mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
refactor scoring/eval pytests (#607)
# What does this PR do? - remove model registration & parameterize model in scoring/eval pytests ## Test Plan ``` pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py ``` ``` pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py ``` <img width="860" alt="image" src="https://github.com/user-attachments/assets/d4b0badc-da34-4097-9b7c-9511f8261723" /> ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
This commit is contained in:
parent
47b2dc8ae3
commit
41487e6ed1
6 changed files with 54 additions and 43 deletions
|
@ -80,6 +80,13 @@ def pytest_addoption(parser):
|
||||||
help="Specify the inference model to use for testing",
|
help="Specify the inference model to use for testing",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.addoption(
|
||||||
|
"--judge-model",
|
||||||
|
action="store",
|
||||||
|
default="meta-llama/Llama-3.1-8B-Instruct",
|
||||||
|
help="Specify the judge model to use for testing",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def pytest_generate_tests(metafunc):
|
def pytest_generate_tests(metafunc):
|
||||||
if "eval_stack" in metafunc.fixturenames:
|
if "eval_stack" in metafunc.fixturenames:
|
||||||
|
|
|
@ -7,7 +7,7 @@
|
||||||
import pytest
|
import pytest
|
||||||
import pytest_asyncio
|
import pytest_asyncio
|
||||||
|
|
||||||
from llama_stack.distribution.datatypes import Api, Provider
|
from llama_stack.distribution.datatypes import Api, ModelInput, Provider
|
||||||
|
|
||||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||||
from ..conftest import ProviderFixture, remote_stack_fixture
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||||
|
@ -35,7 +35,7 @@ EVAL_FIXTURES = ["meta_reference", "remote"]
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture(scope="session")
|
@pytest_asyncio.fixture(scope="session")
|
||||||
async def eval_stack(request):
|
async def eval_stack(request, inference_model, judge_model):
|
||||||
fixture_dict = request.param
|
fixture_dict = request.param
|
||||||
|
|
||||||
providers = {}
|
providers = {}
|
||||||
|
@ -66,6 +66,13 @@ async def eval_stack(request):
|
||||||
],
|
],
|
||||||
providers,
|
providers,
|
||||||
provider_data,
|
provider_data,
|
||||||
|
models=[
|
||||||
|
ModelInput(model_id=model)
|
||||||
|
for model in [
|
||||||
|
inference_model,
|
||||||
|
judge_model,
|
||||||
|
]
|
||||||
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
return test_stack.impls
|
return test_stack.impls
|
||||||
|
|
|
@ -38,7 +38,7 @@ class Testeval:
|
||||||
assert isinstance(response, list)
|
assert isinstance(response, list)
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_eval_evaluate_rows(self, eval_stack):
|
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
||||||
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
|
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
|
||||||
eval_stack[Api.eval],
|
eval_stack[Api.eval],
|
||||||
eval_stack[Api.eval_tasks],
|
eval_stack[Api.eval_tasks],
|
||||||
|
@ -46,11 +46,7 @@ class Testeval:
|
||||||
eval_stack[Api.datasets],
|
eval_stack[Api.datasets],
|
||||||
eval_stack[Api.models],
|
eval_stack[Api.models],
|
||||||
)
|
)
|
||||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
|
||||||
await models_impl.register_model(
|
|
||||||
model_id=model_id,
|
|
||||||
provider_id="",
|
|
||||||
)
|
|
||||||
await register_dataset(
|
await register_dataset(
|
||||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
)
|
)
|
||||||
|
@ -77,12 +73,12 @@ class Testeval:
|
||||||
scoring_functions=scoring_functions,
|
scoring_functions=scoring_functions,
|
||||||
task_config=AppEvalTaskConfig(
|
task_config=AppEvalTaskConfig(
|
||||||
eval_candidate=ModelCandidate(
|
eval_candidate=ModelCandidate(
|
||||||
model="Llama3.2-3B-Instruct",
|
model=inference_model,
|
||||||
sampling_params=SamplingParams(),
|
sampling_params=SamplingParams(),
|
||||||
),
|
),
|
||||||
scoring_params={
|
scoring_params={
|
||||||
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||||
judge_model="Llama3.1-8B-Instruct",
|
judge_model=judge_model,
|
||||||
prompt_template=JUDGE_PROMPT,
|
prompt_template=JUDGE_PROMPT,
|
||||||
judge_score_regexes=[
|
judge_score_regexes=[
|
||||||
r"Total rating: (\d+)",
|
r"Total rating: (\d+)",
|
||||||
|
@ -97,18 +93,14 @@ class Testeval:
|
||||||
assert "basic::equality" in response.scores
|
assert "basic::equality" in response.scores
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_eval_run_eval(self, eval_stack):
|
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
||||||
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
||||||
eval_stack[Api.eval],
|
eval_stack[Api.eval],
|
||||||
eval_stack[Api.eval_tasks],
|
eval_stack[Api.eval_tasks],
|
||||||
eval_stack[Api.datasets],
|
eval_stack[Api.datasets],
|
||||||
eval_stack[Api.models],
|
eval_stack[Api.models],
|
||||||
)
|
)
|
||||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
|
||||||
await models_impl.register_model(
|
|
||||||
model_id=model_id,
|
|
||||||
provider_id="",
|
|
||||||
)
|
|
||||||
await register_dataset(
|
await register_dataset(
|
||||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
)
|
)
|
||||||
|
@ -127,7 +119,7 @@ class Testeval:
|
||||||
task_id=task_id,
|
task_id=task_id,
|
||||||
task_config=AppEvalTaskConfig(
|
task_config=AppEvalTaskConfig(
|
||||||
eval_candidate=ModelCandidate(
|
eval_candidate=ModelCandidate(
|
||||||
model="Llama3.2-3B-Instruct",
|
model=inference_model,
|
||||||
sampling_params=SamplingParams(),
|
sampling_params=SamplingParams(),
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
|
@ -142,18 +134,14 @@ class Testeval:
|
||||||
assert "basic::subset_of" in eval_response.scores
|
assert "basic::subset_of" in eval_response.scores
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_eval_run_benchmark_eval(self, eval_stack):
|
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
||||||
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
||||||
eval_stack[Api.eval],
|
eval_stack[Api.eval],
|
||||||
eval_stack[Api.eval_tasks],
|
eval_stack[Api.eval_tasks],
|
||||||
eval_stack[Api.datasets],
|
eval_stack[Api.datasets],
|
||||||
eval_stack[Api.models],
|
eval_stack[Api.models],
|
||||||
)
|
)
|
||||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
|
||||||
await models_impl.register_model(
|
|
||||||
model_id=model_id,
|
|
||||||
provider_id="",
|
|
||||||
)
|
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert len(response) > 0
|
assert len(response) > 0
|
||||||
if response[0].provider_id != "huggingface":
|
if response[0].provider_id != "huggingface":
|
||||||
|
@ -192,7 +180,7 @@ class Testeval:
|
||||||
task_id=benchmark_id,
|
task_id=benchmark_id,
|
||||||
task_config=BenchmarkEvalTaskConfig(
|
task_config=BenchmarkEvalTaskConfig(
|
||||||
eval_candidate=ModelCandidate(
|
eval_candidate=ModelCandidate(
|
||||||
model="Llama3.2-3B-Instruct",
|
model=inference_model,
|
||||||
sampling_params=SamplingParams(),
|
sampling_params=SamplingParams(),
|
||||||
),
|
),
|
||||||
num_examples=3,
|
num_examples=3,
|
||||||
|
|
|
@ -47,6 +47,7 @@ def pytest_configure(config):
|
||||||
for fixture_name in [
|
for fixture_name in [
|
||||||
"basic_scoring_together_inference",
|
"basic_scoring_together_inference",
|
||||||
"braintrust_scoring_together_inference",
|
"braintrust_scoring_together_inference",
|
||||||
|
"llm_as_judge_scoring_together_inference",
|
||||||
]:
|
]:
|
||||||
config.addinivalue_line(
|
config.addinivalue_line(
|
||||||
"markers",
|
"markers",
|
||||||
|
@ -61,9 +62,23 @@ def pytest_addoption(parser):
|
||||||
default="meta-llama/Llama-3.2-3B-Instruct",
|
default="meta-llama/Llama-3.2-3B-Instruct",
|
||||||
help="Specify the inference model to use for testing",
|
help="Specify the inference model to use for testing",
|
||||||
)
|
)
|
||||||
|
parser.addoption(
|
||||||
|
"--judge-model",
|
||||||
|
action="store",
|
||||||
|
default="meta-llama/Llama-3.1-8B-Instruct",
|
||||||
|
help="Specify the judge model to use for testing",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def pytest_generate_tests(metafunc):
|
def pytest_generate_tests(metafunc):
|
||||||
|
judge_model = metafunc.config.getoption("--judge-model")
|
||||||
|
if "judge_model" in metafunc.fixturenames:
|
||||||
|
metafunc.parametrize(
|
||||||
|
"judge_model",
|
||||||
|
[pytest.param(judge_model, id="")],
|
||||||
|
indirect=True,
|
||||||
|
)
|
||||||
|
|
||||||
if "scoring_stack" in metafunc.fixturenames:
|
if "scoring_stack" in metafunc.fixturenames:
|
||||||
available_fixtures = {
|
available_fixtures = {
|
||||||
"scoring": SCORING_FIXTURES,
|
"scoring": SCORING_FIXTURES,
|
||||||
|
|
|
@ -21,6 +21,13 @@ def scoring_remote() -> ProviderFixture:
|
||||||
return remote_stack_fixture()
|
return remote_stack_fixture()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def judge_model(request):
|
||||||
|
if hasattr(request, "param"):
|
||||||
|
return request.param
|
||||||
|
return request.config.getoption("--judge-model", None)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def scoring_basic() -> ProviderFixture:
|
def scoring_basic() -> ProviderFixture:
|
||||||
return ProviderFixture(
|
return ProviderFixture(
|
||||||
|
@ -66,7 +73,7 @@ SCORING_FIXTURES = ["basic", "remote", "braintrust", "llm_as_judge"]
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture(scope="session")
|
@pytest_asyncio.fixture(scope="session")
|
||||||
async def scoring_stack(request, inference_model):
|
async def scoring_stack(request, inference_model, judge_model):
|
||||||
fixture_dict = request.param
|
fixture_dict = request.param
|
||||||
|
|
||||||
providers = {}
|
providers = {}
|
||||||
|
@ -85,8 +92,7 @@ async def scoring_stack(request, inference_model):
|
||||||
ModelInput(model_id=model)
|
ModelInput(model_id=model)
|
||||||
for model in [
|
for model in [
|
||||||
inference_model,
|
inference_model,
|
||||||
"Llama3.1-405B-Instruct",
|
judge_model,
|
||||||
"Llama3.1-8B-Instruct",
|
|
||||||
]
|
]
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
|
@ -64,12 +64,6 @@ class TestScoring:
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert len(response) == 1
|
assert len(response) == 1
|
||||||
|
|
||||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
|
||||||
await models_impl.register_model(
|
|
||||||
model_id=model_id,
|
|
||||||
provider_id="",
|
|
||||||
)
|
|
||||||
|
|
||||||
# scoring individual rows
|
# scoring individual rows
|
||||||
rows = await datasetio_impl.get_rows_paginated(
|
rows = await datasetio_impl.get_rows_paginated(
|
||||||
dataset_id="test_dataset",
|
dataset_id="test_dataset",
|
||||||
|
@ -103,7 +97,7 @@ class TestScoring:
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_scoring_score_with_params_llm_as_judge(
|
async def test_scoring_score_with_params_llm_as_judge(
|
||||||
self, scoring_stack, sample_judge_prompt_template
|
self, scoring_stack, sample_judge_prompt_template, judge_model
|
||||||
):
|
):
|
||||||
(
|
(
|
||||||
scoring_impl,
|
scoring_impl,
|
||||||
|
@ -122,12 +116,6 @@ class TestScoring:
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert len(response) == 1
|
assert len(response) == 1
|
||||||
|
|
||||||
for model_id in ["Llama3.1-405B-Instruct"]:
|
|
||||||
await models_impl.register_model(
|
|
||||||
model_id=model_id,
|
|
||||||
provider_id="",
|
|
||||||
)
|
|
||||||
|
|
||||||
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
|
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
|
||||||
provider_id = scoring_fns_list[0].provider_id
|
provider_id = scoring_fns_list[0].provider_id
|
||||||
if provider_id == "braintrust" or provider_id == "basic":
|
if provider_id == "braintrust" or provider_id == "basic":
|
||||||
|
@ -142,7 +130,7 @@ class TestScoring:
|
||||||
|
|
||||||
scoring_functions = {
|
scoring_functions = {
|
||||||
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
|
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
|
||||||
judge_model="Llama3.1-405B-Instruct",
|
judge_model=judge_model,
|
||||||
prompt_template=sample_judge_prompt_template,
|
prompt_template=sample_judge_prompt_template,
|
||||||
judge_score_regexes=[r"Score: (\d+)"],
|
judge_score_regexes=[r"Score: (\d+)"],
|
||||||
aggregation_functions=[AggregationFunctionType.categorical_count],
|
aggregation_functions=[AggregationFunctionType.categorical_count],
|
||||||
|
@ -170,7 +158,7 @@ class TestScoring:
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_scoring_score_with_aggregation_functions(
|
async def test_scoring_score_with_aggregation_functions(
|
||||||
self, scoring_stack, sample_judge_prompt_template
|
self, scoring_stack, sample_judge_prompt_template, judge_model
|
||||||
):
|
):
|
||||||
(
|
(
|
||||||
scoring_impl,
|
scoring_impl,
|
||||||
|
@ -204,7 +192,7 @@ class TestScoring:
|
||||||
if x.provider_id == "llm-as-judge":
|
if x.provider_id == "llm-as-judge":
|
||||||
aggr_fns = [AggregationFunctionType.categorical_count]
|
aggr_fns = [AggregationFunctionType.categorical_count]
|
||||||
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
|
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
|
||||||
judge_model="Llama3.1-405B-Instruct",
|
judge_model=judge_model,
|
||||||
prompt_template=sample_judge_prompt_template,
|
prompt_template=sample_judge_prompt_template,
|
||||||
judge_score_regexes=[r"Score: (\d+)"],
|
judge_score_regexes=[r"Score: (\d+)"],
|
||||||
aggregation_functions=aggr_fns,
|
aggregation_functions=aggr_fns,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue