mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-14 00:56:09 +00:00
feat: Add missing Vector Store Files API surface
This adds the ability to list, retrieve, update, and delete Vector Store Files. It implements these new APIs for the faiss and sqlite-vec providers, since those are the two that also have the rest of the vector store files implementation. There are a number of new integration tests added, which I ran for each provider as outlined below. faiss (from ollama distro): ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run llama_stack/templates/ollama/run.yaml LLAMA_STACK_CONFIG=http://localhost:8321 \ pytest -sv tests/integration/vector_io/test_openai_vector_stores.py \ --embedding-model=all-MiniLM-L6-v2 ``` sqlite-vec (from starter distro): ``` llama stack run llama_stack/templates/starter/run.yaml LLAMA_STACK_CONFIG=http://localhost:8321 \ pytest -sv tests/integration/vector_io/test_openai_vector_stores.py \ --embedding-model=all-MiniLM-L6-v2 ``` Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
c20388c424
commit
459d50a365
11 changed files with 1248 additions and 20 deletions
|
@ -28,8 +28,11 @@ from llama_stack.apis.vector_io.vector_io import (
|
|||
VectorStoreChunkingStrategy,
|
||||
VectorStoreChunkingStrategyAuto,
|
||||
VectorStoreChunkingStrategyStatic,
|
||||
VectorStoreFileCounts,
|
||||
VectorStoreFileDeleteResponse,
|
||||
VectorStoreFileLastError,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreListFilesResponse,
|
||||
)
|
||||
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
|
||||
|
||||
|
@ -70,6 +73,26 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
"""Delete vector store metadata from persistent storage."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def _save_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Save vector store file metadata to persistent storage."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from persistent storage."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in persistent storage."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from persistent storage."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
"""Register a vector database (provider-specific implementation)."""
|
||||
|
@ -136,18 +159,28 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
await self.register_vector_db(vector_db)
|
||||
|
||||
# Create OpenAI vector store metadata
|
||||
status = "completed"
|
||||
file_ids = file_ids or []
|
||||
file_counts = VectorStoreFileCounts(
|
||||
cancelled=0,
|
||||
completed=len(file_ids),
|
||||
failed=0,
|
||||
in_progress=0,
|
||||
total=len(file_ids),
|
||||
)
|
||||
# TODO: actually attach these files to the vector store...
|
||||
store_info = {
|
||||
"id": store_id,
|
||||
"object": "vector_store",
|
||||
"created_at": created_at,
|
||||
"name": store_id,
|
||||
"usage_bytes": 0,
|
||||
"file_counts": {},
|
||||
"status": "completed",
|
||||
"file_counts": file_counts.model_dump(),
|
||||
"status": status,
|
||||
"expires_after": expires_after,
|
||||
"expires_at": None,
|
||||
"last_active_at": created_at,
|
||||
"file_ids": file_ids or [],
|
||||
"file_ids": file_ids,
|
||||
"chunking_strategy": chunking_strategy,
|
||||
}
|
||||
|
||||
|
@ -170,8 +203,8 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
created_at=created_at,
|
||||
name=store_id,
|
||||
usage_bytes=0,
|
||||
file_counts={},
|
||||
status="completed",
|
||||
file_counts=file_counts,
|
||||
status=status,
|
||||
expires_after=expires_after,
|
||||
expires_at=None,
|
||||
last_active_at=created_at,
|
||||
|
@ -455,14 +488,20 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
attributes = attributes or {}
|
||||
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
|
||||
created_at = int(time.time())
|
||||
|
||||
vector_store_file_object = VectorStoreFileObject(
|
||||
id=file_id,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
created_at=int(time.time()),
|
||||
created_at=created_at,
|
||||
status="in_progress",
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
@ -510,6 +549,20 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
vector_db_id=vector_store_id,
|
||||
chunks=chunks,
|
||||
)
|
||||
vector_store_file_object.status = "completed"
|
||||
|
||||
# Create OpenAI vector store file metadata
|
||||
file_info = vector_store_file_object.model_dump(exclude={"last_error"})
|
||||
|
||||
# Save to persistent storage (provider-specific)
|
||||
await self._save_openai_vector_store_file(vector_store_id, file_id, file_info)
|
||||
|
||||
# Update in-memory cache
|
||||
store_info["file_ids"].append(file_id)
|
||||
store_info["file_counts"]["completed"] += 1
|
||||
store_info["file_counts"]["total"] += 1
|
||||
self.openai_vector_stores[vector_store_id] = store_info
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error attaching file to vector store: {e}")
|
||||
vector_store_file_object.status = "failed"
|
||||
|
@ -519,6 +572,84 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
)
|
||||
return vector_store_file_object
|
||||
|
||||
vector_store_file_object.status = "completed"
|
||||
|
||||
return vector_store_file_object
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreListFilesResponse:
|
||||
"""List files in a vector store."""
|
||||
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
|
||||
file_objects = []
|
||||
for file_id in store_info["file_ids"]:
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
file_objects.append(VectorStoreFileObject(**file_info))
|
||||
|
||||
return VectorStoreListFilesResponse(
|
||||
data=file_objects,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
"""Retrieves a vector store file."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
if file_id not in store_info["file_ids"]:
|
||||
raise ValueError(f"File {file_id} not found in vector store {vector_store_id}")
|
||||
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
return VectorStoreFileObject(**file_info)
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any],
|
||||
) -> VectorStoreFileObject:
|
||||
"""Updates a vector store file."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
if file_id not in store_info["file_ids"]:
|
||||
raise ValueError(f"File {file_id} not found in vector store {vector_store_id}")
|
||||
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
file_info["attributes"] = attributes
|
||||
await self._update_openai_vector_store_file(vector_store_id, file_id, file_info)
|
||||
return VectorStoreFileObject(**file_info)
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileDeleteResponse:
|
||||
"""Deletes a vector store file."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
file = await self.openai_retrieve_vector_store_file(vector_store_id, file_id)
|
||||
await self._delete_openai_vector_store_file_from_storage(vector_store_id, file_id)
|
||||
|
||||
# Update in-memory cache
|
||||
store_info["file_ids"].remove(file_id)
|
||||
store_info["file_counts"][file.status] -= 1
|
||||
store_info["file_counts"]["total"] -= 1
|
||||
self.openai_vector_stores[vector_store_id] = store_info
|
||||
|
||||
return VectorStoreFileDeleteResponse(
|
||||
id=file_id,
|
||||
deleted=True,
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue