mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
# What does this PR do?
This PR fixes a bug in LlamaStack 0.3.0 where vector stores created via
the OpenAI-compatible API (`POST /v1/vector_stores`) would fail with
`VectorStoreNotFoundError` after server restart when attempting
operations like `vector_io.insert()` or `vector_io.query()`.
The bug affected **6 vector IO providers**: `pgvector`, `sqlite_vec`,
`chroma`, `milvus`, `qdrant`, and `weaviate`.
Created with the assistance of: claude-4.5-sonnet
## Root Cause
All affected providers had a broken
`_get_and_cache_vector_store_index()` method that:
1. Did not load existing vector stores from persistent storage during
initialization
2. Attempted to use `vector_store_table` (which was either `None` or a
`KVStore` without the required `get_vector_store()` method)
3. Could not reload vector stores after server restart or cache miss
## Solution
This PR implements a consistent pattern across all 6 providers:
1. **Load vector stores during initialization** - Pre-populate the cache
from KV store on startup
2. **Fix lazy loading** - Modified `_get_and_cache_vector_store_index()`
to load directly from KV store instead of relying on
`vector_store_table`
3. **Remove broken dependency** - Eliminated reliance on the
`vector_store_table` pattern
## Testing steps
### 1.1 Configure the stack
Create or use an existing configuration with a vector IO provider.
**Example `run.yaml`:**
```yaml
vector_io_store:
- provider_id: pgvector
provider_type: remote::pgvector
config:
host: localhost
port: 5432
db: llamastack
user: llamastack
password: llamastack
inference:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config:
model: sentence-transformers/all-MiniLM-L6-v2
```
### 1.2 Start the server
```bash
llama stack run run.yaml --port 5000
```
Wait for the server to fully start. You should see:
```
INFO: Started server process
INFO: Application startup complete
```
---
## Step 2: Create a Vector Store
### 2.1 Create via API
```bash
curl -X POST http://localhost:5000/v1/vector_stores \
-H "Content-Type: application/json" \
-d '{
"name": "test-persistence-store",
"extra_body": {
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"provider_id": "pgvector"
}
}' | jq
```
### 2.2 Expected Response
```json
{
"id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
"object": "vector_store",
"name": "test-persistence-store",
"status": "completed",
"created_at": 1730304000,
"file_counts": {
"total": 0,
"completed": 0,
"in_progress": 0,
"failed": 0,
"cancelled": 0
},
"usage_bytes": 0
}
```
**Save the `id` field** (e.g.,
`vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d`) — you’ll need it for the next
steps.
---
## Step 3: Insert Data (Before Restart)
### 3.1 Insert chunks into the vector store
```bash
export VS_ID="vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d"
curl -X POST http://localhost:5000/vector-io/insert \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"chunks\": [
{
\"content\": \"Python is a high-level programming language known for its readability.\",
\"metadata\": {\"source\": \"doc1\", \"page\": 1}
},
{
\"content\": \"Machine learning enables computers to learn from data without explicit programming.\",
\"metadata\": {\"source\": \"doc2\", \"page\": 1}
},
{
\"content\": \"Neural networks are inspired by biological neurons in the brain.\",
\"metadata\": {\"source\": \"doc3\", \"page\": 1}
}
]
}"
```
### 3.2 Expected Response
Status: **200 OK**
Response: *Empty or success confirmation*
---
## Step 4: Query Data (Before Restart – Baseline)
### 4.1 Query the vector store
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"What is machine learning?\"
}" | jq
```
### 4.2 Expected Response
```json
{
"chunks": [
{
"content": "Machine learning enables computers to learn from data without explicit programming.",
"metadata": {"source": "doc2", "page": 1}
},
{
"content": "Neural networks are inspired by biological neurons in the brain.",
"metadata": {"source": "doc3", "page": 1}
}
],
"scores": [0.85, 0.72]
}
```
**Checkpoint:** Works correctly before restart.
---
## Step 5: Restart the Server (Critical Test)
### 5.1 Stop the server
In the terminal where it’s running:
```
Ctrl + C
```
Wait for:
```
Shutting down...
```
### 5.2 Restart the server
```bash
llama stack run run.yaml --port 5000
```
Wait for:
```
INFO: Started server process
INFO: Application startup complete
```
The vector store cache is now empty, but data should persist.
---
## Step 6: Verify Vector Store Exists (After Restart)
### 6.1 List vector stores
```bash
curl http://localhost:5000/v1/vector_stores | jq
```
### 6.2 Expected Response
```json
{
"object": "list",
"data": [
{
"id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
"name": "test-persistence-store",
"status": "completed"
}
]
}
```
**Checkpoint:** Vector store should be listed.
---
## Step 7: Insert Data (After Restart – THE BUG TEST)
### 7.1 Insert new chunks
```bash
curl -X POST http://localhost:5000/vector-io/insert \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"chunks\": [
{
\"content\": \"This chunk was inserted AFTER the server restart.\",
\"metadata\": {\"source\": \"post-restart\", \"test\": true}
}
]
}"
```
### 7.2 Expected Results
**With Fix (Correct):**
```
Status: 200 OK
Response: Success
```
**Without Fix (Bug):**
```json
{
"detail": "VectorStoreNotFoundError: Vector Store 'vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d' not found."
}
```
**Critical Test:** If insertion succeeds, the fix works.
---
## Step 8: Query Data (After Restart – Verification)
### 8.1 Query all data
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"restart\"
}" | jq
```
### 8.2 Expected Response
```json
{
"chunks": [
{
"content": "This chunk was inserted AFTER the server restart.",
"metadata": {"source": "post-restart", "test": true}
}
],
"scores": [0.95]
}
```
**Checkpoint:** Both old and new data are queryable.
---
## Step 9: Multiple Restart Test (Extra Verification)
### 9.1 Restart again
```bash
Ctrl + C
llama stack run run.yaml --port 5000
```
### 9.2 Query after restart
```bash
curl -X POST http://localhost:5000/vector-io/query \
-H "Content-Type: application/json" \
-d "{
\"vector_store_id\": \"$VS_ID\",
\"query\": \"programming\"
}" | jq
```
**Expected:** Works correctly across multiple restarts.
<hr>This is an automatic backport of pull request #3977 done by
[Mergify](https://mergify.com).
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Juan Pérez de Algaba <124347725+jperezdealgaba@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
This commit is contained in:
parent
f216eb99be
commit
46bd95e453
8 changed files with 203 additions and 33 deletions
|
|
@ -223,7 +223,8 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoco
|
|||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
assert self.kvstore is not None
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before registering vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
|
||||
|
|
@ -239,7 +240,8 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoco
|
|||
return [i.vector_store for i in self.cache.values()]
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
assert self.kvstore is not None
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before unregistering vector stores.")
|
||||
|
||||
if vector_store_id not in self.cache:
|
||||
return
|
||||
|
|
@ -248,6 +250,27 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoco
|
|||
del self.cache[vector_store_id]
|
||||
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}")
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=await FaissIndex.create(vector_store.embedding_dimension, self.kvstore, vector_store.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_store_id] = index
|
||||
return index
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = self.cache.get(vector_db_id)
|
||||
if index is None:
|
||||
|
|
|
|||
|
|
@ -412,6 +412,14 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresPro
|
|||
return [v.vector_store for v in self.cache.values()]
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before registering vector stores.")
|
||||
|
||||
# Save to kvstore for persistence
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
|
||||
|
||||
# Create and cache the index
|
||||
index = await SQLiteVecIndex.create(
|
||||
vector_store.embedding_dimension, self.config.db_path, vector_store.identifier
|
||||
)
|
||||
|
|
@ -421,13 +429,16 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresPro
|
|||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
# Try to load from kvstore
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=SQLiteVecIndex(
|
||||
|
|
|
|||
|
|
@ -131,7 +131,6 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
|
|||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
self.vector_store_table = self.kvstore
|
||||
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
|
|
@ -190,9 +189,16 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
|
|||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
# Try to load from kvstore
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise ValueError(f"Vector DB {vector_store_id} not found in Llama Stack")
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
collection = await maybe_await(self.client.get_collection(vector_store_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Vector DB {vector_store_id} not found in Chroma")
|
||||
|
|
|
|||
|
|
@ -328,13 +328,16 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
|
|||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
# Try to load from kvstore
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_store.identifier, kvstore=self.kvstore),
|
||||
|
|
|
|||
|
|
@ -368,6 +368,22 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
|
|||
log.exception("Could not connect to PGVector database server")
|
||||
raise RuntimeError("Could not connect to PGVector database server") from e
|
||||
|
||||
# Load existing vector stores from KV store into cache
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||
for vector_store_data in stored_vector_stores:
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
pgvector_index = PGVectorIndex(
|
||||
vector_store=vector_store,
|
||||
dimension=vector_store.embedding_dimension,
|
||||
conn=self.conn,
|
||||
kvstore=self.kvstore,
|
||||
)
|
||||
await pgvector_index.initialize()
|
||||
index = VectorStoreWithIndex(vector_store, index=pgvector_index, inference_api=self.inference_api)
|
||||
self.cache[vector_store.identifier] = index
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self.conn is not None:
|
||||
self.conn.close()
|
||||
|
|
@ -377,7 +393,13 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
|
|||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
# Persist vector DB metadata in the KV store
|
||||
assert self.kvstore is not None
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before registering vector stores.")
|
||||
|
||||
# Save to kvstore for persistence
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
|
||||
|
||||
# Upsert model metadata in Postgres
|
||||
upsert_models(self.conn, [(vector_store.identifier, vector_store)])
|
||||
|
||||
|
|
@ -396,7 +418,8 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
|
|||
del self.cache[vector_store_id]
|
||||
|
||||
# Delete vector DB metadata from KV store
|
||||
assert self.kvstore is not None
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before unregistering vector stores.")
|
||||
await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_store_id}")
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
|
|
@ -413,13 +436,16 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
|
|||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
# Try to load from kvstore
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = PGVectorIndex(vector_store, vector_store.embedding_dimension, self.conn)
|
||||
await index.initialize()
|
||||
self.cache[vector_store_id] = VectorStoreWithIndex(vector_store, index, self.inference_api)
|
||||
|
|
|
|||
|
|
@ -183,7 +183,8 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
|
|||
await super().shutdown()
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
assert self.kvstore is not None
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before registering vector stores.")
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
|
||||
|
||||
|
|
@ -200,20 +201,24 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
|
|||
await self.cache[vector_store_id].index.delete()
|
||||
del self.cache[vector_store_id]
|
||||
|
||||
assert self.kvstore is not None
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}")
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise ValueError(f"Vector DB not found {vector_store_id}")
|
||||
# Try to load from kvstore
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=QdrantIndex(client=self.client, collection_name=vector_store.identifier),
|
||||
|
|
|
|||
|
|
@ -346,13 +346,16 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv
|
|||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
# Try to load from kvstore
|
||||
if self.kvstore is None:
|
||||
raise RuntimeError("KVStore not initialized. Call initialize() before using vector stores.")
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store_id}"
|
||||
vector_store_data = await self.kvstore.get(key)
|
||||
if not vector_store_data:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
client = self._get_client()
|
||||
sanitized_collection_name = sanitize_collection_name(vector_store.identifier, weaviate_format=True)
|
||||
if not client.collections.exists(sanitized_collection_name):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue