mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 01:03:59 +00:00
Allow using an "inline" version of Chroma using PersistentClient
This commit is contained in:
parent
e2054d53e4
commit
44ab7d93fb
9 changed files with 71 additions and 69 deletions
|
@ -53,8 +53,6 @@ class ShieldsProtocolPrivate(Protocol):
|
|||
|
||||
|
||||
class MemoryBanksProtocolPrivate(Protocol):
|
||||
async def list_memory_banks(self) -> List[MemoryBank]: ...
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None: ...
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...
|
||||
|
|
|
@ -53,7 +53,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="chromadb",
|
||||
pip_packages=EMBEDDING_DEPS + ["chromadb-client"],
|
||||
module="llama_stack.providers.remote.memory.chroma",
|
||||
config_class="llama_stack.distribution.datatypes.RemoteProviderConfig",
|
||||
config_class="llama_stack.providers.remote.memory.chroma.ChromaConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
|
|
@ -4,12 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
||||
from .config import ChromaConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
|
||||
async def get_adapter_impl(config: ChromaConfig, _deps):
|
||||
from .chroma import ChromaMemoryAdapter
|
||||
|
||||
impl = ChromaMemoryAdapter(config.url)
|
||||
impl = ChromaMemoryAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import List
|
||||
|
@ -12,8 +12,6 @@ from urllib.parse import urlparse
|
|||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from pydantic import parse_obj_as
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
|
@ -21,12 +19,23 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
from .config import ChromaConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
ChromaClientType = Union[chromadb.AsyncHttpClient, chromadb.PersistentClient]
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
async def maybe_await(result):
|
||||
if asyncio.iscoroutine(result):
|
||||
return await result
|
||||
return result
|
||||
|
||||
|
||||
class ChromaIndex(EmbeddingIndex):
|
||||
def __init__(self, client: chromadb.AsyncHttpClient, collection):
|
||||
def __init__(self, client: ChromaClientType, collection):
|
||||
self.client = client
|
||||
self.collection = collection
|
||||
|
||||
|
@ -35,19 +44,23 @@ class ChromaIndex(EmbeddingIndex):
|
|||
embeddings
|
||||
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
||||
await self.collection.add(
|
||||
documents=[chunk.json() for chunk in chunks],
|
||||
embeddings=embeddings,
|
||||
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
||||
await maybe_await(
|
||||
self.collection.add(
|
||||
documents=[chunk.model_dump_json() for chunk in chunks],
|
||||
embeddings=embeddings,
|
||||
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
||||
)
|
||||
)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
results = await self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
n_results=k,
|
||||
include=["documents", "distances"],
|
||||
results = await maybe_await(
|
||||
self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
n_results=k,
|
||||
include=["documents", "distances"],
|
||||
)
|
||||
)
|
||||
distances = results["distances"][0]
|
||||
documents = results["documents"][0]
|
||||
|
@ -68,12 +81,12 @@ class ChromaIndex(EmbeddingIndex):
|
|||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
await self.client.delete_collection(self.collection.name)
|
||||
await maybe_await(self.client.delete_collection(self.collection.name))
|
||||
|
||||
|
||||
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, url: str) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
|
||||
def __init__(self, config: ChromaConfig) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {config.url}")
|
||||
url = url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
||||
|
@ -88,8 +101,12 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
|
||||
async def initialize(self) -> None:
|
||||
try:
|
||||
log.info(f"Connecting to Chroma server at: {self.host}:{self.port}")
|
||||
self.client = await chromadb.AsyncHttpClient(host=self.host, port=self.port)
|
||||
if self.config.url:
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
self.client = await chromadb.AsyncHttpClient(url=self.config.url)
|
||||
else:
|
||||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
except Exception as e:
|
||||
log.exception("Could not connect to Chroma server")
|
||||
raise RuntimeError("Could not connect to Chroma server") from e
|
||||
|
@ -105,33 +122,17 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
collection = await self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.model_dump_json()},
|
||||
collection = await maybe_await(
|
||||
self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.model_dump_json()},
|
||||
)
|
||||
)
|
||||
bank_index = BankWithIndex(
|
||||
bank=memory_bank, index=ChromaIndex(self.client, collection)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = bank_index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
collections = await self.client.list_collections()
|
||||
for collection in collections:
|
||||
try:
|
||||
data = json.loads(collection.metadata["bank"])
|
||||
bank = parse_obj_as(VectorMemoryBank, data)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse bank: {collection.metadata}")
|
||||
continue
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=ChromaIndex(self.client, collection),
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
|
@ -163,7 +164,7 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
|
||||
collection = await self.client.get_collection(bank_id)
|
||||
collection = await maybe_await(self.client.get_collection(bank_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Bank {bank_id} not found in Chroma")
|
||||
index = BankWithIndex(bank=bank, index=ChromaIndex(self.client, collection))
|
||||
|
|
26
llama_stack/providers/remote/memory/chroma/config.py
Normal file
26
llama_stack/providers/remote/memory/chroma/config.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaConfig(BaseModel):
|
||||
# You can either specify the url of the chroma server or the path to the local db
|
||||
url: Optional[str] = None
|
||||
db_path: Optional[str] = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_url_or_db_path(self):
|
||||
if not (self.url or self.db_path):
|
||||
raise ValueError("Either url or db_path must be specified")
|
||||
|
||||
@classmethod
|
||||
def sample_config(cls) -> Dict[str, Any]:
|
||||
return {"url": "{env.CHROMADB_URL}"}
|
|
@ -185,17 +185,6 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
banks = load_models(self.cursor, VectorMemoryBank)
|
||||
for bank in banks:
|
||||
if bank.identifier not in self.cache:
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
return banks
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
|
|
|
@ -127,11 +127,6 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
# Qdrant doesn't have collection level metadata to store the bank properties
|
||||
# So we only return from the cache value
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
|
|
@ -14,7 +14,7 @@ class SampleMemoryImpl(Memory):
|
|||
def __init__(self, config: SampleConfig):
|
||||
self.config = config
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBankDef) -> None:
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
# these are the memory banks the Llama Stack will use to route requests to this provider
|
||||
# perform validation here if necessary
|
||||
pass
|
||||
|
|
|
@ -141,13 +141,6 @@ class WeaviateMemoryAdapter(
|
|||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
# TODO: right now the Llama Stack is the source of truth for these banks. That is
|
||||
# not ideal. It should be Weaviate which is the source of truth. Unfortunately,
|
||||
# list() happens at Stack startup when the Weaviate client (credentials) is not
|
||||
# yet available. We need to figure out a way to make this work.
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue