feat: add static embedding metadata to dynamic model listings for providers using OpenAIMixin

- remove auto-download of ollama embedding models
- add embedding model metadata to dynamic listing w/ unit test
- add support and tests for allowed_models
- removed inference provider models.py files where dynamic listing is enabled
- store embedding metadata in embedding_model_metadata field on inference providers
- make model_entries optional on ModelRegistryHelper and LiteLLMOpenAIMixin
- make OpenAIMixin a ModelRegistryHelper
- skip base64 embedding test for remote::ollama, always returns floats
- only use OpenAI client for ollama model listing
- remove unused build_model_entry function
- remove unused get_huggingface_repo function
This commit is contained in:
Matthew Farrellee 2025-09-25 04:56:54 -04:00
parent a50b63906c
commit 466ef6f490
43 changed files with 370 additions and 1016 deletions

View file

@ -8,14 +8,16 @@ from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOp
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import GeminiConfig
from .models import MODEL_ENTRIES
class GeminiInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
embedding_model_metadata = {
"text-embedding-004": {"embedding_dimension": 768, "context_length": 2048},
}
def __init__(self, config: GeminiConfig) -> None:
LiteLLMOpenAIMixin.__init__(
self,
MODEL_ENTRIES,
litellm_provider_name="gemini",
api_key_from_config=config.api_key,
provider_data_api_key_field="gemini_api_key",