mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-14 23:52:47 +00:00
refactor: switch to the new default nomic-embed-text-v1.5 embedding model in LS
This commit is contained in:
parent
b95f095a54
commit
429f1d2405
51 changed files with 16149 additions and 83 deletions
|
|
@ -83,7 +83,7 @@ class SentenceTransformerEmbeddingMixin:
|
|||
def _load_model():
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
return SentenceTransformer(model)
|
||||
return SentenceTransformer(model, trust_remote_code=True)
|
||||
|
||||
loaded_model = await asyncio.to_thread(_load_model)
|
||||
EMBEDDING_MODELS[model] = loaded_model
|
||||
|
|
|
|||
|
|
@ -352,7 +352,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
extra = params.model_extra or {}
|
||||
provider_vector_db_id = extra.get("provider_vector_db_id")
|
||||
embedding_model = extra.get("embedding_model")
|
||||
embedding_dimension = extra.get("embedding_dimension", 384)
|
||||
embedding_dimension = extra.get("embedding_dimension", 768)
|
||||
provider_id = extra.get("provider_id")
|
||||
|
||||
# Derive the canonical vector_db_id (allow override, else generate)
|
||||
|
|
@ -364,7 +364,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if embedding_model is None:
|
||||
raise ValueError("Embedding model is required")
|
||||
|
||||
# Embedding dimension is required (defaulted to 384 if not provided)
|
||||
# Embedding dimension is required (defaulted to 768 if not provided)
|
||||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue