4: finished rename I think

This commit is contained in:
Ashwin Bharambe 2025-10-20 19:27:24 -07:00
parent 3d7b463a80
commit 44f104baae
15 changed files with 273 additions and 272 deletions

View file

@ -4,4 +4,4 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .vector_dbs import *
from .vector_stores import *

View file

@ -17,7 +17,7 @@ from llama_stack.apis.models import Model
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.shields import Shield
from llama_stack.apis.tools import ToolGroup
from llama_stack.apis.vector_dbs import VectorStore
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.schema_utils import json_schema_type

View file

@ -17,7 +17,7 @@ from pydantic import TypeAdapter
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files, OpenAIFileObject
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.vector_io import (
Chunk,
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
@ -63,7 +63,7 @@ MAX_CONCURRENT_FILES_PER_BATCH = 3 # Maximum concurrent file processing within
FILE_BATCH_CHUNK_SIZE = 10 # Process files in chunks of this size
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::"
VECTOR_DBS_PREFIX = f"vector_stores:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:{VERSION}::"
@ -321,19 +321,19 @@ class OpenAIVectorStoreMixin(ABC):
pass
@abstractmethod
async def register_vector_db(self, vector_db: VectorDB) -> None:
async def register_vector_store(self, vector_store: VectorStore) -> None:
"""Register a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def unregister_vector_db(self, vector_db_id: str) -> None:
async def unregister_vector_store(self, vector_store_id: str) -> None:
"""Unregister a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def insert_chunks(
self,
vector_db_id: str,
vector_store_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
@ -342,7 +342,7 @@ class OpenAIVectorStoreMixin(ABC):
@abstractmethod
async def query_chunks(
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
self, vector_store_id: str, query: Any, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
"""Query chunks from a vector database (provider-specific implementation)."""
pass
@ -358,7 +358,7 @@ class OpenAIVectorStoreMixin(ABC):
extra_body = params.model_extra or {}
metadata = params.metadata or {}
provider_vector_db_id = extra_body.get("provider_vector_db_id")
provider_vector_store_id = extra_body.get("provider_vector_store_id")
# Use embedding info from metadata if available, otherwise from extra_body
if metadata.get("embedding_model"):
@ -389,8 +389,8 @@ class OpenAIVectorStoreMixin(ABC):
# use provider_id set by router; fallback to provider's own ID when used directly via --stack-config
provider_id = extra_body.get("provider_id") or getattr(self, "__provider_id__", None)
# Derive the canonical vector_db_id (allow override, else generate)
vector_db_id = provider_vector_db_id or generate_object_id("vector_store", lambda: f"vs_{uuid.uuid4()}")
# Derive the canonical vector_store_id (allow override, else generate)
vector_store_id = provider_vector_store_id or generate_object_id("vector_store", lambda: f"vs_{uuid.uuid4()}")
if embedding_model is None:
raise ValueError("embedding_model is required")
@ -398,19 +398,20 @@ class OpenAIVectorStoreMixin(ABC):
if embedding_dimension is None:
raise ValueError("Embedding dimension is required")
# Register the VectorDB backing this vector store
# Register the VectorStore backing this vector store
if provider_id is None:
raise ValueError("Provider ID is required but was not provided")
vector_db = VectorDB(
identifier=vector_db_id,
# call to the provider to create any index, etc.
vector_store = VectorStore(
identifier=vector_store_id,
embedding_dimension=embedding_dimension,
embedding_model=embedding_model,
provider_id=provider_id,
provider_resource_id=vector_db_id,
vector_db_name=params.name,
provider_resource_id=vector_store_id,
vector_store_name=params.name,
)
await self.register_vector_db(vector_db)
await self.register_vector_store(vector_store)
# Create OpenAI vector store metadata
status = "completed"
@ -424,7 +425,7 @@ class OpenAIVectorStoreMixin(ABC):
total=0,
)
store_info: dict[str, Any] = {
"id": vector_db_id,
"id": vector_store_id,
"object": "vector_store",
"created_at": created_at,
"name": params.name,
@ -441,23 +442,23 @@ class OpenAIVectorStoreMixin(ABC):
# Add provider information to metadata if provided
if provider_id:
metadata["provider_id"] = provider_id
if provider_vector_db_id:
metadata["provider_vector_db_id"] = provider_vector_db_id
if provider_vector_store_id:
metadata["provider_vector_store_id"] = provider_vector_store_id
store_info["metadata"] = metadata
# Save to persistent storage (provider-specific)
await self._save_openai_vector_store(vector_db_id, store_info)
await self._save_openai_vector_store(vector_store_id, store_info)
# Store in memory cache
self.openai_vector_stores[vector_db_id] = store_info
self.openai_vector_stores[vector_store_id] = store_info
# Now that our vector store is created, attach any files that were provided
file_ids = params.file_ids or []
tasks = [self.openai_attach_file_to_vector_store(vector_db_id, file_id) for file_id in file_ids]
tasks = [self.openai_attach_file_to_vector_store(vector_store_id, file_id) for file_id in file_ids]
await asyncio.gather(*tasks)
# Get the updated store info and return it
store_info = self.openai_vector_stores[vector_db_id]
store_info = self.openai_vector_stores[vector_store_id]
return VectorStoreObject.model_validate(store_info)
async def openai_list_vector_stores(
@ -567,7 +568,7 @@ class OpenAIVectorStoreMixin(ABC):
# Also delete the underlying vector DB
try:
await self.unregister_vector_db(vector_store_id)
await self.unregister_vector_store(vector_store_id)
except Exception as e:
logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}")
@ -618,7 +619,7 @@ class OpenAIVectorStoreMixin(ABC):
# TODO: Add support for ranking_options.ranker
response = await self.query_chunks(
vector_db_id=vector_store_id,
vector_store_id=vector_store_id,
query=search_query,
params=params,
)
@ -812,7 +813,7 @@ class OpenAIVectorStoreMixin(ABC):
)
else:
await self.insert_chunks(
vector_db_id=vector_store_id,
vector_store_id=vector_store_id,
chunks=chunks,
)
vector_store_file_object.status = "completed"

View file

@ -23,7 +23,7 @@ from llama_stack.apis.common.content_types import (
)
from llama_stack.apis.inference import OpenAIEmbeddingsRequestWithExtraBody
from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
@ -187,7 +187,7 @@ def make_overlapped_chunks(
updated_timestamp=int(time.time()),
chunk_window=chunk_window,
chunk_tokenizer=default_tokenizer,
chunk_embedding_model=None, # This will be set in `VectorDBWithIndex.insert_chunks`
chunk_embedding_model=None, # This will be set in `VectorStoreWithIndex.insert_chunks`
content_token_count=len(toks),
metadata_token_count=len(metadata_tokens),
)
@ -255,8 +255,8 @@ class EmbeddingIndex(ABC):
@dataclass
class VectorDBWithIndex:
vector_db: VectorDB
class VectorStoreWithIndex:
vector_store: VectorStore
index: EmbeddingIndex
inference_api: Api.inference
@ -269,14 +269,14 @@ class VectorDBWithIndex:
if c.embedding is None:
chunks_to_embed.append(c)
if c.chunk_metadata:
c.chunk_metadata.chunk_embedding_model = self.vector_db.embedding_model
c.chunk_metadata.chunk_embedding_dimension = self.vector_db.embedding_dimension
c.chunk_metadata.chunk_embedding_model = self.vector_store.embedding_model
c.chunk_metadata.chunk_embedding_dimension = self.vector_store.embedding_dimension
else:
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)
_validate_embedding(c.embedding, i, self.vector_store.embedding_dimension)
if chunks_to_embed:
params = OpenAIEmbeddingsRequestWithExtraBody(
model=self.vector_db.embedding_model,
model=self.vector_store.embedding_model,
input=[c.content for c in chunks_to_embed],
)
resp = await self.inference_api.openai_embeddings(params)
@ -319,7 +319,7 @@ class VectorDBWithIndex:
return await self.index.query_keyword(query_string, k, score_threshold)
params = OpenAIEmbeddingsRequestWithExtraBody(
model=self.vector_db.embedding_model,
model=self.vector_store.embedding_model,
input=[query_string],
)
embeddings_response = await self.inference_api.openai_embeddings(params)

View file

@ -367,7 +367,7 @@ def test_openai_vector_store_with_chunks(
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -434,7 +434,7 @@ def test_openai_vector_store_search_relevance(
# Insert chunks using native API
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -484,7 +484,7 @@ def test_openai_vector_store_search_with_ranking_options(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -544,7 +544,7 @@ def test_openai_vector_store_search_with_high_score_filter(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -610,7 +610,7 @@ def test_openai_vector_store_search_with_max_num_results(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -1175,7 +1175,7 @@ def test_openai_vector_store_search_modes(
)
client_with_models.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
query = "Python programming language"

View file

@ -49,46 +49,46 @@ def client_with_empty_registry(client_with_models):
@vector_provider_wrapper
def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id):
vector_db_name = "test_vector_db"
def test_vector_store_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id):
vector_store_name = "test_vector_store"
create_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
name=vector_store_name,
extra_body={
"provider_id": vector_io_provider_id,
},
)
actual_vector_db_id = create_response.id
actual_vector_store_id = create_response.id
# Retrieve the vector store and validate its properties
response = client_with_empty_registry.vector_stores.retrieve(vector_store_id=actual_vector_db_id)
response = client_with_empty_registry.vector_stores.retrieve(vector_store_id=actual_vector_store_id)
assert response is not None
assert response.id == actual_vector_db_id
assert response.name == vector_db_name
assert response.id == actual_vector_store_id
assert response.name == vector_store_name
assert response.id.startswith("vs_")
@vector_provider_wrapper
def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id):
vector_db_name = "test_vector_db"
def test_vector_store_register(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id):
vector_store_name = "test_vector_store"
response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
name=vector_store_name,
extra_body={
"provider_id": vector_io_provider_id,
},
)
actual_vector_db_id = response.id
assert actual_vector_db_id.startswith("vs_")
assert actual_vector_db_id != vector_db_name
actual_vector_store_id = response.id
assert actual_vector_store_id.startswith("vs_")
assert actual_vector_store_id != vector_store_name
vector_stores = client_with_empty_registry.vector_stores.list()
assert len(vector_stores.data) == 1
vector_store = vector_stores.data[0]
assert vector_store.id == actual_vector_db_id
assert vector_store.name == vector_db_name
assert vector_store.id == actual_vector_store_id
assert vector_store.name == vector_store_name
client_with_empty_registry.vector_stores.delete(vector_store_id=actual_vector_db_id)
client_with_empty_registry.vector_stores.delete(vector_store_id=actual_vector_store_id)
vector_stores = client_with_empty_registry.vector_stores.list()
assert len(vector_stores.data) == 0
@ -108,23 +108,23 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe
def test_insert_chunks(
client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case, vector_io_provider_id
):
vector_db_name = "test_vector_db"
vector_store_name = "test_vector_store"
create_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
name=vector_store_name,
extra_body={
"provider_id": vector_io_provider_id,
},
)
actual_vector_db_id = create_response.id
actual_vector_store_id = create_response.id
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
chunks=sample_chunks,
)
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
query="What is the capital of France?",
)
assert response is not None
@ -133,7 +133,7 @@ def test_insert_chunks(
query, expected_doc_id = test_case
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
query=query,
)
assert response is not None
@ -151,15 +151,15 @@ def test_insert_chunks_with_precomputed_embeddings(
"inline::qdrant": {"score_threshold": -1.0},
"remote::qdrant": {"score_threshold": -1.0},
}
vector_db_name = "test_precomputed_embeddings_db"
vector_store_name = "test_precomputed_embeddings_db"
register_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
name=vector_store_name,
extra_body={
"provider_id": vector_io_provider_id,
},
)
actual_vector_db_id = register_response.id
actual_vector_store_id = register_response.id
chunks_with_embeddings = [
Chunk(
@ -170,13 +170,13 @@ def test_insert_chunks_with_precomputed_embeddings(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
query="precomputed embedding test",
params=vector_io_provider_params_dict.get(provider, None),
)
@ -200,16 +200,16 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
"remote::qdrant": {"score_threshold": 0.0},
"inline::qdrant": {"score_threshold": 0.0},
}
vector_db_name = "test_precomputed_embeddings_db"
vector_store_name = "test_precomputed_embeddings_db"
register_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
name=vector_store_name,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
actual_vector_db_id = register_response.id
actual_vector_store_id = register_response.id
chunks_with_embeddings = [
Chunk(
@ -220,13 +220,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_db_id,
vector_store_id=actual_vector_store_id,
query="duplicate",
params=vector_io_provider_params_dict.get(provider, None),
)

View file

@ -21,7 +21,7 @@ async def test_single_provider_auto_selection():
Mock(identifier="all-MiniLM-L6-v2", model_type="embedding", metadata={"embedding_dimension": 384})
]
)
mock_routing_table.register_vector_db = AsyncMock(
mock_routing_table.register_vector_store = AsyncMock(
return_value=Mock(identifier="vs_123", provider_id="inline::faiss", provider_resource_id="vs_123")
)
mock_routing_table.get_provider_impl = AsyncMock(

View file

@ -10,7 +10,7 @@ from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import pytest
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
@ -31,7 +31,7 @@ def vector_provider(request):
@pytest.fixture
def vector_db_id() -> str:
def vector_store_id() -> str:
return f"test-vector-db-{random.randint(1, 100)}"
@ -149,8 +149,8 @@ async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inf
)
collection_id = f"sqlite_test_collection_{np.random.randint(1e6)}"
await adapter.initialize()
await adapter.register_vector_db(
VectorDB(
await adapter.register_vector_store(
VectorStore(
identifier=collection_id,
provider_id="test_provider",
embedding_model="test_model",
@ -186,8 +186,8 @@ async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding
files_api=None,
)
await adapter.initialize()
await adapter.register_vector_db(
VectorDB(
await adapter.register_vector_store(
VectorStore(
identifier=f"faiss_test_collection_{np.random.randint(1e6)}",
provider_id="test_provider",
embedding_model="test_model",
@ -215,7 +215,7 @@ def mock_psycopg2_connection():
async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection):
connection, cursor = mock_psycopg2_connection
vector_db = VectorDB(
vector_store = VectorStore(
identifier="test-vector-db",
embedding_model="test-model",
embedding_dimension=embedding_dimension,
@ -225,7 +225,7 @@ async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection):
with patch("llama_stack.providers.remote.vector_io.pgvector.pgvector.psycopg2"):
with patch("llama_stack.providers.remote.vector_io.pgvector.pgvector.execute_values"):
index = PGVectorIndex(vector_db, embedding_dimension, connection, distance_metric="COSINE")
index = PGVectorIndex(vector_store, embedding_dimension, connection, distance_metric="COSINE")
index._test_chunks = []
original_add_chunks = index.add_chunks
@ -281,30 +281,30 @@ async def pgvector_vec_adapter(unique_kvstore_config, mock_inference_api, embedd
await adapter.initialize()
adapter.conn = mock_conn
async def mock_insert_chunks(vector_db_id, chunks, ttl_seconds=None):
index = await adapter._get_and_cache_vector_db_index(vector_db_id)
async def mock_insert_chunks(vector_store_id, chunks, ttl_seconds=None):
index = await adapter._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise ValueError(f"Vector DB {vector_store_id} not found")
await index.insert_chunks(chunks)
adapter.insert_chunks = mock_insert_chunks
async def mock_query_chunks(vector_db_id, query, params=None):
index = await adapter._get_and_cache_vector_db_index(vector_db_id)
async def mock_query_chunks(vector_store_id, query, params=None):
index = await adapter._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise ValueError(f"Vector DB {vector_store_id} not found")
return await index.query_chunks(query, params)
adapter.query_chunks = mock_query_chunks
test_vector_db = VectorDB(
test_vector_store = VectorStore(
identifier=f"pgvector_test_collection_{random.randint(1, 1_000_000)}",
provider_id="test_provider",
embedding_model="test_model",
embedding_dimension=embedding_dimension,
)
await adapter.register_vector_db(test_vector_db)
adapter.test_collection_id = test_vector_db.identifier
await adapter.register_vector_store(test_vector_store)
adapter.test_collection_id = test_vector_store.identifier
yield adapter
await adapter.shutdown()

View file

@ -11,7 +11,7 @@ import numpy as np
import pytest
from llama_stack.apis.files import Files
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.providers.datatypes import HealthStatus
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
@ -43,8 +43,8 @@ def embedding_dimension():
@pytest.fixture
def vector_db_id():
return "test_vector_db"
def vector_store_id():
return "test_vector_store"
@pytest.fixture
@ -61,12 +61,12 @@ def sample_embeddings(embedding_dimension):
@pytest.fixture
def mock_vector_db(vector_db_id, embedding_dimension) -> MagicMock:
mock_vector_db = MagicMock(spec=VectorDB)
mock_vector_db.embedding_model = "mock_embedding_model"
mock_vector_db.identifier = vector_db_id
mock_vector_db.embedding_dimension = embedding_dimension
return mock_vector_db
def mock_vector_store(vector_store_id, embedding_dimension) -> MagicMock:
mock_vector_store = MagicMock(spec=VectorStore)
mock_vector_store.embedding_model = "mock_embedding_model"
mock_vector_store.identifier = vector_store_id
mock_vector_store.embedding_dimension = embedding_dimension
return mock_vector_store
@pytest.fixture

View file

@ -12,7 +12,7 @@ import numpy as np
import pytest
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.vector_io import (
Chunk,
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
@ -71,7 +71,7 @@ async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimensio
async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter):
key = f"{VECTOR_DBS_PREFIX}db1"
dummy = VectorDB(
dummy = VectorStore(
identifier="foo_db", provider_id="test_provider", embedding_model="test_model", embedding_dimension=128
)
await vector_io_adapter.kvstore.set(key=key, value=json.dumps(dummy.model_dump()))
@ -81,10 +81,10 @@ async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter):
async def test_persistence_across_adapter_restarts(vector_io_adapter):
await vector_io_adapter.initialize()
dummy = VectorDB(
dummy = VectorStore(
identifier="foo_db", provider_id="test_provider", embedding_model="test_model", embedding_dimension=128
)
await vector_io_adapter.register_vector_db(dummy)
await vector_io_adapter.register_vector_store(dummy)
await vector_io_adapter.shutdown()
await vector_io_adapter.initialize()
@ -92,15 +92,15 @@ async def test_persistence_across_adapter_restarts(vector_io_adapter):
await vector_io_adapter.shutdown()
async def test_register_and_unregister_vector_db(vector_io_adapter):
async def test_register_and_unregister_vector_store(vector_io_adapter):
unique_id = f"foo_db_{np.random.randint(1e6)}"
dummy = VectorDB(
dummy = VectorStore(
identifier=unique_id, provider_id="test_provider", embedding_model="test_model", embedding_dimension=128
)
await vector_io_adapter.register_vector_db(dummy)
await vector_io_adapter.register_vector_store(dummy)
assert dummy.identifier in vector_io_adapter.cache
await vector_io_adapter.unregister_vector_db(dummy.identifier)
await vector_io_adapter.unregister_vector_store(dummy.identifier)
assert dummy.identifier not in vector_io_adapter.cache
@ -121,7 +121,7 @@ async def test_insert_chunks_calls_underlying_index(vector_io_adapter):
async def test_insert_chunks_missing_db_raises(vector_io_adapter):
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None)
vector_io_adapter._get_and_cache_vector_store_index = AsyncMock(return_value=None)
with pytest.raises(ValueError):
await vector_io_adapter.insert_chunks("db_not_exist", [])
@ -170,7 +170,7 @@ async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter
async def test_query_chunks_missing_db_raises(vector_io_adapter):
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None)
vector_io_adapter._get_and_cache_vector_store_index = AsyncMock(return_value=None)
with pytest.raises(ValueError):
await vector_io_adapter.query_chunks("db_missing", "q", None)
@ -182,7 +182,7 @@ async def test_save_openai_vector_store(vector_io_adapter):
"id": store_id,
"name": "Test Store",
"description": "A test OpenAI vector store",
"vector_db_id": "test_db",
"vector_store_id": "test_db",
"embedding_model": "test_model",
}
@ -198,7 +198,7 @@ async def test_update_openai_vector_store(vector_io_adapter):
"id": store_id,
"name": "Test Store",
"description": "A test OpenAI vector store",
"vector_db_id": "test_db",
"vector_store_id": "test_db",
"embedding_model": "test_model",
}
@ -214,7 +214,7 @@ async def test_delete_openai_vector_store(vector_io_adapter):
"id": store_id,
"name": "Test Store",
"description": "A test OpenAI vector store",
"vector_db_id": "test_db",
"vector_store_id": "test_db",
"embedding_model": "test_model",
}
@ -229,7 +229,7 @@ async def test_load_openai_vector_stores(vector_io_adapter):
"id": store_id,
"name": "Test Store",
"description": "A test OpenAI vector store",
"vector_db_id": "test_db",
"vector_store_id": "test_db",
"embedding_model": "test_model",
}
@ -998,8 +998,8 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter):
async def test_embedding_config_from_metadata(vector_io_adapter):
"""Test that embedding configuration is correctly extracted from metadata."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Mock register_vector_store to avoid actual registration
vector_io_adapter.register_vector_store = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
@ -1015,9 +1015,9 @@ async def test_embedding_config_from_metadata(vector_io_adapter):
await vector_io_adapter.openai_create_vector_store(params)
# Verify VectorDB was registered with correct embedding config from metadata
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
# Verify VectorStore was registered with correct embedding config from metadata
vector_io_adapter.register_vector_store.assert_called_once()
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
assert call_args.embedding_model == "test-embedding-model"
assert call_args.embedding_dimension == 512
@ -1025,8 +1025,8 @@ async def test_embedding_config_from_metadata(vector_io_adapter):
async def test_embedding_config_from_extra_body(vector_io_adapter):
"""Test that embedding configuration is correctly extracted from extra_body when metadata is empty."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Mock register_vector_store to avoid actual registration
vector_io_adapter.register_vector_store = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
@ -1042,9 +1042,9 @@ async def test_embedding_config_from_extra_body(vector_io_adapter):
await vector_io_adapter.openai_create_vector_store(params)
# Verify VectorDB was registered with correct embedding config from extra_body
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
# Verify VectorStore was registered with correct embedding config from extra_body
vector_io_adapter.register_vector_store.assert_called_once()
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
assert call_args.embedding_model == "extra-body-model"
assert call_args.embedding_dimension == 1024
@ -1052,8 +1052,8 @@ async def test_embedding_config_from_extra_body(vector_io_adapter):
async def test_embedding_config_consistency_check_passes(vector_io_adapter):
"""Test that consistent embedding config in both metadata and extra_body passes validation."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Mock register_vector_store to avoid actual registration
vector_io_adapter.register_vector_store = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
@ -1073,8 +1073,8 @@ async def test_embedding_config_consistency_check_passes(vector_io_adapter):
await vector_io_adapter.openai_create_vector_store(params)
# Should not raise any error and use metadata config
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
vector_io_adapter.register_vector_store.assert_called_once()
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
assert call_args.embedding_model == "consistent-model"
assert call_args.embedding_dimension == 768
@ -1082,8 +1082,8 @@ async def test_embedding_config_consistency_check_passes(vector_io_adapter):
async def test_embedding_config_inconsistency_errors(vector_io_adapter):
"""Test that inconsistent embedding config between metadata and extra_body raises errors."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Mock register_vector_store to avoid actual registration
vector_io_adapter.register_vector_store = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
@ -1104,7 +1104,7 @@ async def test_embedding_config_inconsistency_errors(vector_io_adapter):
await vector_io_adapter.openai_create_vector_store(params)
# Reset mock for second test
vector_io_adapter.register_vector_db.reset_mock()
vector_io_adapter.register_vector_store.reset_mock()
# Test with inconsistent embedding dimension
params = OpenAICreateVectorStoreRequestWithExtraBody(
@ -1126,8 +1126,8 @@ async def test_embedding_config_inconsistency_errors(vector_io_adapter):
async def test_embedding_config_defaults_when_missing(vector_io_adapter):
"""Test that embedding dimension defaults to 768 when not provided."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Mock register_vector_store to avoid actual registration
vector_io_adapter.register_vector_store = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
@ -1143,8 +1143,8 @@ async def test_embedding_config_defaults_when_missing(vector_io_adapter):
await vector_io_adapter.openai_create_vector_store(params)
# Should default to 768 dimensions
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
vector_io_adapter.register_vector_store.assert_called_once()
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
assert call_args.embedding_model == "model-without-dimension"
assert call_args.embedding_dimension == 768
@ -1152,8 +1152,8 @@ async def test_embedding_config_defaults_when_missing(vector_io_adapter):
async def test_embedding_config_required_model_missing(vector_io_adapter):
"""Test that missing embedding model raises error."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Mock register_vector_store to avoid actual registration
vector_io_adapter.register_vector_store = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Mock the default model lookup to return None (no default model available)

View file

@ -18,19 +18,19 @@ from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRunti
class TestRagQuery:
async def test_query_raises_on_empty_vector_db_ids(self):
async def test_query_raises_on_empty_vector_store_ids(self):
rag_tool = MemoryToolRuntimeImpl(
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
await rag_tool.query(content=MagicMock(), vector_store_ids=[])
async def test_query_chunk_metadata_handling(self):
rag_tool = MemoryToolRuntimeImpl(
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
content = "test query content"
vector_db_ids = ["db1"]
vector_store_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
@ -55,7 +55,7 @@ class TestRagQuery:
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
result = await rag_tool.query(content=content, vector_store_ids=vector_store_ids)
assert result is not None
expected_metadata_string = (
@ -82,7 +82,7 @@ class TestRagQuery:
with pytest.raises(ValueError):
RAGQueryConfig(mode="wrong_mode")
async def test_query_adds_vector_db_id_to_chunk_metadata(self):
async def test_query_adds_vector_store_id_to_chunk_metadata(self):
rag_tool = MemoryToolRuntimeImpl(
config=MagicMock(),
vector_io_api=MagicMock(),
@ -90,7 +90,7 @@ class TestRagQuery:
files_api=MagicMock(),
)
vector_db_ids = ["db1", "db2"]
vector_store_ids = ["db1", "db2"]
# Fake chunks from each DB
chunk_metadata1 = ChunkMetadata(
@ -101,7 +101,7 @@ class TestRagQuery:
)
chunk1 = Chunk(
content="chunk from db1",
metadata={"vector_db_id": "db1", "document_id": "doc1"},
metadata={"vector_store_id": "db1", "document_id": "doc1"},
stored_chunk_id="c1",
chunk_metadata=chunk_metadata1,
)
@ -114,7 +114,7 @@ class TestRagQuery:
)
chunk2 = Chunk(
content="chunk from db2",
metadata={"vector_db_id": "db2", "document_id": "doc2"},
metadata={"vector_store_id": "db2", "document_id": "doc2"},
stored_chunk_id="c2",
chunk_metadata=chunk_metadata2,
)
@ -126,13 +126,13 @@ class TestRagQuery:
]
)
result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids)
result = await rag_tool.query(content="test", vector_store_ids=vector_store_ids)
returned_chunks = result.metadata["chunks"]
returned_scores = result.metadata["scores"]
returned_doc_ids = result.metadata["document_ids"]
returned_vector_db_ids = result.metadata["vector_db_ids"]
returned_vector_store_ids = result.metadata["vector_store_ids"]
assert returned_chunks == ["chunk from db1", "chunk from db2"]
assert returned_scores == (0.9, 0.8)
assert returned_doc_ids == ["doc1", "doc2"]
assert returned_vector_db_ids == ["db1", "db2"]
assert returned_vector_store_ids == ["db1", "db2"]

View file

@ -21,7 +21,7 @@ from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_io import Chunk
from llama_stack.providers.utils.memory.vector_store import (
URL,
VectorDBWithIndex,
VectorStoreWithIndex,
_validate_embedding,
content_from_doc,
make_overlapped_chunks,
@ -206,15 +206,15 @@ class TestVectorStore:
assert str(excinfo.value.__cause__) == "Cannot convert to string"
class TestVectorDBWithIndex:
class TestVectorStoreWithIndex:
async def test_insert_chunks_without_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_model = "test-model without embeddings"
mock_vector_store = MagicMock()
mock_vector_store.embedding_model = "test-model without embeddings"
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
vector_store_with_index = VectorStoreWithIndex(
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
)
chunks = [
@ -227,7 +227,7 @@ class TestVectorDBWithIndex:
OpenAIEmbeddingData(embedding=[0.4, 0.5, 0.6], index=1),
]
await vector_db_with_index.insert_chunks(chunks)
await vector_store_with_index.insert_chunks(chunks)
# Verify openai_embeddings was called with correct params
mock_inference_api.openai_embeddings.assert_called_once()
@ -243,14 +243,14 @@ class TestVectorDBWithIndex:
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
async def test_insert_chunks_with_valid_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_model = "test-model with embeddings"
mock_vector_db.embedding_dimension = 3
mock_vector_store = MagicMock()
mock_vector_store.embedding_model = "test-model with embeddings"
mock_vector_store.embedding_dimension = 3
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
vector_store_with_index = VectorStoreWithIndex(
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
)
chunks = [
@ -258,7 +258,7 @@ class TestVectorDBWithIndex:
Chunk(content="Test 2", embedding=[0.4, 0.5, 0.6], metadata={}),
]
await vector_db_with_index.insert_chunks(chunks)
await vector_store_with_index.insert_chunks(chunks)
mock_inference_api.openai_embeddings.assert_not_called()
mock_index.add_chunks.assert_called_once()
@ -267,14 +267,14 @@ class TestVectorDBWithIndex:
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
async def test_insert_chunks_with_invalid_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_dimension = 3
mock_vector_db.embedding_model = "test-model with invalid embeddings"
mock_vector_store = MagicMock()
mock_vector_store.embedding_dimension = 3
mock_vector_store.embedding_model = "test-model with invalid embeddings"
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
vector_store_with_index = VectorStoreWithIndex(
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
)
# Verify Chunk raises ValueError for invalid embedding type
@ -283,7 +283,7 @@ class TestVectorDBWithIndex:
# Verify Chunk raises ValueError for invalid embedding type in insert_chunks (i.e., Chunk errors before insert_chunks is called)
with pytest.raises(ValueError, match="Input should be a valid list"):
await vector_db_with_index.insert_chunks(
await vector_store_with_index.insert_chunks(
[
Chunk(content="Test 1", embedding=None, metadata={}),
Chunk(content="Test 2", embedding="invalid_type", metadata={}),
@ -292,7 +292,7 @@ class TestVectorDBWithIndex:
# Verify Chunk raises ValueError for invalid embedding element type in insert_chunks (i.e., Chunk errors before insert_chunks is called)
with pytest.raises(ValueError, match=" Input should be a valid number, unable to parse string as a number "):
await vector_db_with_index.insert_chunks(
await vector_store_with_index.insert_chunks(
Chunk(content="Test 1", embedding=[0.1, "string", 0.3], metadata={})
)
@ -300,20 +300,20 @@ class TestVectorDBWithIndex:
Chunk(content="Test 1", embedding=[0.1, 0.2, 0.3, 0.4], metadata={}),
]
with pytest.raises(ValueError, match="has dimension 4, expected 3"):
await vector_db_with_index.insert_chunks(chunks_wrong_dim)
await vector_store_with_index.insert_chunks(chunks_wrong_dim)
mock_inference_api.openai_embeddings.assert_not_called()
mock_index.add_chunks.assert_not_called()
async def test_insert_chunks_with_partially_precomputed_embeddings(self):
mock_vector_db = MagicMock()
mock_vector_db.embedding_model = "test-model with partial embeddings"
mock_vector_db.embedding_dimension = 3
mock_vector_store = MagicMock()
mock_vector_store.embedding_model = "test-model with partial embeddings"
mock_vector_store.embedding_dimension = 3
mock_index = AsyncMock()
mock_inference_api = AsyncMock()
vector_db_with_index = VectorDBWithIndex(
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
vector_store_with_index = VectorStoreWithIndex(
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
)
chunks = [
@ -327,7 +327,7 @@ class TestVectorDBWithIndex:
OpenAIEmbeddingData(embedding=[0.3, 0.3, 0.3], index=1),
]
await vector_db_with_index.insert_chunks(chunks)
await vector_store_with_index.insert_chunks(chunks)
# Verify openai_embeddings was called with correct params
mock_inference_api.openai_embeddings.assert_called_once()

View file

@ -8,8 +8,8 @@
import pytest
from llama_stack.apis.inference import Model
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.core.datatypes import VectorDBWithOwner
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.core.datatypes import VectorStoreWithOwner
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
from llama_stack.core.store.registry import (
KEY_FORMAT,
@ -20,12 +20,12 @@ from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_b
@pytest.fixture
def sample_vector_db():
return VectorDB(
identifier="test_vector_db",
def sample_vector_store():
return VectorStore(
identifier="test_vector_store",
embedding_model="nomic-embed-text-v1.5",
embedding_dimension=768,
provider_resource_id="test_vector_db",
provider_resource_id="test_vector_store",
provider_id="test-provider",
)
@ -45,17 +45,17 @@ async def test_registry_initialization(disk_dist_registry):
assert result is None
async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_model):
print(f"Registering {sample_vector_db}")
await disk_dist_registry.register(sample_vector_db)
async def test_basic_registration(disk_dist_registry, sample_vector_store, sample_model):
print(f"Registering {sample_vector_store}")
await disk_dist_registry.register(sample_vector_store)
print(f"Registering {sample_model}")
await disk_dist_registry.register(sample_model)
print("Getting vector_db")
result_vector_db = await disk_dist_registry.get("vector_db", "test_vector_db")
assert result_vector_db is not None
assert result_vector_db.identifier == sample_vector_db.identifier
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
assert result_vector_db.provider_id == sample_vector_db.provider_id
print("Getting vector_store")
result_vector_store = await disk_dist_registry.get("vector_store", "test_vector_store")
assert result_vector_store is not None
assert result_vector_store.identifier == sample_vector_store.identifier
assert result_vector_store.embedding_model == sample_vector_store.embedding_model
assert result_vector_store.provider_id == sample_vector_store.provider_id
result_model = await disk_dist_registry.get("model", "test_model")
assert result_model is not None
@ -63,11 +63,11 @@ async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_m
assert result_model.provider_id == sample_model.provider_id
async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db, sample_model):
async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_store, sample_model):
# First populate the disk registry
disk_registry = DiskDistributionRegistry(sqlite_kvstore)
await disk_registry.initialize()
await disk_registry.register(sample_vector_db)
await disk_registry.register(sample_vector_store)
await disk_registry.register(sample_model)
# Test cached version loads from disk
@ -79,29 +79,29 @@ async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db,
)
await cached_registry.initialize()
result_vector_db = await cached_registry.get("vector_db", "test_vector_db")
assert result_vector_db is not None
assert result_vector_db.identifier == sample_vector_db.identifier
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
assert result_vector_db.embedding_dimension == sample_vector_db.embedding_dimension
assert result_vector_db.provider_id == sample_vector_db.provider_id
result_vector_store = await cached_registry.get("vector_store", "test_vector_store")
assert result_vector_store is not None
assert result_vector_store.identifier == sample_vector_store.identifier
assert result_vector_store.embedding_model == sample_vector_store.embedding_model
assert result_vector_store.embedding_dimension == sample_vector_store.embedding_dimension
assert result_vector_store.provider_id == sample_vector_store.provider_id
async def test_cached_registry_updates(cached_disk_dist_registry):
new_vector_db = VectorDB(
identifier="test_vector_db_2",
new_vector_store = VectorStore(
identifier="test_vector_store_2",
embedding_model="nomic-embed-text-v1.5",
embedding_dimension=768,
provider_resource_id="test_vector_db_2",
provider_resource_id="test_vector_store_2",
provider_id="baz",
)
await cached_disk_dist_registry.register(new_vector_db)
await cached_disk_dist_registry.register(new_vector_store)
# Verify in cache
result_vector_db = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
assert result_vector_db is not None
assert result_vector_db.identifier == new_vector_db.identifier
assert result_vector_db.provider_id == new_vector_db.provider_id
result_vector_store = await cached_disk_dist_registry.get("vector_store", "test_vector_store_2")
assert result_vector_store is not None
assert result_vector_store.identifier == new_vector_store.identifier
assert result_vector_store.provider_id == new_vector_store.provider_id
# Verify persisted to disk
db_path = cached_disk_dist_registry.kvstore.db_path
@ -111,87 +111,87 @@ async def test_cached_registry_updates(cached_disk_dist_registry):
await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry"))
)
await new_registry.initialize()
result_vector_db = await new_registry.get("vector_db", "test_vector_db_2")
assert result_vector_db is not None
assert result_vector_db.identifier == new_vector_db.identifier
assert result_vector_db.provider_id == new_vector_db.provider_id
result_vector_store = await new_registry.get("vector_store", "test_vector_store_2")
assert result_vector_store is not None
assert result_vector_store.identifier == new_vector_store.identifier
assert result_vector_store.provider_id == new_vector_store.provider_id
async def test_duplicate_provider_registration(cached_disk_dist_registry):
original_vector_db = VectorDB(
identifier="test_vector_db_2",
original_vector_store = VectorStore(
identifier="test_vector_store_2",
embedding_model="nomic-embed-text-v1.5",
embedding_dimension=768,
provider_resource_id="test_vector_db_2",
provider_resource_id="test_vector_store_2",
provider_id="baz",
)
assert await cached_disk_dist_registry.register(original_vector_db)
assert await cached_disk_dist_registry.register(original_vector_store)
duplicate_vector_db = VectorDB(
identifier="test_vector_db_2",
duplicate_vector_store = VectorStore(
identifier="test_vector_store_2",
embedding_model="different-model",
embedding_dimension=768,
provider_resource_id="test_vector_db_2",
provider_resource_id="test_vector_store_2",
provider_id="baz", # Same provider_id
)
with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db_2' already exists"):
await cached_disk_dist_registry.register(duplicate_vector_db)
with pytest.raises(ValueError, match="Object of type 'vector_store' and identifier 'test_vector_store_2' already exists"):
await cached_disk_dist_registry.register(duplicate_vector_store)
result = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
result = await cached_disk_dist_registry.get("vector_store", "test_vector_store_2")
assert result is not None
assert result.embedding_model == original_vector_db.embedding_model # Original values preserved
assert result.embedding_model == original_vector_store.embedding_model # Original values preserved
async def test_get_all_objects(cached_disk_dist_registry):
# Create multiple test banks
# Create multiple test banks
test_vector_dbs = [
VectorDB(
identifier=f"test_vector_db_{i}",
test_vector_stores = [
VectorStore(
identifier=f"test_vector_store_{i}",
embedding_model="nomic-embed-text-v1.5",
embedding_dimension=768,
provider_resource_id=f"test_vector_db_{i}",
provider_resource_id=f"test_vector_store_{i}",
provider_id=f"provider_{i}",
)
for i in range(3)
]
# Register all vector_dbs
for vector_db in test_vector_dbs:
await cached_disk_dist_registry.register(vector_db)
# Register all vector_stores
for vector_store in test_vector_stores:
await cached_disk_dist_registry.register(vector_store)
# Test get_all retrieval
all_results = await cached_disk_dist_registry.get_all()
assert len(all_results) == 3
# Verify each vector_db was stored correctly
for original_vector_db in test_vector_dbs:
matching_vector_dbs = [v for v in all_results if v.identifier == original_vector_db.identifier]
assert len(matching_vector_dbs) == 1
stored_vector_db = matching_vector_dbs[0]
assert stored_vector_db.embedding_model == original_vector_db.embedding_model
assert stored_vector_db.provider_id == original_vector_db.provider_id
assert stored_vector_db.embedding_dimension == original_vector_db.embedding_dimension
# Verify each vector_store was stored correctly
for original_vector_store in test_vector_stores:
matching_vector_stores = [v for v in all_results if v.identifier == original_vector_store.identifier]
assert len(matching_vector_stores) == 1
stored_vector_store = matching_vector_stores[0]
assert stored_vector_store.embedding_model == original_vector_store.embedding_model
assert stored_vector_store.provider_id == original_vector_store.provider_id
assert stored_vector_store.embedding_dimension == original_vector_store.embedding_dimension
async def test_parse_registry_values_error_handling(sqlite_kvstore):
valid_db = VectorDB(
identifier="valid_vector_db",
valid_db = VectorStore(
identifier="valid_vector_store",
embedding_model="nomic-embed-text-v1.5",
embedding_dimension=768,
provider_resource_id="valid_vector_db",
provider_resource_id="valid_vector_store",
provider_id="test-provider",
)
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="valid_vector_db"), valid_db.model_dump_json()
KEY_FORMAT.format(type="vector_store", identifier="valid_vector_store"), valid_db.model_dump_json()
)
await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_db", identifier="corrupted_json"), "{not valid json")
await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_store", identifier="corrupted_json"), "{not valid json")
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="missing_fields"),
'{"type": "vector_db", "identifier": "missing_fields"}',
KEY_FORMAT.format(type="vector_store", identifier="missing_fields"),
'{"type": "vector_store", "identifier": "missing_fields"}',
)
test_registry = DiskDistributionRegistry(sqlite_kvstore)
@ -202,18 +202,18 @@ async def test_parse_registry_values_error_handling(sqlite_kvstore):
# Should have filtered out the invalid entries
assert len(all_objects) == 1
assert all_objects[0].identifier == "valid_vector_db"
assert all_objects[0].identifier == "valid_vector_store"
# Check that the get method also handles errors correctly
invalid_obj = await test_registry.get("vector_db", "corrupted_json")
invalid_obj = await test_registry.get("vector_store", "corrupted_json")
assert invalid_obj is None
invalid_obj = await test_registry.get("vector_db", "missing_fields")
invalid_obj = await test_registry.get("vector_store", "missing_fields")
assert invalid_obj is None
async def test_cached_registry_error_handling(sqlite_kvstore):
valid_db = VectorDB(
valid_db = VectorStore(
identifier="valid_cached_db",
embedding_model="nomic-embed-text-v1.5",
embedding_dimension=768,
@ -222,12 +222,12 @@ async def test_cached_registry_error_handling(sqlite_kvstore):
)
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="valid_cached_db"), valid_db.model_dump_json()
KEY_FORMAT.format(type="vector_store", identifier="valid_cached_db"), valid_db.model_dump_json()
)
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="invalid_cached_db"),
'{"type": "vector_db", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string
KEY_FORMAT.format(type="vector_store", identifier="invalid_cached_db"),
'{"type": "vector_store", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string
)
cached_registry = CachedDiskDistributionRegistry(sqlite_kvstore)
@ -237,63 +237,63 @@ async def test_cached_registry_error_handling(sqlite_kvstore):
assert len(all_objects) == 1
assert all_objects[0].identifier == "valid_cached_db"
invalid_obj = await cached_registry.get("vector_db", "invalid_cached_db")
invalid_obj = await cached_registry.get("vector_store", "invalid_cached_db")
assert invalid_obj is None
async def test_double_registration_identical_objects(disk_dist_registry):
"""Test that registering identical objects succeeds (idempotent)."""
vector_db = VectorDBWithOwner(
identifier="test_vector_db",
vector_store = VectorStoreWithOwner(
identifier="test_vector_store",
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_resource_id="test_vector_db",
provider_resource_id="test_vector_store",
provider_id="test-provider",
)
# First registration should succeed
result1 = await disk_dist_registry.register(vector_db)
result1 = await disk_dist_registry.register(vector_store)
assert result1 is True
# Second registration of identical object should also succeed (idempotent)
result2 = await disk_dist_registry.register(vector_db)
result2 = await disk_dist_registry.register(vector_store)
assert result2 is True
# Verify object exists and is unchanged
retrieved = await disk_dist_registry.get("vector_db", "test_vector_db")
retrieved = await disk_dist_registry.get("vector_store", "test_vector_store")
assert retrieved is not None
assert retrieved.identifier == vector_db.identifier
assert retrieved.embedding_model == vector_db.embedding_model
assert retrieved.identifier == vector_store.identifier
assert retrieved.embedding_model == vector_store.embedding_model
async def test_double_registration_different_objects(disk_dist_registry):
"""Test that registering different objects with same identifier fails."""
vector_db1 = VectorDBWithOwner(
identifier="test_vector_db",
vector_store1 = VectorStoreWithOwner(
identifier="test_vector_store",
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_resource_id="test_vector_db",
provider_resource_id="test_vector_store",
provider_id="test-provider",
)
vector_db2 = VectorDBWithOwner(
identifier="test_vector_db", # Same identifier
vector_store2 = VectorStoreWithOwner(
identifier="test_vector_store", # Same identifier
embedding_model="different-model", # Different embedding model
embedding_dimension=384,
provider_resource_id="test_vector_db",
provider_resource_id="test_vector_store",
provider_id="test-provider",
)
# First registration should succeed
result1 = await disk_dist_registry.register(vector_db1)
result1 = await disk_dist_registry.register(vector_store1)
assert result1 is True
# Second registration with different data should fail
with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db' already exists"):
await disk_dist_registry.register(vector_db2)
with pytest.raises(ValueError, match="Object of type 'vector_store' and identifier 'test_vector_store' already exists"):
await disk_dist_registry.register(vector_store2)
# Verify original object is unchanged
retrieved = await disk_dist_registry.get("vector_db", "test_vector_db")
retrieved = await disk_dist_registry.get("vector_store", "test_vector_store")
assert retrieved is not None
assert retrieved.embedding_model == "all-MiniLM-L6-v2" # Original value

View file

@ -41,7 +41,7 @@ class TestTranslateException:
self.identifier = identifier
self.owner = owner
resource = MockResource("vector_db", "test-db")
resource = MockResource("vector_store", "test-db")
exc = AccessDeniedError("create", resource, user)
result = translate_exception(exc)
@ -49,7 +49,7 @@ class TestTranslateException:
assert isinstance(result, HTTPException)
assert result.status_code == 403
assert "test-user" in result.detail
assert "vector_db::test-db" in result.detail
assert "vector_store::test-db" in result.detail
assert "create" in result.detail
assert "roles=['user']" in result.detail
assert "teams=['dev']" in result.detail