mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-06 20:44:58 +00:00
Merge branch 'main' into store_registeration_bug_fix
This commit is contained in:
commit
43a2600158
58 changed files with 21962 additions and 343 deletions
|
@ -93,3 +93,11 @@ class Benchmarks(Protocol):
|
|||
:param metadata: The metadata to use for the benchmark.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="DELETE")
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
"""Unregister a benchmark.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to unregister.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -197,3 +197,11 @@ class ScoringFunctions(Protocol):
|
|||
:param params: The parameters for the scoring function for benchmark eval, these can be overridden for app eval.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="DELETE")
|
||||
async def unregister_scoring_function(self, scoring_fn_id: str) -> None:
|
||||
"""Unregister a scoring function.
|
||||
|
||||
:param scoring_fn_id: The ID of the scoring function to unregister.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -56,3 +56,7 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
|
|||
provider_resource_id=provider_benchmark_id,
|
||||
)
|
||||
await self.register_object(benchmark)
|
||||
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
existing_benchmark = await self.get_benchmark(benchmark_id)
|
||||
await self.unregister_object(existing_benchmark)
|
||||
|
|
|
@ -64,6 +64,10 @@ async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
|
|||
return await p.unregister_shield(obj.identifier)
|
||||
elif api == Api.datasetio:
|
||||
return await p.unregister_dataset(obj.identifier)
|
||||
elif api == Api.eval:
|
||||
return await p.unregister_benchmark(obj.identifier)
|
||||
elif api == Api.scoring:
|
||||
return await p.unregister_scoring_function(obj.identifier)
|
||||
elif api == Api.tool_runtime:
|
||||
return await p.unregister_toolgroup(obj.identifier)
|
||||
else:
|
||||
|
|
|
@ -60,3 +60,7 @@ class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
|
|||
)
|
||||
scoring_fn.provider_id = provider_id
|
||||
await self.register_object(scoring_fn)
|
||||
|
||||
async def unregister_scoring_function(self, scoring_fn_id: str) -> None:
|
||||
existing_scoring_fn = await self.get_scoring_function(scoring_fn_id)
|
||||
await self.unregister_object(existing_scoring_fn)
|
||||
|
|
|
@ -10,6 +10,7 @@ apis:
|
|||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
- files
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: watsonx
|
||||
|
@ -94,6 +95,14 @@ providers:
|
|||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/watsonx/files}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/files_metadata.db
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/registry.db
|
||||
|
|
|
@ -9,6 +9,7 @@ from pathlib import Path
|
|||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.datatypes import BuildProvider, ModelInput, Provider, ToolGroupInput
|
||||
from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
|
@ -16,7 +17,7 @@ from llama_stack.providers.remote.inference.watsonx import WatsonXConfig
|
|||
from llama_stack.providers.remote.inference.watsonx.models import MODEL_ENTRIES
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
def get_distribution_template(name: str = "watsonx") -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": [
|
||||
BuildProvider(provider_type="remote::watsonx"),
|
||||
|
@ -42,6 +43,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
BuildProvider(provider_type="inline::rag-runtime"),
|
||||
BuildProvider(provider_type="remote::model-context-protocol"),
|
||||
],
|
||||
"files": [BuildProvider(provider_type="inline::localfs")],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
|
@ -79,9 +81,14 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
)
|
||||
|
||||
files_provider = Provider(
|
||||
provider_id="meta-reference-files",
|
||||
provider_type="inline::localfs",
|
||||
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
default_models, _ = get_model_registry(available_models)
|
||||
return DistributionTemplate(
|
||||
name="watsonx",
|
||||
name=name,
|
||||
distro_type="remote_hosted",
|
||||
description="Use watsonx for running LLM inference",
|
||||
container_image=None,
|
||||
|
@ -92,6 +99,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider, embedding_provider],
|
||||
"files": [files_provider],
|
||||
},
|
||||
default_models=default_models + [embedding_model],
|
||||
default_tool_groups=default_tool_groups,
|
||||
|
|
|
@ -75,6 +75,13 @@ class MetaReferenceEvalImpl(
|
|||
)
|
||||
self.benchmarks[task_def.identifier] = task_def
|
||||
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
if benchmark_id in self.benchmarks:
|
||||
del self.benchmarks[benchmark_id]
|
||||
|
||||
key = f"{EVAL_TASKS_PREFIX}{benchmark_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
|
|
|
@ -63,6 +63,9 @@ class LlmAsJudgeScoringImpl(
|
|||
async def register_scoring_function(self, function_def: ScoringFn) -> None:
|
||||
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
|
||||
|
||||
async def unregister_scoring_function(self, scoring_fn_id: str) -> None:
|
||||
self.llm_as_judge_fn.unregister_scoring_fn_def(scoring_fn_id)
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
|
@ -51,18 +51,23 @@ class NVIDIAEvalImpl(
|
|||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def _evaluator_get(self, path):
|
||||
async def _evaluator_get(self, path: str):
|
||||
"""Helper for making GET requests to the evaluator service."""
|
||||
response = requests.get(url=f"{self.config.evaluator_url}{path}")
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def _evaluator_post(self, path, data):
|
||||
async def _evaluator_post(self, path: str, data: dict[str, Any]):
|
||||
"""Helper for making POST requests to the evaluator service."""
|
||||
response = requests.post(url=f"{self.config.evaluator_url}{path}", json=data)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def _evaluator_delete(self, path: str) -> None:
|
||||
"""Helper for making DELETE requests to the evaluator service."""
|
||||
response = requests.delete(url=f"{self.config.evaluator_url}{path}")
|
||||
response.raise_for_status()
|
||||
|
||||
async def register_benchmark(self, task_def: Benchmark) -> None:
|
||||
"""Register a benchmark as an evaluation configuration."""
|
||||
await self._evaluator_post(
|
||||
|
@ -75,6 +80,10 @@ class NVIDIAEvalImpl(
|
|||
},
|
||||
)
|
||||
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
"""Unregister a benchmark evaluation configuration from NeMo Evaluator."""
|
||||
await self._evaluator_delete(f"/v1/evaluation/configs/{DEFAULT_NAMESPACE}/{benchmark_id}")
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
from collections.abc import AsyncGenerator
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -33,6 +34,7 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
@ -41,16 +43,15 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_model_input_info,
|
||||
completion_request_to_prompt_model_input_info,
|
||||
|
@ -73,26 +74,49 @@ def build_hf_repo_model_entries():
|
|||
|
||||
|
||||
class _HfAdapter(
|
||||
OpenAIMixin,
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
client: AsyncInferenceClient
|
||||
url: str
|
||||
api_key: SecretStr
|
||||
|
||||
hf_client: AsyncInferenceClient
|
||||
max_tokens: int
|
||||
model_id: str
|
||||
|
||||
overwrite_completion_id = True # TGI always returns id=""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.huggingface_repo_to_llama_model_id = {
|
||||
model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo
|
||||
}
|
||||
|
||||
def get_api_key(self):
|
||||
return self.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self):
|
||||
return self.url
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
models = []
|
||||
async for model in self.client.models.list():
|
||||
models.append(
|
||||
Model(
|
||||
identifier=model.id,
|
||||
provider_resource_id=model.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model = await self.register_helper.register_model(model)
|
||||
if model.provider_resource_id != self.model_id:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
|
||||
|
@ -176,7 +200,7 @@ class _HfAdapter(
|
|||
params = await self._get_params_for_completion(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.text_generation(**params)
|
||||
s = await self.hf_client.text_generation(**params)
|
||||
async for chunk in s:
|
||||
token_result = chunk.token
|
||||
finish_reason = None
|
||||
|
@ -194,7 +218,7 @@ class _HfAdapter(
|
|||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params_for_completion(request)
|
||||
r = await self.client.text_generation(**params)
|
||||
r = await self.hf_client.text_generation(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r.details.finish_reason,
|
||||
|
@ -241,7 +265,7 @@ class _HfAdapter(
|
|||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.text_generation(**params)
|
||||
r = await self.hf_client.text_generation(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r.details.finish_reason,
|
||||
|
@ -256,7 +280,7 @@ class _HfAdapter(
|
|||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.text_generation(**params)
|
||||
s = await self.hf_client.text_generation(**params)
|
||||
async for chunk in s:
|
||||
token_result = chunk.token
|
||||
|
||||
|
@ -308,18 +332,21 @@ class TGIAdapter(_HfAdapter):
|
|||
if not config.url:
|
||||
raise ValueError("You must provide a URL in run.yaml (or via the TGI_URL environment variable) to use TGI.")
|
||||
log.info(f"Initializing TGI client with url={config.url}")
|
||||
self.client = AsyncInferenceClient(model=config.url, provider="hf-inference")
|
||||
endpoint_info = await self.client.get_endpoint_info()
|
||||
self.hf_client = AsyncInferenceClient(model=config.url, provider="hf-inference")
|
||||
endpoint_info = await self.hf_client.get_endpoint_info()
|
||||
self.max_tokens = endpoint_info["max_total_tokens"]
|
||||
self.model_id = endpoint_info["model_id"]
|
||||
self.url = f"{config.url.rstrip('/')}/v1"
|
||||
self.api_key = SecretStr("NO_KEY")
|
||||
|
||||
|
||||
class InferenceAPIAdapter(_HfAdapter):
|
||||
async def initialize(self, config: InferenceAPIImplConfig) -> None:
|
||||
self.client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value())
|
||||
endpoint_info = await self.client.get_endpoint_info()
|
||||
self.hf_client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value())
|
||||
endpoint_info = await self.hf_client.get_endpoint_info()
|
||||
self.max_tokens = endpoint_info["max_total_tokens"]
|
||||
self.model_id = endpoint_info["model_id"]
|
||||
# TODO: how do we set url for this?
|
||||
|
||||
|
||||
class InferenceEndpointAdapter(_HfAdapter):
|
||||
|
@ -331,6 +358,7 @@ class InferenceEndpointAdapter(_HfAdapter):
|
|||
endpoint.wait(timeout=60)
|
||||
|
||||
# Initialize the adapter
|
||||
self.client = endpoint.async_client
|
||||
self.hf_client = endpoint.async_client
|
||||
self.model_id = endpoint.repository
|
||||
self.max_tokens = int(endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"])
|
||||
# TODO: how do we set url for this?
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
|
@ -21,57 +20,84 @@ SAFETY_MODELS_ENTRIES = [
|
|||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
|
||||
# source: https://docs.together.ai/docs/serverless-models#embedding-models
|
||||
EMBEDDING_MODEL_ENTRIES = {
|
||||
"togethercomputer/m2-bert-80M-32k-retrieval": ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-32k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 32768,
|
||||
},
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
"BAAI/bge-large-en-v1.5": ProviderModelEntry(
|
||||
provider_model_id="BAAI/bge-large-en-v1.5",
|
||||
metadata={
|
||||
"embedding_dimension": 1024,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
"BAAI/bge-base-en-v1.5": ProviderModelEntry(
|
||||
provider_model_id="BAAI/bge-base-en-v1.5",
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
"Alibaba-NLP/gte-modernbert-base": ProviderModelEntry(
|
||||
provider_model_id="Alibaba-NLP/gte-modernbert-base",
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
"intfloat/multilingual-e5-large-instruct": ProviderModelEntry(
|
||||
provider_model_id="intfloat/multilingual-e5-large-instruct",
|
||||
metadata={
|
||||
"embedding_dimension": 1024,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
}
|
||||
MODEL_ENTRIES = (
|
||||
[
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
]
|
||||
+ SAFETY_MODELS_ENTRIES
|
||||
+ list(EMBEDDING_MODEL_ENTRIES.values())
|
||||
)
|
||||
|
|
|
@ -4,11 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
from together import AsyncTogether
|
||||
from together.constants import BASE_URL
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -23,12 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -38,18 +33,20 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
|
@ -59,15 +56,22 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
from .models import EMBEDDING_MODEL_ENTRIES, MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::together")
|
||||
|
||||
|
||||
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
||||
self.config = config
|
||||
self._model_cache: dict[str, Model] = {}
|
||||
|
||||
def get_api_key(self):
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self):
|
||||
return BASE_URL
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
@ -255,6 +259,37 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._model_cache = {}
|
||||
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
|
||||
for m in await self._get_client().models.list():
|
||||
if m.type == "embedding":
|
||||
if m.id not in EMBEDDING_MODEL_ENTRIES:
|
||||
logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.")
|
||||
continue
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=EMBEDDING_MODEL_ENTRIES[m.id].provider_model_id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.embedding,
|
||||
metadata=EMBEDDING_MODEL_ENTRIES[m.id].metadata,
|
||||
)
|
||||
else:
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=m.id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
|
||||
return self._model_cache.values()
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return True
|
||||
|
||||
async def check_model_availability(self, model):
|
||||
return model in self._model_cache
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -263,125 +298,39 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
"""
|
||||
Together's OpenAI-compatible embeddings endpoint is not compatible with
|
||||
the standard OpenAI embeddings endpoint.
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
The endpoint -
|
||||
- does not return usage information
|
||||
- does not support user param, returns 400 Unrecognized request arguments supplied: user
|
||||
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
|
||||
- does not support encoding_format param, always returns floats, never base64
|
||||
"""
|
||||
# Together support ticket #13332 -> will not fix
|
||||
if user is not None:
|
||||
raise ValueError("Together's embeddings endpoint does not support user param.")
|
||||
# Together support ticket #13333 -> escalated
|
||||
if dimensions is not None:
|
||||
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
|
||||
# Together support ticket #13331 -> will not fix, compute client side
|
||||
if encoding_format not in (None, NOT_GIVEN, "float"):
|
||||
raise ValueError("Together's embeddings endpoint only supports encoding_format='float'.")
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=await self._get_provider_model_id(model),
|
||||
input=input,
|
||||
)
|
||||
return await self._get_openai_client().completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
if params.get("stream", False):
|
||||
return self._stream_openai_chat_completion(params)
|
||||
return await self._get_openai_client().chat.completions.create(**params) # type: ignore
|
||||
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
|
||||
|
||||
async def _stream_openai_chat_completion(self, params: dict) -> AsyncGenerator:
|
||||
# together.ai sometimes adds usage data to the stream, even if include_usage is False
|
||||
# This causes an unexpected final chunk with empty choices array to be sent
|
||||
# to clients that may not handle it gracefully.
|
||||
include_usage = False
|
||||
if params.get("stream_options", None):
|
||||
include_usage = params["stream_options"].get("include_usage", False)
|
||||
stream = await self._get_openai_client().chat.completions.create(**params)
|
||||
# Together support ticket #13330 -> escalated
|
||||
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
|
||||
if not hasattr(response, "usage") or response.usage is None:
|
||||
logger.warning(
|
||||
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
|
||||
)
|
||||
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
|
||||
seen_finish_reason = False
|
||||
async for chunk in stream:
|
||||
# Final usage chunk with no choices that the user didn't request, so discard
|
||||
if not include_usage and seen_finish_reason and len(chunk.choices) == 0:
|
||||
break
|
||||
yield chunk
|
||||
for choice in chunk.choices:
|
||||
if choice.finish_reason:
|
||||
seen_finish_reason = True
|
||||
break
|
||||
return response
|
||||
|
|
|
@ -26,11 +26,11 @@ class WatsonXConfig(BaseModel):
|
|||
)
|
||||
api_key: SecretStr | None = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_API_KEY"),
|
||||
description="The watsonx API key, only needed of using the hosted service",
|
||||
description="The watsonx API key",
|
||||
)
|
||||
project_id: str | None = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_PROJECT_ID"),
|
||||
description="The Project ID key, only needed of using the hosted service",
|
||||
description="The Project ID key",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
|
|
|
@ -38,6 +38,7 @@ from llama_stack.apis.inference import (
|
|||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
|
@ -57,14 +58,29 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from . import WatsonXConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::watsonx")
|
||||
|
||||
|
||||
# Note on structured output
|
||||
# WatsonX returns responses with a json embedded into a string.
|
||||
# Examples:
|
||||
|
||||
# ChatCompletionResponse(completion_message=CompletionMessage(content='```json\n{\n
|
||||
# "first_name": "Michael",\n "last_name": "Jordan",\n'...)
|
||||
# Not even a valid JSON, but we can still extract the JSON from the content
|
||||
|
||||
# CompletionResponse(content=' \nThe best answer is $\\boxed{\\{"name": "Michael Jordan",
|
||||
# "year_born": "1963", "year_retired": "2003"\\}}$')
|
||||
# Find the start of the boxed content
|
||||
|
||||
|
||||
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: WatsonXConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
|
||||
print(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
|
||||
logger.info(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
self._config = config
|
||||
self._openai_client: AsyncOpenAI | None = None
|
||||
|
||||
self._project_id = self._config.project_id
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
@ -43,6 +44,12 @@ class OpenAIMixin(ABC):
|
|||
The model_store is set in routing_tables/common.py during provider initialization.
|
||||
"""
|
||||
|
||||
# Allow subclasses to control whether to overwrite the 'id' field in OpenAI responses
|
||||
# is overwritten with a client-side generated id.
|
||||
#
|
||||
# This is useful for providers that do not return a unique id in the response.
|
||||
overwrite_completion_id: bool = False
|
||||
|
||||
@abstractmethod
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
|
@ -110,6 +117,23 @@ class OpenAIMixin(ABC):
|
|||
raise ValueError(f"Model {model} has no provider_resource_id")
|
||||
return model_obj.provider_resource_id
|
||||
|
||||
async def _maybe_overwrite_id(self, resp: Any, stream: bool | None) -> Any:
|
||||
if not self.overwrite_completion_id:
|
||||
return resp
|
||||
|
||||
new_id = f"cltsd-{uuid.uuid4()}"
|
||||
if stream:
|
||||
|
||||
async def _gen():
|
||||
async for chunk in resp:
|
||||
chunk.id = new_id
|
||||
yield chunk
|
||||
|
||||
return _gen()
|
||||
else:
|
||||
resp.id = new_id
|
||||
return resp
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -147,7 +171,7 @@ class OpenAIMixin(ABC):
|
|||
extra_body["guided_choice"] = guided_choice
|
||||
|
||||
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
||||
return await self.client.completions.create( # type: ignore[no-any-return]
|
||||
resp = await self.client.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
prompt=prompt,
|
||||
|
@ -171,6 +195,8 @@ class OpenAIMixin(ABC):
|
|||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -200,8 +226,7 @@ class OpenAIMixin(ABC):
|
|||
"""
|
||||
Direct OpenAI chat completion API call.
|
||||
"""
|
||||
# Type ignore because return types are compatible
|
||||
return await self.client.chat.completions.create( # type: ignore[no-any-return]
|
||||
resp = await self.client.chat.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
|
@ -229,6 +254,8 @@ class OpenAIMixin(ABC):
|
|||
)
|
||||
)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
from __future__ import annotations # for forward references
|
||||
|
||||
import hashlib
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
|
@ -243,11 +242,10 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
|
|||
global _current_mode, _current_storage
|
||||
|
||||
if _current_mode == InferenceMode.LIVE or _current_storage is None:
|
||||
# Normal operation
|
||||
if inspect.iscoroutinefunction(original_method):
|
||||
return await original_method(self, *args, **kwargs)
|
||||
else:
|
||||
if endpoint == "/v1/models":
|
||||
return original_method(self, *args, **kwargs)
|
||||
else:
|
||||
return await original_method(self, *args, **kwargs)
|
||||
|
||||
# Get base URL based on client type
|
||||
if client_type == "openai":
|
||||
|
@ -298,10 +296,10 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
|
|||
)
|
||||
|
||||
elif _current_mode == InferenceMode.RECORD:
|
||||
if inspect.iscoroutinefunction(original_method):
|
||||
response = await original_method(self, *args, **kwargs)
|
||||
else:
|
||||
if endpoint == "/v1/models":
|
||||
response = original_method(self, *args, **kwargs)
|
||||
else:
|
||||
response = await original_method(self, *args, **kwargs)
|
||||
|
||||
# we want to store the result of the iterator, not the iterator itself
|
||||
if endpoint == "/v1/models":
|
||||
|
|
8
llama_stack/ui/package-lock.json
generated
8
llama_stack/ui/package-lock.json
generated
|
@ -18,7 +18,7 @@
|
|||
"class-variance-authority": "^0.7.1",
|
||||
"clsx": "^2.1.1",
|
||||
"framer-motion": "^12.23.12",
|
||||
"llama-stack-client": "^0.2.21",
|
||||
"llama-stack-client": "^0.2.22",
|
||||
"lucide-react": "^0.542.0",
|
||||
"next": "15.5.3",
|
||||
"next-auth": "^4.24.11",
|
||||
|
@ -10314,9 +10314,9 @@
|
|||
"license": "MIT"
|
||||
},
|
||||
"node_modules/llama-stack-client": {
|
||||
"version": "0.2.21",
|
||||
"resolved": "https://registry.npmjs.org/llama-stack-client/-/llama-stack-client-0.2.21.tgz",
|
||||
"integrity": "sha512-rjU2Vx5xStxDYavU8K1An/SYXiQQjroLcK98B+p0Paz/a7OgRao2S0YwvThJjPUyChY4fO03UIXP9LpmHqlXWQ==",
|
||||
"version": "0.2.22",
|
||||
"resolved": "https://registry.npmjs.org/llama-stack-client/-/llama-stack-client-0.2.22.tgz",
|
||||
"integrity": "sha512-7aW3UQj5MwjV73Brd+yQ1e4W1W33nhozyeHM5tzOgbsVZ88tL78JNiNvyFqDR5w6V9XO4/uSGGiQVG6v83yR4w==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
"class-variance-authority": "^0.7.1",
|
||||
"clsx": "^2.1.1",
|
||||
"framer-motion": "^12.23.12",
|
||||
"llama-stack-client": "^0.2.21",
|
||||
"llama-stack-client": "^0.2.22",
|
||||
"lucide-react": "^0.542.0",
|
||||
"next": "15.5.3",
|
||||
"next-auth": "^4.24.11",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue