refactor scoring/eval pytests (#607)

# What does this PR do?

- remove model registration & parameterize model in scoring/eval pytests

## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```

```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
```
<img width="860" alt="image"
src="https://github.com/user-attachments/assets/d4b0badc-da34-4097-9b7c-9511f8261723"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2024-12-11 10:47:37 -08:00 committed by GitHub
parent 47b2dc8ae3
commit 41487e6ed1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 54 additions and 43 deletions

View file

@ -80,6 +80,13 @@ def pytest_addoption(parser):
help="Specify the inference model to use for testing",
)
parser.addoption(
"--judge-model",
action="store",
default="meta-llama/Llama-3.1-8B-Instruct",
help="Specify the judge model to use for testing",
)
def pytest_generate_tests(metafunc):
if "eval_stack" in metafunc.fixturenames:

View file

@ -7,7 +7,7 @@
import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.distribution.datatypes import Api, ModelInput, Provider
from llama_stack.providers.tests.resolver import construct_stack_for_test
from ..conftest import ProviderFixture, remote_stack_fixture
@ -35,7 +35,7 @@ EVAL_FIXTURES = ["meta_reference", "remote"]
@pytest_asyncio.fixture(scope="session")
async def eval_stack(request):
async def eval_stack(request, inference_model, judge_model):
fixture_dict = request.param
providers = {}
@ -66,6 +66,13 @@ async def eval_stack(request):
],
providers,
provider_data,
models=[
ModelInput(model_id=model)
for model in [
inference_model,
judge_model,
]
],
)
return test_stack.impls

View file

@ -38,7 +38,7 @@ class Testeval:
assert isinstance(response, list)
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack):
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
@ -46,11 +46,7 @@ class Testeval:
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
@ -77,12 +73,12 @@ class Testeval:
scoring_functions=scoring_functions,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
model=inference_model,
sampling_params=SamplingParams(),
),
scoring_params={
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-8B-Instruct",
judge_model=judge_model,
prompt_template=JUDGE_PROMPT,
judge_score_regexes=[
r"Total rating: (\d+)",
@ -97,18 +93,14 @@ class Testeval:
assert "basic::equality" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
@ -127,7 +119,7 @@ class Testeval:
task_id=task_id,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
model=inference_model,
sampling_params=SamplingParams(),
),
),
@ -142,18 +134,14 @@ class Testeval:
assert "basic::subset_of" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack):
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
response = await datasets_impl.list_datasets()
assert len(response) > 0
if response[0].provider_id != "huggingface":
@ -192,7 +180,7 @@ class Testeval:
task_id=benchmark_id,
task_config=BenchmarkEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
model=inference_model,
sampling_params=SamplingParams(),
),
num_examples=3,

View file

@ -47,6 +47,7 @@ def pytest_configure(config):
for fixture_name in [
"basic_scoring_together_inference",
"braintrust_scoring_together_inference",
"llm_as_judge_scoring_together_inference",
]:
config.addinivalue_line(
"markers",
@ -61,9 +62,23 @@ def pytest_addoption(parser):
default="meta-llama/Llama-3.2-3B-Instruct",
help="Specify the inference model to use for testing",
)
parser.addoption(
"--judge-model",
action="store",
default="meta-llama/Llama-3.1-8B-Instruct",
help="Specify the judge model to use for testing",
)
def pytest_generate_tests(metafunc):
judge_model = metafunc.config.getoption("--judge-model")
if "judge_model" in metafunc.fixturenames:
metafunc.parametrize(
"judge_model",
[pytest.param(judge_model, id="")],
indirect=True,
)
if "scoring_stack" in metafunc.fixturenames:
available_fixtures = {
"scoring": SCORING_FIXTURES,

View file

@ -21,6 +21,13 @@ def scoring_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def judge_model(request):
if hasattr(request, "param"):
return request.param
return request.config.getoption("--judge-model", None)
@pytest.fixture(scope="session")
def scoring_basic() -> ProviderFixture:
return ProviderFixture(
@ -66,7 +73,7 @@ SCORING_FIXTURES = ["basic", "remote", "braintrust", "llm_as_judge"]
@pytest_asyncio.fixture(scope="session")
async def scoring_stack(request, inference_model):
async def scoring_stack(request, inference_model, judge_model):
fixture_dict = request.param
providers = {}
@ -85,8 +92,7 @@ async def scoring_stack(request, inference_model):
ModelInput(model_id=model)
for model in [
inference_model,
"Llama3.1-405B-Instruct",
"Llama3.1-8B-Instruct",
judge_model,
]
],
)

View file

@ -64,12 +64,6 @@ class TestScoring:
response = await datasets_impl.list_datasets()
assert len(response) == 1
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
# scoring individual rows
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
@ -103,7 +97,7 @@ class TestScoring:
@pytest.mark.asyncio
async def test_scoring_score_with_params_llm_as_judge(
self, scoring_stack, sample_judge_prompt_template
self, scoring_stack, sample_judge_prompt_template, judge_model
):
(
scoring_impl,
@ -122,12 +116,6 @@ class TestScoring:
response = await datasets_impl.list_datasets()
assert len(response) == 1
for model_id in ["Llama3.1-405B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
provider_id = scoring_fns_list[0].provider_id
if provider_id == "braintrust" or provider_id == "basic":
@ -142,7 +130,7 @@ class TestScoring:
scoring_functions = {
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
judge_model=judge_model,
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=[AggregationFunctionType.categorical_count],
@ -170,7 +158,7 @@ class TestScoring:
@pytest.mark.asyncio
async def test_scoring_score_with_aggregation_functions(
self, scoring_stack, sample_judge_prompt_template
self, scoring_stack, sample_judge_prompt_template, judge_model
):
(
scoring_impl,
@ -204,7 +192,7 @@ class TestScoring:
if x.provider_id == "llm-as-judge":
aggr_fns = [AggregationFunctionType.categorical_count]
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
judge_model=judge_model,
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=aggr_fns,