mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
refactor: remove dead inference API code and clean up imports (#4093)
# What does this PR do? Delete ~2,000 lines of dead code from the old bespoke inference API that was replaced by OpenAI-only API. This includes removing unused type conversion functions, dead provider methods, and event_logger.py. Clean up imports across the codebase to remove references to deleted types. This eliminates unnecessary code and dependencies, helping isolate the API package as a self-contained module. This is the last interdependency between the .api package and "exterior" packages, meaning that now every other package in llama stack imports the API, not the other way around. ## Test Plan this is a structural change, no tests needed. --------- Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
433438cfc0
commit
43adc23ef6
22 changed files with 593 additions and 2141 deletions
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import math
|
||||
from collections.abc import Generator
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
|
@ -14,21 +13,19 @@ from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerToken
|
|||
from llama_stack.apis.inference import (
|
||||
GreedySamplingStrategy,
|
||||
JsonSchemaResponseFormat,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAIResponseFormatJSONSchema,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import QuantizationMode
|
||||
from llama_stack.models.llama.datatypes import QuantizationMode, ToolPromptFormat
|
||||
from llama_stack.models.llama.llama3.generation import Llama3
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
||||
from llama_stack.models.llama.llama4.generation import Llama4
|
||||
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
||||
from llama_stack.models.llama.sku_types import Model, ModelFamily
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
get_default_tool_prompt_format,
|
||||
)
|
||||
|
||||
from .common import model_checkpoint_dir
|
||||
from .config import MetaReferenceInferenceConfig
|
||||
|
|
@ -106,14 +103,6 @@ def _infer_sampling_params(sampling_params: SamplingParams):
|
|||
return temperature, top_p
|
||||
|
||||
|
||||
def _infer_tool_prompt_format(request: ChatCompletionRequestWithRawContent):
|
||||
tool_config = request.tool_config
|
||||
if tool_config is not None and tool_config.tool_prompt_format is not None:
|
||||
return tool_config.tool_prompt_format
|
||||
else:
|
||||
return get_default_tool_prompt_format(request.model)
|
||||
|
||||
|
||||
class LlamaGenerator:
|
||||
def __init__(
|
||||
self,
|
||||
|
|
@ -157,55 +146,56 @@ class LlamaGenerator:
|
|||
self.args = self.inner_generator.args
|
||||
self.formatter = self.inner_generator.formatter
|
||||
|
||||
def completion(
|
||||
self,
|
||||
request_batch: list[CompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
first_request = request_batch[0]
|
||||
sampling_params = first_request.sampling_params or SamplingParams()
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
yield from self.inner_generator.generate(
|
||||
llm_inputs=[self.formatter.encode_content(request.content) for request in request_batch],
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(first_request.logprobs),
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
first_request.response_format,
|
||||
),
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request_batch: list[ChatCompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
first_request = request_batch[0]
|
||||
sampling_params = first_request.sampling_params or SamplingParams()
|
||||
request: OpenAIChatCompletionRequestWithExtraBody,
|
||||
raw_messages: list,
|
||||
):
|
||||
"""Generate chat completion using OpenAI request format.
|
||||
|
||||
Args:
|
||||
request: OpenAI chat completion request
|
||||
raw_messages: Pre-converted list of RawMessage objects
|
||||
"""
|
||||
|
||||
# Determine tool prompt format
|
||||
tool_prompt_format = ToolPromptFormat.json if request.tools else ToolPromptFormat.json
|
||||
|
||||
# Prepare sampling params
|
||||
sampling_params = SamplingParams()
|
||||
if request.temperature is not None or request.top_p is not None:
|
||||
sampling_params.strategy = TopPSamplingStrategy(
|
||||
temperature=request.temperature if request.temperature is not None else 1.0,
|
||||
top_p=request.top_p if request.top_p is not None else 1.0,
|
||||
)
|
||||
if request.max_tokens:
|
||||
sampling_params.max_tokens = request.max_tokens
|
||||
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
|
||||
# Get logits processor for response format
|
||||
logits_processor = None
|
||||
if request.response_format:
|
||||
if isinstance(request.response_format, OpenAIResponseFormatJSONSchema):
|
||||
# Extract the actual schema from OpenAIJSONSchema TypedDict
|
||||
schema_dict = request.response_format.json_schema.get("schema") or {}
|
||||
json_schema_format = JsonSchemaResponseFormat(
|
||||
type=ResponseFormatType.json_schema,
|
||||
json_schema=schema_dict,
|
||||
)
|
||||
logits_processor = get_logits_processor(self.tokenizer, self.args.vocab_size, json_schema_format)
|
||||
|
||||
# Generate
|
||||
yield from self.inner_generator.generate(
|
||||
llm_inputs=[
|
||||
self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request))
|
||||
for request in request_batch
|
||||
],
|
||||
llm_inputs=[self.formatter.encode_dialog_prompt(raw_messages, tool_prompt_format)],
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(first_request.logprobs),
|
||||
logprobs=False,
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
first_request.response_format,
|
||||
),
|
||||
logits_processor=logits_processor,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,12 +5,19 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
InferenceProvider,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAIChatCompletionUsage,
|
||||
OpenAIChoice,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIUserMessageParam,
|
||||
ToolChoice,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
|
|
@ -19,12 +26,20 @@ from llama_stack.apis.inference.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import RawMessage, RawTextItem, ToolDefinition
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
||||
from llama_stack.models.llama.llama3.prompt_templates import (
|
||||
JsonCustomToolGenerator,
|
||||
SystemDefaultGenerator,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
||||
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
||||
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
|
||||
PythonListCustomToolGenerator as PythonListCustomToolGeneratorLlama4,
|
||||
)
|
||||
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
from llama_stack.models.llama.sku_types import ModelFamily
|
||||
from llama_stack.models.llama.sku_types import ModelFamily, is_multimodal
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
|
|
@ -44,6 +59,170 @@ log = get_logger(__name__, category="inference")
|
|||
SEMAPHORE = asyncio.Semaphore(1)
|
||||
|
||||
|
||||
def _convert_openai_tool_to_tool_definition(tool) -> ToolDefinition:
|
||||
"""Convert OpenAI tool format to ToolDefinition format."""
|
||||
# OpenAI tools have function.name and function.parameters
|
||||
return ToolDefinition(
|
||||
tool_name=tool.function.name,
|
||||
description=tool.function.description or "",
|
||||
parameters=tool.function.parameters or {},
|
||||
)
|
||||
|
||||
|
||||
def _get_tool_choice_prompt(tool_choice, tools) -> str:
|
||||
"""Generate prompt text for tool_choice behavior."""
|
||||
if not tool_choice or tool_choice == ToolChoice.auto or tool_choice == "auto":
|
||||
return ""
|
||||
elif tool_choice == ToolChoice.required or tool_choice == "required":
|
||||
return "You MUST use one of the provided functions/tools to answer the user query."
|
||||
elif tool_choice == ToolChoice.none or tool_choice == "none":
|
||||
return ""
|
||||
else:
|
||||
# Specific tool specified
|
||||
return f"You MUST use the tool `{tool_choice}` to answer the user query."
|
||||
|
||||
|
||||
def _raw_content_as_str(content) -> str:
|
||||
"""Convert RawContent to string for system messages."""
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, RawTextItem):
|
||||
return content.text
|
||||
elif isinstance(content, list):
|
||||
return "\n".join(_raw_content_as_str(c) for c in content)
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
|
||||
def _augment_raw_messages_for_tools_llama_3_1(
|
||||
raw_messages: list[RawMessage],
|
||||
tools: list,
|
||||
tool_choice,
|
||||
) -> list[RawMessage]:
|
||||
"""Augment raw messages with tool definitions for Llama 3.1 style models."""
|
||||
messages = raw_messages.copy()
|
||||
existing_system_message = None
|
||||
if messages and messages[0].role == "system":
|
||||
existing_system_message = messages.pop(0)
|
||||
|
||||
sys_content = ""
|
||||
|
||||
# Add tool definitions first (if present)
|
||||
if tools:
|
||||
# Convert OpenAI tools to ToolDefinitions
|
||||
tool_definitions = [_convert_openai_tool_to_tool_definition(t) for t in tools]
|
||||
|
||||
# For OpenAI format, all tools are custom (have string names)
|
||||
tool_gen = JsonCustomToolGenerator()
|
||||
tool_template = tool_gen.gen(tool_definitions)
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
# Add default system prompt
|
||||
default_gen = SystemDefaultGenerator()
|
||||
default_template = default_gen.gen()
|
||||
sys_content += default_template.render()
|
||||
|
||||
# Add existing system message if present
|
||||
if existing_system_message:
|
||||
sys_content += "\n" + _raw_content_as_str(existing_system_message.content)
|
||||
|
||||
# Add tool choice prompt if needed
|
||||
if tool_choice_prompt := _get_tool_choice_prompt(tool_choice, tools):
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
# Create new system message
|
||||
new_system_message = RawMessage(
|
||||
role="system",
|
||||
content=[RawTextItem(text=sys_content.strip())],
|
||||
)
|
||||
|
||||
return [new_system_message] + messages
|
||||
|
||||
|
||||
def _augment_raw_messages_for_tools_llama_4(
|
||||
raw_messages: list[RawMessage],
|
||||
tools: list,
|
||||
tool_choice,
|
||||
) -> list[RawMessage]:
|
||||
"""Augment raw messages with tool definitions for Llama 4/3.2/3.3 style models."""
|
||||
messages = raw_messages.copy()
|
||||
existing_system_message = None
|
||||
if messages and messages[0].role == "system":
|
||||
existing_system_message = messages.pop(0)
|
||||
|
||||
sys_content = ""
|
||||
|
||||
# Add tool definitions if present
|
||||
if tools:
|
||||
# Convert OpenAI tools to ToolDefinitions
|
||||
tool_definitions = [_convert_openai_tool_to_tool_definition(t) for t in tools]
|
||||
|
||||
# Use python_list format for Llama 4
|
||||
tool_gen = PythonListCustomToolGeneratorLlama4()
|
||||
system_prompt = None
|
||||
if existing_system_message:
|
||||
system_prompt = _raw_content_as_str(existing_system_message.content)
|
||||
|
||||
tool_template = tool_gen.gen(tool_definitions, system_prompt)
|
||||
sys_content = tool_template.render()
|
||||
elif existing_system_message:
|
||||
# No tools, just use existing system message
|
||||
sys_content = _raw_content_as_str(existing_system_message.content)
|
||||
|
||||
# Add tool choice prompt if needed
|
||||
if tool_choice_prompt := _get_tool_choice_prompt(tool_choice, tools):
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
if sys_content:
|
||||
new_system_message = RawMessage(
|
||||
role="system",
|
||||
content=[RawTextItem(text=sys_content.strip())],
|
||||
)
|
||||
return [new_system_message] + messages
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
def augment_raw_messages_for_tools(
|
||||
raw_messages: list[RawMessage],
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
llama_model,
|
||||
) -> list[RawMessage]:
|
||||
"""Augment raw messages with tool definitions based on model family."""
|
||||
if not params.tools:
|
||||
return raw_messages
|
||||
|
||||
# Determine augmentation strategy based on model family
|
||||
if llama_model.model_family == ModelFamily.llama3_1 or (
|
||||
llama_model.model_family == ModelFamily.llama3_2 and is_multimodal(llama_model.core_model_id)
|
||||
):
|
||||
# Llama 3.1 and Llama 3.2 multimodal use JSON format
|
||||
return _augment_raw_messages_for_tools_llama_3_1(
|
||||
raw_messages,
|
||||
params.tools,
|
||||
params.tool_choice,
|
||||
)
|
||||
elif llama_model.model_family in (
|
||||
ModelFamily.llama3_2,
|
||||
ModelFamily.llama3_3,
|
||||
ModelFamily.llama4,
|
||||
):
|
||||
# Llama 3.2/3.3/4 use python_list format
|
||||
return _augment_raw_messages_for_tools_llama_4(
|
||||
raw_messages,
|
||||
params.tools,
|
||||
params.tool_choice,
|
||||
)
|
||||
else:
|
||||
# Default to Llama 3.1 style
|
||||
return _augment_raw_messages_for_tools_llama_3_1(
|
||||
raw_messages,
|
||||
params.tools,
|
||||
params.tool_choice,
|
||||
)
|
||||
|
||||
|
||||
def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> LlamaGenerator:
|
||||
return LlamaGenerator(config, model_id, llama_model)
|
||||
|
||||
|
|
@ -136,10 +315,13 @@ class MetaReferenceInferenceImpl(
|
|||
self.llama_model = llama_model
|
||||
|
||||
log.info("Warming up...")
|
||||
|
||||
await self.openai_chat_completion(
|
||||
model=model_id,
|
||||
messages=[{"role": "user", "content": "Hi how are you?"}],
|
||||
max_tokens=20,
|
||||
params=OpenAIChatCompletionRequestWithExtraBody(
|
||||
model=model_id,
|
||||
messages=[OpenAIUserMessageParam(role="user", content="Hi how are you?")],
|
||||
max_tokens=20,
|
||||
)
|
||||
)
|
||||
log.info("Warmed up!")
|
||||
|
||||
|
|
@ -155,4 +337,207 @@ class MetaReferenceInferenceImpl(
|
|||
self,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")
|
||||
self.check_model(params)
|
||||
|
||||
# Convert OpenAI messages to RawMessages
|
||||
from llama_stack.models.llama.datatypes import StopReason
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_openai_message_to_raw_message,
|
||||
decode_assistant_message,
|
||||
)
|
||||
|
||||
raw_messages = [await convert_openai_message_to_raw_message(msg) for msg in params.messages]
|
||||
|
||||
# Augment messages with tool definitions if tools are present
|
||||
raw_messages = augment_raw_messages_for_tools(raw_messages, params, self.llama_model)
|
||||
|
||||
# Call generator's chat_completion method (works for both single-GPU and model-parallel)
|
||||
if isinstance(self.generator, LlamaGenerator):
|
||||
generator = self.generator.chat_completion(params, raw_messages)
|
||||
else:
|
||||
# Model parallel: submit task to process group
|
||||
generator = self.generator.group.run_inference(("chat_completion", [params, raw_messages]))
|
||||
|
||||
# Check if streaming is requested
|
||||
if params.stream:
|
||||
return self._stream_chat_completion(generator, params)
|
||||
|
||||
# Non-streaming: collect all generated text
|
||||
generated_text = ""
|
||||
for result_batch in generator:
|
||||
for result in result_batch:
|
||||
if not result.ignore_token and result.source == "output":
|
||||
generated_text += result.text
|
||||
|
||||
# Decode assistant message to extract tool calls and determine stop_reason
|
||||
# Default to end_of_turn if generation completed normally
|
||||
decoded_message = decode_assistant_message(generated_text, StopReason.end_of_turn)
|
||||
|
||||
# Convert tool calls to OpenAI format
|
||||
openai_tool_calls = None
|
||||
if decoded_message.tool_calls:
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
)
|
||||
|
||||
openai_tool_calls = [
|
||||
OpenAIChatCompletionToolCall(
|
||||
# generate a uuid for the call id. This is the only inline provider that does this, so need to get creative.
|
||||
id=f"call_{uuid.uuid4().hex[:24]}",
|
||||
type="function",
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name=str(tc.tool_name),
|
||||
arguments=tc.arguments,
|
||||
),
|
||||
)
|
||||
for tc in decoded_message.tool_calls
|
||||
]
|
||||
|
||||
# Determine finish_reason based on whether tool calls are present
|
||||
finish_reason = "tool_calls" if openai_tool_calls else "stop"
|
||||
|
||||
# Extract content from decoded message
|
||||
content = ""
|
||||
if isinstance(decoded_message.content, str):
|
||||
content = decoded_message.content
|
||||
elif isinstance(decoded_message.content, list):
|
||||
for item in decoded_message.content:
|
||||
if isinstance(item, RawTextItem):
|
||||
content += item.text
|
||||
|
||||
# Create OpenAI response
|
||||
# generate a uuid for the call id. This is the only inline provider that does this, so need to get creative.
|
||||
response_id = f"chatcmpl-{uuid.uuid4().hex[:24]}"
|
||||
created = int(time.time())
|
||||
|
||||
return OpenAIChatCompletion(
|
||||
id=response_id,
|
||||
object="chat.completion",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
index=0,
|
||||
message=OpenAIAssistantMessageParam(
|
||||
role="assistant",
|
||||
content=content,
|
||||
tool_calls=openai_tool_calls,
|
||||
),
|
||||
finish_reason=finish_reason,
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
usage=OpenAIChatCompletionUsage(
|
||||
prompt_tokens=0, # TODO: calculate properly
|
||||
completion_tokens=0, # TODO: calculate properly
|
||||
total_tokens=0, # TODO: calculate properly
|
||||
),
|
||||
)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self,
|
||||
generator,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Stream chat completion chunks as they're generated."""
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoiceDelta,
|
||||
OpenAIChunkChoice,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import StopReason
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import decode_assistant_message
|
||||
|
||||
response_id = f"chatcmpl-{uuid.uuid4().hex[:24]}"
|
||||
created = int(time.time())
|
||||
generated_text = ""
|
||||
|
||||
# Yield chunks as tokens are generated
|
||||
for result_batch in generator:
|
||||
for result in result_batch:
|
||||
if result.ignore_token or result.source != "output":
|
||||
continue
|
||||
|
||||
generated_text += result.text
|
||||
|
||||
# Yield delta chunk with the new text
|
||||
chunk = OpenAIChatCompletionChunk(
|
||||
id=response_id,
|
||||
object="chat.completion.chunk",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChunkChoice(
|
||||
index=0,
|
||||
delta=OpenAIChoiceDelta(
|
||||
role="assistant",
|
||||
content=result.text,
|
||||
),
|
||||
finish_reason="",
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
)
|
||||
yield chunk
|
||||
|
||||
# After generation completes, decode the full message to extract tool calls
|
||||
decoded_message = decode_assistant_message(generated_text, StopReason.end_of_turn)
|
||||
|
||||
# If tool calls are present, yield a final chunk with tool_calls
|
||||
if decoded_message.tool_calls:
|
||||
openai_tool_calls = [
|
||||
OpenAIChatCompletionToolCall(
|
||||
# generate a uuid for the call id. This is the only inline provider that does this, so need to get creative.
|
||||
id=f"call_{uuid.uuid4().hex[:24]}",
|
||||
type="function",
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name=str(tc.tool_name),
|
||||
arguments=tc.arguments,
|
||||
),
|
||||
)
|
||||
for tc in decoded_message.tool_calls
|
||||
]
|
||||
|
||||
# Yield chunk with tool_calls
|
||||
chunk = OpenAIChatCompletionChunk(
|
||||
id=response_id,
|
||||
object="chat.completion.chunk",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChunkChoice(
|
||||
index=0,
|
||||
delta=OpenAIChoiceDelta(
|
||||
role="assistant",
|
||||
tool_calls=openai_tool_calls,
|
||||
),
|
||||
finish_reason="",
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
)
|
||||
yield chunk
|
||||
|
||||
finish_reason = "tool_calls"
|
||||
else:
|
||||
finish_reason = "stop"
|
||||
|
||||
# Yield final chunk with finish_reason
|
||||
final_chunk = OpenAIChatCompletionChunk(
|
||||
id=response_id,
|
||||
object="chat.completion.chunk",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChunkChoice(
|
||||
index=0,
|
||||
delta=OpenAIChoiceDelta(),
|
||||
finish_reason=finish_reason,
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
)
|
||||
yield final_chunk
|
||||
|
|
|
|||
|
|
@ -4,17 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Callable, Generator
|
||||
from copy import deepcopy
|
||||
from collections.abc import Callable
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
||||
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
)
|
||||
|
||||
from .parallel_utils import ModelParallelProcessGroup
|
||||
|
||||
|
|
@ -23,12 +18,14 @@ class ModelRunner:
|
|||
def __init__(self, llama):
|
||||
self.llama = llama
|
||||
|
||||
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
||||
def __call__(self, task: Any):
|
||||
if task[0] == "chat_completion":
|
||||
return self.llama.chat_completion(task[1])
|
||||
task_type = task[0]
|
||||
if task_type == "chat_completion":
|
||||
# task[1] is [params, raw_messages]
|
||||
params, raw_messages = task[1]
|
||||
return self.llama.chat_completion(params, raw_messages)
|
||||
else:
|
||||
raise ValueError(f"Unexpected task type {task[0]}")
|
||||
raise ValueError(f"Unexpected task type {task_type}")
|
||||
|
||||
|
||||
def init_model_cb(
|
||||
|
|
@ -78,19 +75,3 @@ class LlamaModelParallelGenerator:
|
|||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
self.group.stop()
|
||||
|
||||
def completion(
|
||||
self,
|
||||
request_batch: list[CompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
req_obj = deepcopy(request_batch)
|
||||
gen = self.group.run_inference(("completion", req_obj))
|
||||
yield from gen
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request_batch: list[ChatCompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
req_obj = deepcopy(request_batch)
|
||||
gen = self.group.run_inference(("chat_completion", req_obj))
|
||||
yield from gen
|
||||
|
|
|
|||
|
|
@ -33,10 +33,6 @@ from torch.distributed.launcher.api import LaunchConfig, elastic_launch
|
|||
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import GenerationResult
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
)
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
|
@ -69,10 +65,7 @@ class CancelSentinel(BaseModel):
|
|||
|
||||
class TaskRequest(BaseModel):
|
||||
type: Literal[ProcessingMessageName.task_request] = ProcessingMessageName.task_request
|
||||
task: tuple[
|
||||
str,
|
||||
list[CompletionRequestWithRawContent] | list[ChatCompletionRequestWithRawContent],
|
||||
]
|
||||
task: tuple[str, list]
|
||||
|
||||
|
||||
class TaskResponse(BaseModel):
|
||||
|
|
@ -328,10 +321,7 @@ class ModelParallelProcessGroup:
|
|||
|
||||
def run_inference(
|
||||
self,
|
||||
req: tuple[
|
||||
str,
|
||||
list[CompletionRequestWithRawContent] | list[ChatCompletionRequestWithRawContent],
|
||||
],
|
||||
req: tuple[str, list],
|
||||
) -> Generator:
|
||||
assert not self.running, "inference already running"
|
||||
|
||||
|
|
|
|||
|
|
@ -22,9 +22,6 @@ from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
|||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
)
|
||||
|
||||
from .config import SentenceTransformersInferenceConfig
|
||||
|
||||
|
|
@ -32,7 +29,6 @@ log = get_logger(name=__name__, category="inference")
|
|||
|
||||
|
||||
class SentenceTransformersInferenceImpl(
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
|
|
|
|||
|
|
@ -11,9 +11,7 @@ from collections.abc import AsyncIterator
|
|||
import litellm
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
InferenceProvider,
|
||||
JsonSchemaResponseFormat,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
|
|
@ -23,15 +21,11 @@ from llama_stack.apis.inference import (
|
|||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
ToolChoice,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, ProviderModelEntry
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict_new,
|
||||
convert_tooldef_to_openai_tool,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
)
|
||||
|
||||
|
|
@ -127,51 +121,6 @@ class LiteLLMOpenAIMixin(
|
|||
|
||||
return schema
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
from typing import Any
|
||||
|
||||
input_dict: dict[str, Any] = {}
|
||||
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_openai_dict_new(m, download_images=self.download_images) for m in request.messages
|
||||
]
|
||||
if fmt := request.response_format:
|
||||
if not isinstance(fmt, JsonSchemaResponseFormat):
|
||||
raise ValueError(
|
||||
f"Unsupported response format: {type(fmt)}. Only JsonSchemaResponseFormat is supported."
|
||||
)
|
||||
|
||||
# Convert to dict for manipulation
|
||||
fmt_dict = dict(fmt.json_schema)
|
||||
name = fmt_dict["title"]
|
||||
del fmt_dict["title"]
|
||||
fmt_dict["additionalProperties"] = False
|
||||
|
||||
# Apply additionalProperties: False recursively to all objects
|
||||
fmt_dict = self._add_additional_properties_recursive(fmt_dict)
|
||||
|
||||
input_dict["response_format"] = {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": name,
|
||||
"schema": fmt_dict,
|
||||
"strict": self.json_schema_strict,
|
||||
},
|
||||
}
|
||||
if request.tools:
|
||||
input_dict["tools"] = [convert_tooldef_to_openai_tool(tool) for tool in request.tools]
|
||||
if request.tool_config and (tool_choice := request.tool_config.tool_choice):
|
||||
input_dict["tool_choice"] = tool_choice.value if isinstance(tool_choice, ToolChoice) else tool_choice
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
"api_key": self.get_api_key(),
|
||||
"api_base": self.api_base,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
provider_data = self.get_request_provider_data()
|
||||
key_field = self.provider_data_api_key_field
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load diff
|
|
@ -21,19 +21,18 @@ from llama_stack.apis.common.content_types import (
|
|||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
Message,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
OpenAIFile,
|
||||
OpenAIMessageParam,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SystemMessage,
|
||||
SystemMessageBehavior,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
|
|
@ -42,33 +41,19 @@ from llama_stack.models.llama.datatypes import (
|
|||
RawMediaItem,
|
||||
RawMessage,
|
||||
RawTextItem,
|
||||
Role,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
||||
from llama_stack.models.llama.llama3.prompt_templates import (
|
||||
BuiltinToolGenerator,
|
||||
FunctionTagCustomToolGenerator,
|
||||
JsonCustomToolGenerator,
|
||||
PythonListCustomToolGenerator,
|
||||
SystemDefaultGenerator,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
||||
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
|
||||
PythonListCustomToolGenerator as PythonListCustomToolGeneratorLlama4,
|
||||
)
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
from llama_stack.models.llama.sku_types import ModelFamily, is_multimodal
|
||||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class ChatCompletionRequestWithRawContent(ChatCompletionRequest):
|
||||
messages: list[RawMessage]
|
||||
|
||||
|
||||
class CompletionRequestWithRawContent(CompletionRequest):
|
||||
content: RawContent
|
||||
|
||||
|
|
@ -103,28 +88,6 @@ def interleaved_content_as_str(
|
|||
return _process(content)
|
||||
|
||||
|
||||
async def convert_request_to_raw(
|
||||
request: ChatCompletionRequest | CompletionRequest,
|
||||
) -> ChatCompletionRequestWithRawContent | CompletionRequestWithRawContent:
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
messages = []
|
||||
for m in request.messages:
|
||||
content = await interleaved_content_convert_to_raw(m.content)
|
||||
d = m.model_dump()
|
||||
d["content"] = content
|
||||
messages.append(RawMessage(**d))
|
||||
|
||||
d = request.model_dump()
|
||||
d["messages"] = messages
|
||||
request = ChatCompletionRequestWithRawContent(**d)
|
||||
else:
|
||||
d = request.model_dump()
|
||||
d["content"] = await interleaved_content_convert_to_raw(request.content)
|
||||
request = CompletionRequestWithRawContent(**d)
|
||||
|
||||
return request
|
||||
|
||||
|
||||
async def interleaved_content_convert_to_raw(
|
||||
content: InterleavedContent,
|
||||
) -> RawContent:
|
||||
|
|
@ -171,6 +134,36 @@ async def interleaved_content_convert_to_raw(
|
|||
return await _localize_single(content)
|
||||
|
||||
|
||||
async def convert_openai_message_to_raw_message(message: OpenAIMessageParam) -> RawMessage:
|
||||
"""Convert OpenAI message format to RawMessage format used by Llama formatters."""
|
||||
if isinstance(message, OpenAIUserMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content) # type: ignore[arg-type]
|
||||
return RawMessage(role="user", content=content)
|
||||
elif isinstance(message, OpenAISystemMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content) # type: ignore[arg-type]
|
||||
return RawMessage(role="system", content=content)
|
||||
elif isinstance(message, OpenAIAssistantMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content or "") # type: ignore[arg-type]
|
||||
tool_calls = []
|
||||
if message.tool_calls:
|
||||
for tc in message.tool_calls:
|
||||
if tc.function:
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
call_id=tc.id or "",
|
||||
tool_name=tc.function.name or "",
|
||||
arguments=tc.function.arguments or "{}",
|
||||
)
|
||||
)
|
||||
return RawMessage(role="assistant", content=content, tool_calls=tool_calls)
|
||||
elif isinstance(message, OpenAIToolMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content) # type: ignore[arg-type]
|
||||
return RawMessage(role="tool", content=content)
|
||||
else:
|
||||
# Handle OpenAIDeveloperMessageParam if needed
|
||||
raise ValueError(f"Unsupported message type: {type(message)}")
|
||||
|
||||
|
||||
def content_has_media(content: InterleavedContent):
|
||||
def _has_media_content(c):
|
||||
return isinstance(c, ImageContentItem)
|
||||
|
|
@ -181,17 +174,6 @@ def content_has_media(content: InterleavedContent):
|
|||
return _has_media_content(content)
|
||||
|
||||
|
||||
def messages_have_media(messages: list[Message]):
|
||||
return any(content_has_media(m.content) for m in messages)
|
||||
|
||||
|
||||
def request_has_media(request: ChatCompletionRequest | CompletionRequest):
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
return messages_have_media(request.messages)
|
||||
else:
|
||||
return content_has_media(request.content)
|
||||
|
||||
|
||||
async def localize_image_content(uri: str) -> tuple[bytes, str] | None:
|
||||
if uri.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
|
|
@ -253,79 +235,6 @@ def augment_content_with_response_format_prompt(response_format, content):
|
|||
return content
|
||||
|
||||
|
||||
async def chat_completion_request_to_prompt(request: ChatCompletionRequest, llama_model: str) -> str:
|
||||
messages = chat_completion_request_to_messages(request, llama_model)
|
||||
request.messages = messages
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
||||
model_input = formatter.encode_dialog_prompt(
|
||||
request.messages,
|
||||
tool_prompt_format=request.tool_config.tool_prompt_format or get_default_tool_prompt_format(llama_model),
|
||||
)
|
||||
return formatter.tokenizer.decode(model_input.tokens)
|
||||
|
||||
|
||||
async def chat_completion_request_to_model_input_info(
|
||||
request: ChatCompletionRequest, llama_model: str
|
||||
) -> tuple[str, int]:
|
||||
messages = chat_completion_request_to_messages(request, llama_model)
|
||||
request.messages = messages
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
||||
model_input = formatter.encode_dialog_prompt(
|
||||
request.messages,
|
||||
tool_prompt_format=request.tool_config.tool_prompt_format or get_default_tool_prompt_format(llama_model),
|
||||
)
|
||||
return (
|
||||
formatter.tokenizer.decode(model_input.tokens),
|
||||
len(model_input.tokens),
|
||||
)
|
||||
|
||||
|
||||
def chat_completion_request_to_messages(
|
||||
request: ChatCompletionRequest,
|
||||
llama_model: str,
|
||||
) -> list[Message]:
|
||||
"""Reads chat completion request and augments the messages to handle tools.
|
||||
For eg. for llama_3_1, add system message with the appropriate tools or
|
||||
add user messsage for custom tools, etc.
|
||||
"""
|
||||
assert llama_model is not None, "llama_model is required"
|
||||
model = resolve_model(llama_model)
|
||||
if model is None:
|
||||
log.error(f"Could not resolve model {llama_model}")
|
||||
return request.messages
|
||||
|
||||
allowed_models = supported_inference_models()
|
||||
descriptors = [m.descriptor() for m in allowed_models]
|
||||
if model.descriptor() not in descriptors:
|
||||
log.error(f"Unsupported inference model? {model.descriptor()}")
|
||||
return request.messages
|
||||
|
||||
if model.model_family == ModelFamily.llama3_1 or (
|
||||
model.model_family == ModelFamily.llama3_2 and is_multimodal(model.core_model_id)
|
||||
):
|
||||
# llama3.1 and llama3.2 multimodal models follow the same tool prompt format
|
||||
messages = augment_messages_for_tools_llama_3_1(request)
|
||||
elif model.model_family in (
|
||||
ModelFamily.llama3_2,
|
||||
ModelFamily.llama3_3,
|
||||
):
|
||||
# llama3.2, llama3.3 follow the same tool prompt format
|
||||
messages = augment_messages_for_tools_llama(request, PythonListCustomToolGenerator)
|
||||
elif model.model_family == ModelFamily.llama4:
|
||||
messages = augment_messages_for_tools_llama(request, PythonListCustomToolGeneratorLlama4)
|
||||
else:
|
||||
messages = request.messages
|
||||
|
||||
if fmt_prompt := response_format_prompt(request.response_format):
|
||||
messages.append(UserMessage(content=fmt_prompt))
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
def response_format_prompt(fmt: ResponseFormat | None):
|
||||
if not fmt:
|
||||
return None
|
||||
|
|
@ -338,128 +247,6 @@ def response_format_prompt(fmt: ResponseFormat | None):
|
|||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
|
||||
def augment_messages_for_tools_llama_3_1(
|
||||
request: ChatCompletionRequest,
|
||||
) -> list[Message]:
|
||||
existing_messages = request.messages
|
||||
existing_system_message = None
|
||||
if existing_messages[0].role == Role.system.value:
|
||||
existing_system_message = existing_messages.pop(0)
|
||||
|
||||
assert existing_messages[0].role != Role.system.value, "Should only have 1 system message"
|
||||
|
||||
messages = []
|
||||
|
||||
default_gen = SystemDefaultGenerator()
|
||||
default_template = default_gen.gen()
|
||||
|
||||
sys_content = ""
|
||||
|
||||
tool_template = None
|
||||
if request.tools:
|
||||
tool_gen = BuiltinToolGenerator()
|
||||
tool_template = tool_gen.gen(request.tools)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
sys_content += default_template.render()
|
||||
|
||||
if existing_system_message:
|
||||
# TODO: this fn is needed in many places
|
||||
def _process(c):
|
||||
if isinstance(c, str):
|
||||
return c
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
sys_content += "\n"
|
||||
|
||||
if isinstance(existing_system_message.content, str):
|
||||
sys_content += _process(existing_system_message.content)
|
||||
elif isinstance(existing_system_message.content, list):
|
||||
sys_content += "\n".join([_process(c) for c in existing_system_message.content])
|
||||
|
||||
tool_choice_prompt = _get_tool_choice_prompt(request.tool_config.tool_choice, request.tools)
|
||||
if tool_choice_prompt:
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
messages.append(SystemMessage(content=sys_content))
|
||||
|
||||
has_custom_tools = request.tools is not None and any(isinstance(dfn.tool_name, str) for dfn in request.tools)
|
||||
if has_custom_tools:
|
||||
fmt = request.tool_config.tool_prompt_format or ToolPromptFormat.json
|
||||
if fmt == ToolPromptFormat.json:
|
||||
tool_gen = JsonCustomToolGenerator()
|
||||
elif fmt == ToolPromptFormat.function_tag:
|
||||
tool_gen = FunctionTagCustomToolGenerator()
|
||||
else:
|
||||
raise ValueError(f"Non supported ToolPromptFormat {fmt}")
|
||||
|
||||
custom_tools = [t for t in request.tools if isinstance(t.tool_name, str)]
|
||||
custom_template = tool_gen.gen(custom_tools)
|
||||
messages.append(UserMessage(content=custom_template.render()))
|
||||
|
||||
# Add back existing messages from the request
|
||||
messages += existing_messages
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
def augment_messages_for_tools_llama(
|
||||
request: ChatCompletionRequest,
|
||||
custom_tool_prompt_generator,
|
||||
) -> list[Message]:
|
||||
existing_messages = request.messages
|
||||
existing_system_message = None
|
||||
if existing_messages[0].role == Role.system.value:
|
||||
existing_system_message = existing_messages.pop(0)
|
||||
|
||||
assert existing_messages[0].role != Role.system.value, "Should only have 1 system message"
|
||||
|
||||
sys_content = ""
|
||||
custom_tools, builtin_tools = [], []
|
||||
for t in request.tools:
|
||||
if isinstance(t.tool_name, str):
|
||||
custom_tools.append(t)
|
||||
else:
|
||||
builtin_tools.append(t)
|
||||
|
||||
if builtin_tools:
|
||||
tool_gen = BuiltinToolGenerator()
|
||||
tool_template = tool_gen.gen(builtin_tools)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
custom_tools = [dfn for dfn in request.tools if isinstance(dfn.tool_name, str)]
|
||||
if custom_tools:
|
||||
fmt = request.tool_config.tool_prompt_format or ToolPromptFormat.python_list
|
||||
if fmt != ToolPromptFormat.python_list:
|
||||
raise ValueError(f"Non supported ToolPromptFormat {request.tool_config.tool_prompt_format}")
|
||||
|
||||
system_prompt = None
|
||||
if existing_system_message and request.tool_config.system_message_behavior == SystemMessageBehavior.replace:
|
||||
system_prompt = existing_system_message.content
|
||||
|
||||
tool_template = custom_tool_prompt_generator().gen(custom_tools, system_prompt)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
if existing_system_message and (
|
||||
request.tool_config.system_message_behavior == SystemMessageBehavior.append or not custom_tools
|
||||
):
|
||||
sys_content += interleaved_content_as_str(existing_system_message.content, sep="\n")
|
||||
|
||||
tool_choice_prompt = _get_tool_choice_prompt(request.tool_config.tool_choice, request.tools)
|
||||
if tool_choice_prompt:
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
messages = [SystemMessage(content=sys_content.strip("\n")), *existing_messages]
|
||||
return messages
|
||||
|
||||
|
||||
def _get_tool_choice_prompt(tool_choice: ToolChoice | str, tools: list[ToolDefinition]) -> str:
|
||||
if tool_choice == ToolChoice.auto:
|
||||
return ""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue