -> None:
|
||||
"""
|
||||
Check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the server is not running or ready
|
||||
"""
|
||||
if not _is_nvidia_hosted(config):
|
||||
logger.info("Checking NVIDIA NIM health...")
|
||||
try:
|
||||
is_live, is_ready = await _get_health(config.url)
|
||||
if not is_live:
|
||||
raise ConnectionError("NVIDIA NIM is not running")
|
||||
if not is_ready:
|
||||
raise ConnectionError("NVIDIA NIM is not ready")
|
||||
# TODO(mf): should we wait for the server to be ready?
|
||||
except httpx.ConnectError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
|
|
@ -4,11 +4,24 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import unittest
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
|
||||
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
||||
TrainingConfig,
|
||||
TrainingConfigDataConfig,
|
||||
TrainingConfigOptimizerConfig,
|
||||
)
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
POST_TRAINING_PROVIDER_TYPES = ["remote::nvidia"]
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
@pytest.fixture(scope="session")
|
||||
def post_training_provider_available(llama_stack_client):
|
||||
providers = llama_stack_client.providers.list()
|
||||
|
@ -16,6 +29,7 @@ def post_training_provider_available(llama_stack_client):
|
|||
return len(post_training_providers) > 0
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
def test_post_training_provider_registration(llama_stack_client, post_training_provider_available):
|
||||
"""Check if post_training is in the api list.
|
||||
This is a sanity check to ensure the provider is registered."""
|
||||
|
@ -24,18 +38,349 @@ def test_post_training_provider_registration(llama_stack_client, post_training_p
|
|||
|
||||
providers = llama_stack_client.providers.list()
|
||||
post_training_providers = [p for p in providers if p.provider_type in POST_TRAINING_PROVIDER_TYPES]
|
||||
|
||||
assert len(post_training_providers) > 0
|
||||
|
||||
assert any("post_training" in provider.api for provider in post_training_providers)
|
||||
|
||||
class TestNvidiaPostTraining(unittest.TestCase):
|
||||
def setUp(self):
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
|
||||
os.environ["NVIDIA_BASE_URL"] = "http://nim.test"
|
||||
|
||||
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
|
||||
|
||||
self.llama_stack_client.initialize = MagicMock(return_value=None)
|
||||
_ = self.llama_stack_client.initialize()
|
||||
|
||||
@patch("requests.post")
|
||||
def test_supervised_fine_tune(self, mock_post):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.json.return_value = {
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:06:28.542884",
|
||||
"config": {
|
||||
"schema_version": "1.0",
|
||||
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
|
||||
"created_at": "2024-12-09T04:06:28.542657",
|
||||
"updated_at": "2024-12-09T04:06:28.569837",
|
||||
"custom_fields": {},
|
||||
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"model_path": "llama-3_1-8b-instruct",
|
||||
"training_types": [],
|
||||
"finetuning_types": ["lora"],
|
||||
"precision": "bf16",
|
||||
"num_gpus": 4,
|
||||
"num_nodes": 1,
|
||||
"micro_batch_size": 1,
|
||||
"tensor_parallel_size": 1,
|
||||
"max_seq_length": 4096,
|
||||
},
|
||||
"dataset": {
|
||||
"schema_version": "1.0",
|
||||
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
|
||||
"created_at": "2024-12-09T04:06:28.542657",
|
||||
"updated_at": "2024-12-09T04:06:28.542660",
|
||||
"custom_fields": {},
|
||||
"name": "default/sample-basic-test",
|
||||
"version_id": "main",
|
||||
"version_tags": [],
|
||||
},
|
||||
"hyperparameters": {
|
||||
"finetuning_type": "lora",
|
||||
"training_type": "sft",
|
||||
"batch_size": 16,
|
||||
"epochs": 2,
|
||||
"learning_rate": 0.0001,
|
||||
"lora": {"adapter_dim": 16},
|
||||
},
|
||||
"output_model": "default/job-1234",
|
||||
"status": "created",
|
||||
"project": "default",
|
||||
"custom_fields": {},
|
||||
"ownership": {"created_by": "me", "access_policies": {}},
|
||||
}
|
||||
mock_post.return_value = mock_response
|
||||
|
||||
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
|
||||
|
||||
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
||||
|
||||
optimizer_config = TrainingConfigOptimizerConfig(
|
||||
lr=0.0001,
|
||||
)
|
||||
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=2,
|
||||
data_config=data_config,
|
||||
optimizer_config=optimizer_config,
|
||||
)
|
||||
|
||||
with patch.object(
|
||||
self.llama_stack_client.post_training,
|
||||
"supervised_fine_tune",
|
||||
return_value={
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"status": "created",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:06:28.542884",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"dataset_id": "sample-basic-test",
|
||||
"output_model": "default/job-1234",
|
||||
},
|
||||
):
|
||||
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
||||
self.assertEqual(training_job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
||||
self.assertEqual(training_job["status"], "created")
|
||||
self.assertEqual(training_job["model"], "meta-llama/Llama-3.1-8B-Instruct")
|
||||
self.assertEqual(training_job["dataset_id"], "sample-basic-test")
|
||||
|
||||
@patch("requests.get")
|
||||
def test_get_job_status(self, mock_get):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.json.return_value = {
|
||||
"created_at": "2024-12-09T04:06:28.580220",
|
||||
"updated_at": "2024-12-09T04:21:19.852832",
|
||||
"status": "completed",
|
||||
"steps_completed": 1210,
|
||||
"epochs_completed": 2,
|
||||
"percentage_done": 100.0,
|
||||
"best_epoch": 2,
|
||||
"train_loss": 1.718016266822815,
|
||||
"val_loss": 1.8661999702453613,
|
||||
}
|
||||
mock_get.return_value = mock_response
|
||||
|
||||
with patch.object(
|
||||
self.llama_stack_client.post_training.job,
|
||||
"status",
|
||||
return_value={
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"status": "completed",
|
||||
"created_at": "2024-12-09T04:06:28.580220",
|
||||
"updated_at": "2024-12-09T04:21:19.852832",
|
||||
"steps_completed": 1210,
|
||||
"epochs_completed": 2,
|
||||
"percentage_done": 100.0,
|
||||
"best_epoch": 2,
|
||||
"train_loss": 1.718016266822815,
|
||||
"val_loss": 1.8661999702453613,
|
||||
},
|
||||
):
|
||||
status = self.llama_stack_client.post_training.job.status("cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
||||
|
||||
self.assertEqual(status["status"], "completed")
|
||||
self.assertEqual(status["steps_completed"], 1210)
|
||||
self.assertEqual(status["epochs_completed"], 2)
|
||||
self.assertEqual(status["percentage_done"], 100.0)
|
||||
self.assertEqual(status["best_epoch"], 2)
|
||||
self.assertEqual(status["train_loss"], 1.718016266822815)
|
||||
self.assertEqual(status["val_loss"], 1.8661999702453613)
|
||||
|
||||
@patch("requests.get")
|
||||
def test_get_job(self, mock_get):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.json.return_value = {
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:21:19.852832",
|
||||
"config": {"name": "meta-llama/Llama-3.1-8B-Instruct", "base_model": "meta-llama/Llama-3.1-8B-Instruct"},
|
||||
"dataset": {"name": "default/sample-basic-test"},
|
||||
"hyperparameters": {
|
||||
"finetuning_type": "lora",
|
||||
"training_type": "sft",
|
||||
"batch_size": 16,
|
||||
"epochs": 2,
|
||||
"learning_rate": 0.0001,
|
||||
"lora": {"adapter_dim": 16},
|
||||
},
|
||||
"output_model": "default/job-1234",
|
||||
"status": "completed",
|
||||
"project": "default",
|
||||
}
|
||||
mock_get.return_value = mock_response
|
||||
|
||||
client = MagicMock()
|
||||
|
||||
with patch.object(
|
||||
client.post_training,
|
||||
"get_job",
|
||||
return_value={
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"status": "completed",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:21:19.852832",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"dataset_id": "sample-basic-test",
|
||||
"batch_size": 16,
|
||||
"epochs": 2,
|
||||
"learning_rate": 0.0001,
|
||||
"adapter_dim": 16,
|
||||
"output_model": "default/job-1234",
|
||||
},
|
||||
):
|
||||
job = client.post_training.get_job("cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
||||
|
||||
self.assertEqual(job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
||||
self.assertEqual(job["status"], "completed")
|
||||
self.assertEqual(job["model"], "meta-llama/Llama-3.1-8B-Instruct")
|
||||
self.assertEqual(job["dataset_id"], "sample-basic-test")
|
||||
self.assertEqual(job["batch_size"], 16)
|
||||
self.assertEqual(job["epochs"], 2)
|
||||
self.assertEqual(job["learning_rate"], 0.0001)
|
||||
self.assertEqual(job["adapter_dim"], 16)
|
||||
self.assertEqual(job["output_model"], "default/job-1234")
|
||||
|
||||
@patch("requests.delete")
|
||||
def test_cancel_job(self, mock_delete):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_delete.return_value = mock_response
|
||||
|
||||
client = MagicMock()
|
||||
|
||||
with patch.object(client.post_training, "cancel_job", return_value=True):
|
||||
result = client.post_training.cancel_job("cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
||||
|
||||
self.assertTrue(result)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@patch("aiohttp.ClientSession.post")
|
||||
async def test_async_supervised_fine_tune(self, mock_post):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status = 200
|
||||
mock_response.json = AsyncMock(
|
||||
return_value={
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"status": "created",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:06:28.542884",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"dataset_id": "sample-basic-test",
|
||||
"output_model": "default/job-1234",
|
||||
}
|
||||
)
|
||||
mock_post.return_value.__aenter__.return_value = mock_response
|
||||
|
||||
client = MagicMock()
|
||||
|
||||
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
|
||||
|
||||
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
||||
|
||||
optimizer_config = TrainingConfigOptimizerConfig(
|
||||
lr=0.0001,
|
||||
)
|
||||
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=2,
|
||||
data_config=data_config,
|
||||
optimizer_config=optimizer_config,
|
||||
)
|
||||
|
||||
with patch.object(
|
||||
client.post_training,
|
||||
"supervised_fine_tune_async",
|
||||
AsyncMock(
|
||||
return_value={
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"status": "created",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:06:28.542884",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"dataset_id": "sample-basic-test",
|
||||
"output_model": "default/job-1234",
|
||||
}
|
||||
),
|
||||
):
|
||||
training_job = await client.post_training.supervised_fine_tune_async(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
||||
self.assertEqual(training_job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
||||
self.assertEqual(training_job["status"], "created")
|
||||
self.assertEqual(training_job["model"], "meta-llama/Llama-3.1-8B-Instruct")
|
||||
self.assertEqual(training_job["dataset_id"], "sample-basic-test")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@patch("aiohttp.ClientSession.post")
|
||||
async def test_inference_with_fine_tuned_model(self, mock_post):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status = 200
|
||||
mock_response.json = AsyncMock(
|
||||
return_value={
|
||||
"id": "cmpl-123456",
|
||||
"object": "text_completion",
|
||||
"created": 1677858242,
|
||||
"model": "job-1234",
|
||||
"choices": [
|
||||
{
|
||||
"text": "The next GTC will take place in the middle of March, 2023.",
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
|
||||
}
|
||||
)
|
||||
mock_post.return_value.__aenter__.return_value = mock_response
|
||||
|
||||
client = MagicMock()
|
||||
|
||||
with patch.object(
|
||||
client.inference,
|
||||
"completion",
|
||||
AsyncMock(
|
||||
return_value={
|
||||
"id": "cmpl-123456",
|
||||
"object": "text_completion",
|
||||
"created": 1677858242,
|
||||
"model": "job-1234",
|
||||
"choices": [
|
||||
{
|
||||
"text": "The next GTC will take place in the middle of March, 2023.",
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
|
||||
}
|
||||
),
|
||||
):
|
||||
response = await client.inference.completion(
|
||||
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
|
||||
stream=False,
|
||||
model_id="job-1234",
|
||||
sampling_params={
|
||||
"max_tokens": 128,
|
||||
},
|
||||
)
|
||||
|
||||
self.assertEqual(response["model"], "job-1234")
|
||||
self.assertEqual(
|
||||
response["choices"][0]["text"], "The next GTC will take place in the middle of March, 2023."
|
||||
)
|
||||
|
||||
|
||||
def test_list_training_jobs(llama_stack_client, post_training_provider_available):
|
||||
"""Check if the list_jobs method returns a list of jobs."""
|
||||
if not post_training_provider_available:
|
||||
pytest.skip("post training provider not available")
|
||||
|
||||
jobs = llama_stack_client.post_training.job.list()
|
||||
|
||||
assert jobs is not None
|
||||
assert isinstance(jobs, list)
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue