mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
small bug fixes for inline attachments
This commit is contained in:
parent
58e2feceb0
commit
440d125ea0
2 changed files with 32 additions and 11 deletions
|
@ -94,7 +94,7 @@ class AgenticSystemClient(AgenticSystem):
|
|||
print(f"Error with parsing or validation: {e}")
|
||||
|
||||
|
||||
async def _run_agent(api, tool_definitions, user_prompts):
|
||||
async def _run_agent(api, tool_definitions, user_prompts, attachments=None):
|
||||
agent_config = AgentConfig(
|
||||
model="Meta-Llama3.1-8B-Instruct",
|
||||
instructions="You are a helpful assistant",
|
||||
|
@ -119,6 +119,7 @@ async def _run_agent(api, tool_definitions, user_prompts):
|
|||
messages=[
|
||||
UserMessage(content=content),
|
||||
],
|
||||
attachments=attachments,
|
||||
stream=True,
|
||||
)
|
||||
)
|
||||
|
@ -168,17 +169,36 @@ async def run_main(host: str, port: int):
|
|||
async def run_rag(host: str, port: int):
|
||||
api = AgenticSystemClient(f"http://{host}:{port}")
|
||||
|
||||
# NOTE: for this, I ran `llama_toolchain.memory.client` first which
|
||||
# populated the memory banks with torchtune docs. Then grabbed the bank_id
|
||||
urls = [
|
||||
"memory_optimizations.rst",
|
||||
"chat.rst",
|
||||
"llama3.rst",
|
||||
"datasets.rst",
|
||||
"qat_finetune.rst",
|
||||
"lora_finetune.rst",
|
||||
]
|
||||
attachments = [
|
||||
Attachment(
|
||||
content=URL(
|
||||
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
||||
),
|
||||
mime_type="text/plain",
|
||||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
|
||||
# Alternatively, you can pre-populate the memory bank with documents for example,
|
||||
# using `llama_toolchain.memory.client`. Then you can grab the bank_id
|
||||
# from the output of that run.
|
||||
tool_definitions = [
|
||||
MemoryToolDefinition(
|
||||
max_tokens_in_context=2048,
|
||||
memory_bank_configs=[
|
||||
AgenticSystemVectorMemoryBankConfig(
|
||||
bank_id="970b8790-268e-4fd3-a9b1-d0e597e975ed",
|
||||
)
|
||||
],
|
||||
memory_bank_configs=[],
|
||||
# memory_bank_configs=[
|
||||
# AgenticSystemVectorMemoryBankConfig(
|
||||
# bank_id="970b8790-268e-4fd3-a9b1-d0e597e975ed",
|
||||
# )
|
||||
# ],
|
||||
),
|
||||
]
|
||||
|
||||
|
@ -187,11 +207,11 @@ async def run_rag(host: str, port: int):
|
|||
"Tell me briefly about llama3 and torchtune",
|
||||
]
|
||||
|
||||
await _run_agent(api, tool_definitions, user_prompts)
|
||||
await _run_agent(api, tool_definitions, user_prompts, attachments)
|
||||
|
||||
|
||||
def main(host: str, port: int):
|
||||
asyncio.run(run_main(host, port))
|
||||
asyncio.run(run_rag(host, port))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -580,6 +580,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
name=f"memory_bank_{session.session_id}",
|
||||
config=VectorMemoryBankConfig(
|
||||
embedding_model="sentence-transformer/all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=512,
|
||||
),
|
||||
)
|
||||
|
||||
|
@ -619,7 +620,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
documents = [
|
||||
MemoryBankDocument(
|
||||
doc_id=str(uuid.uuid4()),
|
||||
document_id=str(uuid.uuid4()),
|
||||
content=a.content,
|
||||
mime_type=a.mime_type,
|
||||
metadata={},
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue