mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 10:22:01 +00:00
LM Studio inference integration
Co-authored-by: Rugved Somwanshi <rugved@lmstudio.ai>
This commit is contained in:
parent
1bb1d9b2ba
commit
461eec425d
16 changed files with 1096 additions and 0 deletions
70
docs/source/distributions/self_hosted_distro/lmstudio.md
Normal file
70
docs/source/distributions/self_hosted_distro/lmstudio.md
Normal file
|
|
@ -0,0 +1,70 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# LM Studio Distribution
|
||||
|
||||
The `llamastack/distribution-lmstudio` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::lmstudio` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama-3-8b-instruct `
|
||||
- `meta-llama-3-70b-instruct `
|
||||
- `meta-llama-3.1-8b-instruct `
|
||||
- `meta-llama-3.1-70b-instruct `
|
||||
- `llama-3.2-1b-instruct `
|
||||
- `llama-3.2-3b-instruct `
|
||||
- `llama-3.2-70b-instruct `
|
||||
- `nomic-embed-text-v1.5 `
|
||||
- `all-minilm-l6-v2 `
|
||||
|
||||
|
||||
## Set up LM Studio
|
||||
|
||||
Download LM Studio from [https://lmstudio.ai/download](https://lmstudio.ai/download). Start the server by opening LM Studio and navigating to the `Developer` Tab, or, run the CLI command `lms server start`.
|
||||
|
||||
## Running Llama Stack with LM Studio
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-lmstudio \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template lmstudio --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001
|
||||
```
|
||||
Loading…
Add table
Add a link
Reference in a new issue