mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
chore(package): migrate to src/ layout (#3920)
Migrates package structure to src/ layout following Python packaging best practices. All code moved from `llama_stack/` to `src/llama_stack/`. Public API unchanged - imports remain `import llama_stack.*`. Updated build configs, pre-commit hooks, scripts, and GitHub workflows accordingly. All hooks pass, package builds cleanly. **Developer note**: Reinstall after pulling: `pip install -e .`
This commit is contained in:
parent
98a5047f9d
commit
471b1b248b
791 changed files with 2983 additions and 456 deletions
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import ChromaVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: ChromaVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .chroma import ChromaVectorIOAdapter
|
||||
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,209 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import asyncio
|
||||
import json
|
||||
from typing import Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
|
||||
|
||||
from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io::chroma")
|
||||
|
||||
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_stores:chroma:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:chroma:{VERSION}::"
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
async def maybe_await(result):
|
||||
if asyncio.iscoroutine(result):
|
||||
return await result
|
||||
return result
|
||||
|
||||
|
||||
class ChromaIndex(EmbeddingIndex):
|
||||
def __init__(self, client: ChromaClientType, collection, kvstore: KVStore | None = None):
|
||||
self.client = client
|
||||
self.collection = collection
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
ids = [f"{c.metadata.get('document_id', '')}:{c.chunk_id}" for c in chunks]
|
||||
await maybe_await(
|
||||
self.collection.add(documents=[chunk.model_dump_json() for chunk in chunks], embeddings=embeddings, ids=ids)
|
||||
)
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
results = await maybe_await(
|
||||
self.collection.query(
|
||||
query_embeddings=[embedding.tolist()], n_results=k, include=["documents", "distances"]
|
||||
)
|
||||
)
|
||||
distances = results["distances"][0]
|
||||
documents = results["documents"][0]
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for dist, doc in zip(distances, documents, strict=False):
|
||||
try:
|
||||
doc = json.loads(doc)
|
||||
chunk = Chunk(**doc)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse document: {doc}")
|
||||
continue
|
||||
|
||||
score = 1.0 / float(dist) if dist != 0 else float("inf")
|
||||
if score < score_threshold:
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
await maybe_await(self.client.delete_collection(self.collection.name))
|
||||
|
||||
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Chroma")
|
||||
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a single chunk from the Chroma collection by its ID."""
|
||||
ids = [f"{chunk.document_id}:{chunk.chunk_id}" for chunk in chunks_for_deletion]
|
||||
await maybe_await(self.collection.delete(ids=ids))
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
query_string: str,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
reranker_type: str,
|
||||
reranker_params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Hybrid search is not supported in Chroma")
|
||||
|
||||
|
||||
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig,
|
||||
inference_api: Inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
super().__init__(files_api=files_api, kvstore=None)
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client = None
|
||||
self.cache = {}
|
||||
self.vector_store_table = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
self.vector_store_table = self.kvstore
|
||||
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
||||
if parsed.path and parsed.path != "/":
|
||||
raise ValueError("URL should not contain a path")
|
||||
|
||||
self.client = await chromadb.AsyncHttpClient(host=parsed.hostname, port=parsed.port)
|
||||
else:
|
||||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
collection = await maybe_await(
|
||||
self.client.get_or_create_collection(
|
||||
name=vector_store.identifier, metadata={"vector_store": vector_store.model_dump_json()}
|
||||
)
|
||||
)
|
||||
self.cache[vector_store.identifier] = VectorStoreWithIndex(
|
||||
vector_store, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
if vector_store_id not in self.cache:
|
||||
log.warning(f"Vector DB {vector_store_id} not found")
|
||||
return
|
||||
|
||||
await self.cache[vector_store_id].index.delete()
|
||||
del self.cache[vector_store_id]
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
|
||||
if index is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
raise ValueError(f"Vector DB {vector_store_id} not found in Llama Stack")
|
||||
collection = await maybe_await(self.client.get_collection(vector_store_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Vector DB {vector_store_id} not found in Chroma")
|
||||
index = VectorStoreWithIndex(vector_store, ChromaIndex(self.client, collection), self.inference_api)
|
||||
self.cache[vector_store_id] = index
|
||||
return index
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a Chroma vector store."""
|
||||
index = await self._get_and_cache_vector_store_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
@ -1,28 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
url: str | None
|
||||
persistence: KVStoreReference = Field(description="Config for KV store backend")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"url": url,
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::chroma_remote",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
@ -1,18 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import MilvusVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: MilvusVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .milvus import MilvusVectorIOAdapter
|
||||
|
||||
assert isinstance(config, MilvusVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,35 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
uri: str = Field(description="The URI of the Milvus server")
|
||||
token: str | None = Field(description="The token of the Milvus server")
|
||||
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
|
||||
persistence: KVStoreReference = Field(description="Config for KV store backend")
|
||||
|
||||
# This configuration allows additional fields to be passed through to the underlying Milvus client.
|
||||
# See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general.
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"uri": "${env.MILVUS_ENDPOINT}",
|
||||
"token": "${env.MILVUS_TOKEN}",
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::milvus_remote",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
@ -1,372 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from pymilvus import AnnSearchRequest, DataType, Function, FunctionType, MilvusClient, RRFRanker, WeightedRanker
|
||||
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
RERANKER_TYPE_WEIGHTED,
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorStoreWithIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name
|
||||
|
||||
from .config import MilvusVectorIOConfig as RemoteMilvusVectorIOConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="vector_io::milvus")
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_stores:milvus:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:milvus:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:milvus:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:milvus:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:milvus:{VERSION}::"
|
||||
|
||||
|
||||
class MilvusIndex(EmbeddingIndex):
|
||||
def __init__(
|
||||
self, client: MilvusClient, collection_name: str, consistency_level="Strong", kvstore: KVStore | None = None
|
||||
):
|
||||
self.client = client
|
||||
self.collection_name = sanitize_collection_name(collection_name)
|
||||
self.consistency_level = consistency_level
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
# MilvusIndex does not require explicit initialization
|
||||
# TODO: could move collection creation into initialization but it is not really necessary
|
||||
pass
|
||||
|
||||
async def delete(self):
|
||||
if await asyncio.to_thread(self.client.has_collection, self.collection_name):
|
||||
await asyncio.to_thread(self.client.drop_collection, collection_name=self.collection_name)
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
if not await asyncio.to_thread(self.client.has_collection, self.collection_name):
|
||||
logger.info(f"Creating new collection {self.collection_name} with nullable sparse field")
|
||||
# Create schema for vector search
|
||||
schema = self.client.create_schema()
|
||||
schema.add_field(field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=100)
|
||||
schema.add_field(
|
||||
field_name="content",
|
||||
datatype=DataType.VARCHAR,
|
||||
max_length=65535,
|
||||
enable_analyzer=True, # Enable text analysis for BM25
|
||||
)
|
||||
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=len(embeddings[0]))
|
||||
schema.add_field(field_name="chunk_content", datatype=DataType.JSON)
|
||||
# Add sparse vector field for BM25 (required by the function)
|
||||
schema.add_field(field_name="sparse", datatype=DataType.SPARSE_FLOAT_VECTOR)
|
||||
|
||||
# Create indexes
|
||||
index_params = self.client.prepare_index_params()
|
||||
index_params.add_index(field_name="vector", index_type="FLAT", metric_type="COSINE")
|
||||
# Add index for sparse field (required by BM25 function)
|
||||
index_params.add_index(field_name="sparse", index_type="SPARSE_INVERTED_INDEX", metric_type="BM25")
|
||||
|
||||
# Add BM25 function for full-text search
|
||||
bm25_function = Function(
|
||||
name="text_bm25_emb",
|
||||
input_field_names=["content"],
|
||||
output_field_names=["sparse"],
|
||||
function_type=FunctionType.BM25,
|
||||
)
|
||||
schema.add_function(bm25_function)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
self.collection_name,
|
||||
schema=schema,
|
||||
index_params=index_params,
|
||||
consistency_level=self.consistency_level,
|
||||
)
|
||||
|
||||
data = []
|
||||
for chunk, embedding in zip(chunks, embeddings, strict=False):
|
||||
data.append(
|
||||
{
|
||||
"chunk_id": chunk.chunk_id,
|
||||
"content": chunk.content,
|
||||
"vector": embedding,
|
||||
"chunk_content": chunk.model_dump(),
|
||||
# sparse field will be handled by BM25 function automatically
|
||||
}
|
||||
)
|
||||
try:
|
||||
await asyncio.to_thread(self.client.insert, self.collection_name, data=data)
|
||||
except Exception as e:
|
||||
logger.error(f"Error inserting chunks into Milvus collection {self.collection_name}: {e}")
|
||||
raise e
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.search,
|
||||
collection_name=self.collection_name,
|
||||
data=[embedding],
|
||||
anns_field="vector",
|
||||
limit=k,
|
||||
output_fields=["*"],
|
||||
search_params={"params": {"radius": score_threshold}},
|
||||
)
|
||||
chunks = [Chunk(**res["entity"]["chunk_content"]) for res in search_res[0]]
|
||||
scores = [res["distance"] for res in search_res[0]]
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Perform BM25-based keyword search using Milvus's built-in full-text search.
|
||||
"""
|
||||
try:
|
||||
# Use Milvus's built-in BM25 search
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.search,
|
||||
collection_name=self.collection_name,
|
||||
data=[query_string], # Raw text query
|
||||
anns_field="sparse", # Use sparse field for BM25
|
||||
output_fields=["chunk_content"], # Output the chunk content
|
||||
limit=k,
|
||||
search_params={
|
||||
"params": {
|
||||
"drop_ratio_search": 0.2, # Ignore low-importance terms
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for res in search_res[0]:
|
||||
chunk = Chunk(**res["entity"]["chunk_content"])
|
||||
chunks.append(chunk)
|
||||
scores.append(res["distance"]) # BM25 score from Milvus
|
||||
|
||||
# Filter by score threshold
|
||||
filtered_chunks = [chunk for chunk, score in zip(chunks, scores, strict=False) if score >= score_threshold]
|
||||
filtered_scores = [score for score in scores if score >= score_threshold]
|
||||
|
||||
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error performing BM25 search: {e}")
|
||||
# Fallback to simple text search
|
||||
return await self._fallback_keyword_search(query_string, k, score_threshold)
|
||||
|
||||
async def _fallback_keyword_search(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Fallback to simple text search when BM25 search is not available.
|
||||
"""
|
||||
# Simple text search using content field
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name=self.collection_name,
|
||||
filter='content like "%{content}%"',
|
||||
filter_params={"content": query_string},
|
||||
output_fields=["*"],
|
||||
limit=k,
|
||||
)
|
||||
chunks = [Chunk(**res["chunk_content"]) for res in search_res]
|
||||
scores = [1.0] * len(chunks) # Simple binary score for text search
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
query_string: str,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
reranker_type: str,
|
||||
reranker_params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
"""
|
||||
Hybrid search using Milvus's native hybrid search capabilities.
|
||||
|
||||
This implementation uses Milvus's hybrid_search method which combines
|
||||
vector search and BM25 search with configurable reranking strategies.
|
||||
"""
|
||||
search_requests = []
|
||||
|
||||
# nprobe: Controls search accuracy vs performance trade-off
|
||||
# 10 balances these trade-offs for RAG applications
|
||||
search_requests.append(
|
||||
AnnSearchRequest(data=[embedding.tolist()], anns_field="vector", param={"nprobe": 10}, limit=k)
|
||||
)
|
||||
|
||||
# drop_ratio_search: Filters low-importance terms to improve search performance
|
||||
# 0.2 balances noise reduction with recall
|
||||
search_requests.append(
|
||||
AnnSearchRequest(data=[query_string], anns_field="sparse", param={"drop_ratio_search": 0.2}, limit=k)
|
||||
)
|
||||
|
||||
if reranker_type == RERANKER_TYPE_WEIGHTED:
|
||||
alpha = (reranker_params or {}).get("alpha", 0.5)
|
||||
rerank = WeightedRanker(alpha, 1 - alpha)
|
||||
else:
|
||||
impact_factor = (reranker_params or {}).get("impact_factor", 60.0)
|
||||
rerank = RRFRanker(impact_factor)
|
||||
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.hybrid_search,
|
||||
collection_name=self.collection_name,
|
||||
reqs=search_requests,
|
||||
ranker=rerank,
|
||||
limit=k,
|
||||
output_fields=["chunk_content"],
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for res in search_res[0]:
|
||||
chunk = Chunk(**res["entity"]["chunk_content"])
|
||||
chunks.append(chunk)
|
||||
scores.append(res["distance"])
|
||||
|
||||
filtered_chunks = [chunk for chunk, score in zip(chunks, scores, strict=False) if score >= score_threshold]
|
||||
filtered_scores = [score for score in scores if score >= score_threshold]
|
||||
|
||||
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
|
||||
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the Milvus collection."""
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
try:
|
||||
# Use IN clause with square brackets and single quotes for VARCHAR field
|
||||
chunk_ids_str = ", ".join(f"'{chunk_id}'" for chunk_id in chunk_ids)
|
||||
await asyncio.to_thread(
|
||||
self.client.delete, collection_name=self.collection_name, filter=f"chunk_id in [{chunk_ids_str}]"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting chunks from Milvus collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: RemoteMilvusVectorIOConfig | InlineMilvusVectorIOConfig,
|
||||
inference_api: Inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
super().__init__(files_api=files_api, kvstore=None)
|
||||
self.config = config
|
||||
self.cache = {}
|
||||
self.client = None
|
||||
self.inference_api = inference_api
|
||||
self.vector_store_table = None
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
||||
for vector_store_data in stored_vector_stores:
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store,
|
||||
index=MilvusIndex(
|
||||
client=self.client,
|
||||
collection_name=vector_store.identifier,
|
||||
consistency_level=self.config.consistency_level,
|
||||
kvstore=self.kvstore,
|
||||
),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_store.identifier] = index
|
||||
if isinstance(self.config, RemoteMilvusVectorIOConfig):
|
||||
logger.info(f"Connecting to Milvus server at {self.config.uri}")
|
||||
self.client = MilvusClient(**self.config.model_dump(exclude_none=True))
|
||||
else:
|
||||
logger.info(f"Connecting to Milvus Lite at: {self.config.db_path}")
|
||||
uri = os.path.expanduser(self.config.db_path)
|
||||
self.client = MilvusClient(uri=uri)
|
||||
|
||||
# Load existing OpenAI vector stores into the in-memory cache
|
||||
await self.initialize_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
if isinstance(self.config, RemoteMilvusVectorIOConfig):
|
||||
consistency_level = self.config.consistency_level
|
||||
else:
|
||||
consistency_level = "Strong"
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=MilvusIndex(self.client, vector_store.identifier, consistency_level=consistency_level),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
self.cache[vector_store.identifier] = index
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_store.identifier, kvstore=self.kvstore),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_store_id] = index
|
||||
return index
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
if vector_store_id in self.cache:
|
||||
await self.cache[vector_store_id].index.delete()
|
||||
del self.cache[vector_store_id]
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a chunk from a milvus vector store."""
|
||||
index = await self._get_and_cache_vector_store_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import PGVectorVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: PGVectorVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .pgvector import PGVectorVectorIOAdapter
|
||||
|
||||
impl = PGVectorVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,47 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PGVectorVectorIOConfig(BaseModel):
|
||||
host: str | None = Field(default="localhost")
|
||||
port: int | None = Field(default=5432)
|
||||
db: str | None = Field(default="postgres")
|
||||
user: str | None = Field(default="postgres")
|
||||
password: str | None = Field(default="mysecretpassword")
|
||||
persistence: KVStoreReference | None = Field(
|
||||
description="Config for KV store backend (SQLite only for now)", default=None
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
__distro_dir__: str,
|
||||
host: str = "${env.PGVECTOR_HOST:=localhost}",
|
||||
port: int = "${env.PGVECTOR_PORT:=5432}",
|
||||
db: str = "${env.PGVECTOR_DB}",
|
||||
user: str = "${env.PGVECTOR_USER}",
|
||||
password: str = "${env.PGVECTOR_PASSWORD}",
|
||||
**kwargs: Any,
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"host": host,
|
||||
"port": port,
|
||||
"db": db,
|
||||
"user": user,
|
||||
"password": password,
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::pgvector",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
@ -1,434 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import heapq
|
||||
from typing import Any
|
||||
|
||||
import psycopg2
|
||||
from numpy.typing import NDArray
|
||||
from psycopg2 import sql
|
||||
from psycopg2.extras import Json, execute_values
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryAggregator, sanitize_collection_name
|
||||
|
||||
from .config import PGVectorVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io::pgvector")
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_stores:pgvector:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:pgvector:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:pgvector:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:pgvector:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:pgvector:{VERSION}::"
|
||||
|
||||
|
||||
def check_extension_version(cur):
|
||||
cur.execute("SELECT extversion FROM pg_extension WHERE extname = 'vector'")
|
||||
result = cur.fetchone()
|
||||
return result[0] if result else None
|
||||
|
||||
|
||||
def upsert_models(conn, keys_models: list[tuple[str, BaseModel]]):
|
||||
with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO metadata_store (key, data)
|
||||
VALUES %s
|
||||
ON CONFLICT (key) DO UPDATE
|
||||
SET data = EXCLUDED.data
|
||||
"""
|
||||
)
|
||||
|
||||
values = [(key, Json(model.model_dump())) for key, model in keys_models]
|
||||
execute_values(cur, query, values, template="(%s, %s)")
|
||||
|
||||
|
||||
def load_models(cur, cls):
|
||||
cur.execute("SELECT key, data FROM metadata_store")
|
||||
rows = cur.fetchall()
|
||||
return [TypeAdapter(cls).validate_python(row["data"]) for row in rows]
|
||||
|
||||
|
||||
class PGVectorIndex(EmbeddingIndex):
|
||||
# reference: https://github.com/pgvector/pgvector?tab=readme-ov-file#querying
|
||||
PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION: dict[str, str] = {
|
||||
"L2": "<->",
|
||||
"L1": "<+>",
|
||||
"COSINE": "<=>",
|
||||
"INNER_PRODUCT": "<#>",
|
||||
"HAMMING": "<~>",
|
||||
"JACCARD": "<%>",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vector_store: VectorStore,
|
||||
dimension: int,
|
||||
conn: psycopg2.extensions.connection,
|
||||
kvstore: KVStore | None = None,
|
||||
distance_metric: str = "COSINE",
|
||||
):
|
||||
self.vector_store = vector_store
|
||||
self.dimension = dimension
|
||||
self.conn = conn
|
||||
self.kvstore = kvstore
|
||||
self.check_distance_metric_availability(distance_metric)
|
||||
self.distance_metric = distance_metric
|
||||
self.table_name = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
# Sanitize the table name by replacing hyphens with underscores
|
||||
# SQL doesn't allow hyphens in table names, and vector_store.identifier may contain hyphens
|
||||
# when created with patterns like "test-vector-db-{uuid4()}"
|
||||
sanitized_identifier = sanitize_collection_name(self.vector_store.identifier)
|
||||
self.table_name = f"vs_{sanitized_identifier}"
|
||||
|
||||
cur.execute(
|
||||
f"""
|
||||
CREATE TABLE IF NOT EXISTS {self.table_name} (
|
||||
id TEXT PRIMARY KEY,
|
||||
document JSONB,
|
||||
embedding vector({self.dimension}),
|
||||
content_text TEXT,
|
||||
tokenized_content TSVECTOR
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
# Create GIN index for full-text search performance
|
||||
cur.execute(
|
||||
f"""
|
||||
CREATE INDEX IF NOT EXISTS {self.table_name}_content_gin_idx
|
||||
ON {self.table_name} USING GIN(tokenized_content)
|
||||
"""
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception(f"Error creating PGVectorIndex for vector_store: {self.vector_store.identifier}")
|
||||
raise RuntimeError(f"Error creating PGVectorIndex for vector_store: {self.vector_store.identifier}") from e
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for i, chunk in enumerate(chunks):
|
||||
content_text = interleaved_content_as_str(chunk.content)
|
||||
values.append(
|
||||
(
|
||||
f"{chunk.chunk_id}",
|
||||
Json(chunk.model_dump()),
|
||||
embeddings[i].tolist(),
|
||||
content_text,
|
||||
content_text, # Pass content_text twice - once for content_text column, once for to_tsvector function. Eg. to_tsvector(content_text) = tokenized_content
|
||||
)
|
||||
)
|
||||
|
||||
query = sql.SQL(
|
||||
f"""
|
||||
INSERT INTO {self.table_name} (id, document, embedding, content_text, tokenized_content)
|
||||
VALUES %s
|
||||
ON CONFLICT (id) DO UPDATE SET
|
||||
embedding = EXCLUDED.embedding,
|
||||
document = EXCLUDED.document,
|
||||
content_text = EXCLUDED.content_text,
|
||||
tokenized_content = EXCLUDED.tokenized_content
|
||||
"""
|
||||
)
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
execute_values(cur, query, values, template="(%s, %s, %s::vector, %s, to_tsvector('english', %s))")
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Performs vector similarity search using PostgreSQL's search function. Default distance metric is COSINE.
|
||||
|
||||
Args:
|
||||
embedding: The query embedding vector
|
||||
k: Number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
pgvector_search_function = self.get_pgvector_search_function()
|
||||
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
f"""
|
||||
SELECT document, embedding {pgvector_search_function} %s::vector AS distance
|
||||
FROM {self.table_name}
|
||||
ORDER BY distance
|
||||
LIMIT %s
|
||||
""",
|
||||
(embedding.tolist(), k),
|
||||
)
|
||||
results = cur.fetchall()
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc, dist in results:
|
||||
score = 1.0 / float(dist) if dist != 0 else float("inf")
|
||||
if score < score_threshold:
|
||||
continue
|
||||
chunks.append(Chunk(**doc))
|
||||
scores.append(score)
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Performs keyword-based search using PostgreSQL's full-text search with ts_rank scoring.
|
||||
|
||||
Args:
|
||||
query_string: The text query for keyword search
|
||||
k: Number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
# Use plainto_tsquery to handle user input safely and ts_rank for relevance scoring
|
||||
cur.execute(
|
||||
f"""
|
||||
SELECT document, ts_rank(tokenized_content, plainto_tsquery('english', %s)) AS score
|
||||
FROM {self.table_name}
|
||||
WHERE tokenized_content @@ plainto_tsquery('english', %s)
|
||||
ORDER BY score DESC
|
||||
LIMIT %s
|
||||
""",
|
||||
(query_string, query_string, k),
|
||||
)
|
||||
results = cur.fetchall()
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc, score in results:
|
||||
if score < score_threshold:
|
||||
continue
|
||||
chunks.append(Chunk(**doc))
|
||||
scores.append(float(score))
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
query_string: str,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
reranker_type: str,
|
||||
reranker_params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
"""
|
||||
Hybrid search combining vector similarity and keyword search using configurable reranking.
|
||||
|
||||
Args:
|
||||
embedding: The query embedding vector
|
||||
query_string: The text query for keyword search
|
||||
k: Number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
reranker_type: Type of reranker to use ("rrf" or "weighted")
|
||||
reranker_params: Parameters for the reranker
|
||||
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
if reranker_params is None:
|
||||
reranker_params = {}
|
||||
|
||||
# Get results from both search methods
|
||||
vector_response = await self.query_vector(embedding, k, score_threshold)
|
||||
keyword_response = await self.query_keyword(query_string, k, score_threshold)
|
||||
|
||||
# Convert responses to score dictionaries using chunk_id
|
||||
vector_scores = {
|
||||
chunk.chunk_id: score for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
|
||||
}
|
||||
keyword_scores = {
|
||||
chunk.chunk_id: score
|
||||
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
|
||||
}
|
||||
|
||||
# Combine scores using the reranking utility
|
||||
combined_scores = WeightedInMemoryAggregator.combine_search_results(
|
||||
vector_scores, keyword_scores, reranker_type, reranker_params
|
||||
)
|
||||
|
||||
# Efficient top-k selection because it only tracks the k best candidates it's seen so far
|
||||
top_k_items = heapq.nlargest(k, combined_scores.items(), key=lambda x: x[1])
|
||||
|
||||
# Filter by score threshold
|
||||
filtered_items = [(doc_id, score) for doc_id, score in top_k_items if score >= score_threshold]
|
||||
|
||||
# Create a map of chunk_id to chunk for both responses
|
||||
chunk_map = {c.chunk_id: c for c in vector_response.chunks + keyword_response.chunks}
|
||||
|
||||
# Use the map to look up chunks by their IDs
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc_id, score in filtered_items:
|
||||
if doc_id in chunk_map:
|
||||
chunks.append(chunk_map[doc_id])
|
||||
scores.append(score)
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the PostgreSQL table."""
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids))
|
||||
|
||||
def get_pgvector_search_function(self) -> str:
|
||||
return self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION[self.distance_metric]
|
||||
|
||||
def check_distance_metric_availability(self, distance_metric: str) -> None:
|
||||
"""Check if the distance metric is supported by PGVector.
|
||||
|
||||
Args:
|
||||
distance_metric: The distance metric to check
|
||||
|
||||
Raises:
|
||||
ValueError: If the distance metric is not supported
|
||||
"""
|
||||
if distance_metric not in self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION:
|
||||
supported_metrics = list(self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION.keys())
|
||||
raise ValueError(
|
||||
f"Distance metric '{distance_metric}' is not supported by PGVector. "
|
||||
f"Supported metrics are: {', '.join(supported_metrics)}"
|
||||
)
|
||||
|
||||
|
||||
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
|
||||
def __init__(
|
||||
self, config: PGVectorVectorIOConfig, inference_api: Inference, files_api: Files | None = None
|
||||
) -> None:
|
||||
super().__init__(files_api=files_api, kvstore=None)
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.conn = None
|
||||
self.cache = {}
|
||||
self.vector_store_table = None
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
log.info(f"Initializing PGVector memory adapter with config: {self.config}")
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
await self.initialize_openai_vector_stores()
|
||||
|
||||
try:
|
||||
self.conn = psycopg2.connect(
|
||||
host=self.config.host,
|
||||
port=self.config.port,
|
||||
database=self.config.db,
|
||||
user=self.config.user,
|
||||
password=self.config.password,
|
||||
)
|
||||
self.conn.autocommit = True
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
version = check_extension_version(cur)
|
||||
if version:
|
||||
log.info(f"Vector extension version: {version}")
|
||||
else:
|
||||
raise RuntimeError("Vector extension is not installed.")
|
||||
|
||||
cur.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS metadata_store (
|
||||
key TEXT PRIMARY KEY,
|
||||
data JSONB
|
||||
)
|
||||
"""
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception("Could not connect to PGVector database server")
|
||||
raise RuntimeError("Could not connect to PGVector database server") from e
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self.conn is not None:
|
||||
self.conn.close()
|
||||
log.info("Connection to PGVector database server closed")
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
# Persist vector DB metadata in the KV store
|
||||
assert self.kvstore is not None
|
||||
# Upsert model metadata in Postgres
|
||||
upsert_models(self.conn, [(vector_store.identifier, vector_store)])
|
||||
|
||||
# Create and cache the PGVector index table for the vector DB
|
||||
pgvector_index = PGVectorIndex(
|
||||
vector_store=vector_store, dimension=vector_store.embedding_dimension, conn=self.conn, kvstore=self.kvstore
|
||||
)
|
||||
await pgvector_index.initialize()
|
||||
index = VectorStoreWithIndex(vector_store, index=pgvector_index, inference_api=self.inference_api)
|
||||
self.cache[vector_store.identifier] = index
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
# Remove provider index and cache
|
||||
if vector_store_id in self.cache:
|
||||
await self.cache[vector_store_id].index.delete()
|
||||
del self.cache[vector_store_id]
|
||||
|
||||
# Delete vector DB metadata from KV store
|
||||
assert self.kvstore is not None
|
||||
await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_store_id}")
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
index = PGVectorIndex(vector_store, vector_store.embedding_dimension, self.conn)
|
||||
await index.initialize()
|
||||
self.cache[vector_store_id] = VectorStoreWithIndex(vector_store, index, self.inference_api)
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a chunk from a PostgreSQL vector store."""
|
||||
index = await self._get_and_cache_vector_store_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import QdrantVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .qdrant import QdrantVectorIOAdapter
|
||||
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,37 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QdrantVectorIOConfig(BaseModel):
|
||||
location: str | None = None
|
||||
url: str | None = None
|
||||
port: int | None = 6333
|
||||
grpc_port: int = 6334
|
||||
prefer_grpc: bool = False
|
||||
https: bool | None = None
|
||||
api_key: str | None = None
|
||||
prefix: str | None = None
|
||||
timeout: int | None = None
|
||||
host: str | None = None
|
||||
persistence: KVStoreReference
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.QDRANT_API_KEY:=}",
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::qdrant_remote",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
@ -1,260 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from qdrant_client import AsyncQdrantClient, models
|
||||
from qdrant_client.models import PointStruct
|
||||
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreFileObject,
|
||||
)
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
|
||||
|
||||
from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io::qdrant")
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
||||
# KV store prefixes for vector databases
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_stores:qdrant:{VERSION}::"
|
||||
|
||||
|
||||
def convert_id(_id: str) -> str:
|
||||
"""
|
||||
Converts any string into a UUID string based on a seed.
|
||||
|
||||
Qdrant accepts UUID strings and unsigned integers as point ID.
|
||||
We use a SHA-256 hash to convert each string into a UUID string deterministically.
|
||||
This allows us to overwrite the same point with the original ID.
|
||||
"""
|
||||
hash_input = f"qdrant_id:{_id}".encode()
|
||||
sha256_hash = hashlib.sha256(hash_input).hexdigest()
|
||||
# Use the first 32 characters to create a valid UUID
|
||||
return str(uuid.UUID(sha256_hash[:32]))
|
||||
|
||||
|
||||
class QdrantIndex(EmbeddingIndex):
|
||||
def __init__(self, client: AsyncQdrantClient, collection_name: str):
|
||||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
async def initialize(self) -> None:
|
||||
# Qdrant collections are created on-demand in add_chunks
|
||||
# If the collection does not exist, it will be created in add_chunks.
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
if not await self.client.collection_exists(self.collection_name):
|
||||
await self.client.create_collection(
|
||||
self.collection_name,
|
||||
vectors_config=models.VectorParams(size=len(embeddings[0]), distance=models.Distance.COSINE),
|
||||
)
|
||||
|
||||
points = []
|
||||
for _i, (chunk, embedding) in enumerate(zip(chunks, embeddings, strict=False)):
|
||||
chunk_id = chunk.chunk_id
|
||||
points.append(
|
||||
PointStruct(
|
||||
id=convert_id(chunk_id),
|
||||
vector=embedding,
|
||||
payload={"chunk_content": chunk.model_dump()} | {CHUNK_ID_KEY: chunk_id},
|
||||
)
|
||||
)
|
||||
|
||||
await self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the Qdrant collection."""
|
||||
chunk_ids = [convert_id(c.chunk_id) for c in chunks_for_deletion]
|
||||
try:
|
||||
await self.client.delete(
|
||||
collection_name=self.collection_name, points_selector=models.PointIdsList(points=chunk_ids)
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Error deleting chunks from Qdrant collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
results = (
|
||||
await self.client.query_points(
|
||||
collection_name=self.collection_name,
|
||||
query=embedding.tolist(),
|
||||
limit=k,
|
||||
with_payload=True,
|
||||
score_threshold=score_threshold,
|
||||
)
|
||||
).points
|
||||
|
||||
chunks, scores = [], []
|
||||
for point in results:
|
||||
assert isinstance(point, models.ScoredPoint)
|
||||
assert point.payload is not None
|
||||
|
||||
try:
|
||||
chunk = Chunk(**point.payload["chunk_content"])
|
||||
except Exception:
|
||||
log.exception("Failed to parse chunk")
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(point.score)
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Qdrant")
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
query_string: str,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
reranker_type: str,
|
||||
reranker_params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Hybrid search is not supported in Qdrant")
|
||||
|
||||
async def delete(self):
|
||||
await self.client.delete_collection(collection_name=self.collection_name)
|
||||
|
||||
|
||||
class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig,
|
||||
inference_api: Inference,
|
||||
files_api: Files | None = None,
|
||||
) -> None:
|
||||
super().__init__(files_api=files_api, kvstore=None)
|
||||
self.config = config
|
||||
self.client: AsyncQdrantClient = None
|
||||
self.cache = {}
|
||||
self.inference_api = inference_api
|
||||
self.vector_store_table = None
|
||||
self._qdrant_lock = asyncio.Lock()
|
||||
|
||||
async def initialize(self) -> None:
|
||||
client_config = self.config.model_dump(exclude_none=True, exclude={"persistence"})
|
||||
self.client = AsyncQdrantClient(**client_config)
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
||||
for vector_store_data in stored_vector_stores:
|
||||
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store, QdrantIndex(self.client, vector_store.identifier), self.inference_api
|
||||
)
|
||||
self.cache[vector_store.identifier] = index
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
await self.client.close()
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
assert self.kvstore is not None
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
|
||||
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=QdrantIndex(self.client, vector_store.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
self.cache[vector_store.identifier] = index
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
if vector_store_id in self.cache:
|
||||
await self.cache[vector_store_id].index.delete()
|
||||
del self.cache[vector_store_id]
|
||||
|
||||
assert self.kvstore is not None
|
||||
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}")
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise ValueError(f"Vector DB not found {vector_store_id}")
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=QdrantIndex(client=self.client, collection_name=vector_store.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_store_id] = index
|
||||
return index
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
# Qdrant doesn't allow multiple clients to access the same storage path simultaneously.
|
||||
async with self._qdrant_lock:
|
||||
return await super().openai_attach_file_to_vector_store(
|
||||
vector_store_id, file_id, attributes, chunking_strategy
|
||||
)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a Qdrant vector store."""
|
||||
index = await self._get_and_cache_vector_store_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import WeaviateVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WeaviateVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .weaviate import WeaviateVectorIOAdapter
|
||||
|
||||
impl = WeaviateVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class WeaviateVectorIOConfig(BaseModel):
|
||||
weaviate_api_key: str | None = Field(description="The API key for the Weaviate instance", default=None)
|
||||
weaviate_cluster_url: str | None = Field(description="The URL of the Weaviate cluster", default="localhost:8080")
|
||||
persistence: KVStoreReference | None = Field(
|
||||
description="Config for KV store backend (SQLite only for now)", default=None
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"weaviate_api_key": None,
|
||||
"weaviate_cluster_url": "${env.WEAVIATE_CLUSTER_URL:=localhost:8080}",
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::weaviate",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
@ -1,390 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import weaviate
|
||||
import weaviate.classes as wvc
|
||||
from numpy.typing import NDArray
|
||||
from weaviate.classes.init import Auth
|
||||
from weaviate.classes.query import Filter, HybridFusion
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
RERANKER_TYPE_RRF,
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorStoreWithIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name
|
||||
|
||||
from .config import WeaviateVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io::weaviate")
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_stores:weaviate:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:weaviate:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:weaviate:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:weaviate:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:weaviate:{VERSION}::"
|
||||
|
||||
|
||||
class WeaviateIndex(EmbeddingIndex):
|
||||
def __init__(self, client: weaviate.WeaviateClient, collection_name: str, kvstore: KVStore | None = None):
|
||||
self.client = client
|
||||
self.collection_name = sanitize_collection_name(collection_name, weaviate_format=True)
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
data_objects = []
|
||||
for chunk, embedding in zip(chunks, embeddings, strict=False):
|
||||
data_objects.append(
|
||||
wvc.data.DataObject(
|
||||
properties={
|
||||
"chunk_id": chunk.chunk_id,
|
||||
"chunk_content": chunk.model_dump_json(),
|
||||
},
|
||||
vector=embedding.tolist(),
|
||||
)
|
||||
)
|
||||
|
||||
# Inserting chunks into a prespecified Weaviate collection
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
||||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
chunk_ids = [chunk.chunk_id for chunk in chunks_for_deletion]
|
||||
collection.data.delete_many(where=Filter.by_property("chunk_id").contains_any(chunk_ids))
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Performs vector search using Weaviate's built-in vector search.
|
||||
Args:
|
||||
embedding: The query embedding vector
|
||||
k: Limit of number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
Returns:
|
||||
QueryChunksResponse with chunks and scores.
|
||||
"""
|
||||
log.debug(
|
||||
f"WEAVIATE VECTOR SEARCH CALLED: embedding_shape={embedding.shape}, k={k}, threshold={score_threshold}"
|
||||
)
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
|
||||
try:
|
||||
results = collection.query.near_vector(
|
||||
near_vector=embedding.tolist(), limit=k, return_metadata=wvc.query.MetadataQuery(distance=True)
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Weaviate client vector search failed: {e}")
|
||||
raise
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc in results.objects:
|
||||
chunk_json = doc.properties["chunk_content"]
|
||||
try:
|
||||
chunk_dict = json.loads(chunk_json)
|
||||
chunk = Chunk(**chunk_dict)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse document: {chunk_json}")
|
||||
continue
|
||||
|
||||
if doc.metadata.distance is None:
|
||||
continue
|
||||
# Convert cosine distance ∈ [0,2] -> normalized cosine similarity ∈ [0,1]
|
||||
score = 1.0 - (float(doc.metadata.distance) / 2.0)
|
||||
if score < score_threshold:
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
|
||||
log.debug(f"WEAVIATE VECTOR SEARCH RESULTS: Found {len(chunks)} chunks with scores {scores}")
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self, chunk_ids: list[str] | None = None) -> None:
|
||||
"""
|
||||
Delete chunks by IDs if provided, otherwise drop the entire collection.
|
||||
"""
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
if chunk_ids is None:
|
||||
# Drop entire collection if it exists
|
||||
if self.client.collections.exists(sanitized_collection_name):
|
||||
self.client.collections.delete(sanitized_collection_name)
|
||||
return
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
|
||||
|
||||
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Performs BM25-based keyword search using Weaviate's built-in full-text search.
|
||||
Args:
|
||||
query_string: The text query for keyword search
|
||||
k: Limit of number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
Returns:
|
||||
QueryChunksResponse with chunks and scores
|
||||
"""
|
||||
log.debug(f"WEAVIATE KEYWORD SEARCH CALLED: query='{query_string}', k={k}, threshold={score_threshold}")
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
|
||||
# Perform BM25 keyword search on chunk_content field
|
||||
try:
|
||||
results = collection.query.bm25(
|
||||
query=query_string, limit=k, return_metadata=wvc.query.MetadataQuery(score=True)
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Weaviate client keyword search failed: {e}")
|
||||
raise
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc in results.objects:
|
||||
chunk_json = doc.properties["chunk_content"]
|
||||
try:
|
||||
chunk_dict = json.loads(chunk_json)
|
||||
chunk = Chunk(**chunk_dict)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse document: {chunk_json}")
|
||||
continue
|
||||
|
||||
score = doc.metadata.score if doc.metadata.score is not None else 0.0
|
||||
if score < score_threshold:
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
|
||||
log.debug(f"WEAVIATE KEYWORD SEARCH RESULTS: Found {len(chunks)} chunks with scores {scores}.")
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
query_string: str,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
reranker_type: str,
|
||||
reranker_params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
"""
|
||||
Hybrid search combining vector similarity and keyword search using Weaviate's native hybrid search.
|
||||
Args:
|
||||
embedding: The query embedding vector
|
||||
query_string: The text query for keyword search
|
||||
k: Limit of number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
reranker_type: Type of reranker to use ("rrf" or "normalized")
|
||||
reranker_params: Parameters for the reranker
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
log.debug(
|
||||
f"WEAVIATE HYBRID SEARCH CALLED: query='{query_string}', embedding_shape={embedding.shape}, k={k}, threshold={score_threshold}, reranker={reranker_type}"
|
||||
)
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
|
||||
# Ranked (RRF) reranker fusion type
|
||||
if reranker_type == RERANKER_TYPE_RRF:
|
||||
rerank = HybridFusion.RANKED
|
||||
# Relative score (Normalized) reranker fusion type
|
||||
else:
|
||||
rerank = HybridFusion.RELATIVE_SCORE
|
||||
|
||||
# Perform hybrid search using Weaviate's native hybrid search
|
||||
try:
|
||||
results = collection.query.hybrid(
|
||||
query=query_string,
|
||||
alpha=0.5, # Range <0, 1>, where 0.5 will equally favor vector and keyword search
|
||||
vector=embedding.tolist(),
|
||||
limit=k,
|
||||
fusion_type=rerank,
|
||||
return_metadata=wvc.query.MetadataQuery(score=True),
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Weaviate client hybrid search failed: {e}")
|
||||
raise
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc in results.objects:
|
||||
chunk_json = doc.properties["chunk_content"]
|
||||
try:
|
||||
chunk_dict = json.loads(chunk_json)
|
||||
chunk = Chunk(**chunk_dict)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse document: {chunk_json}")
|
||||
continue
|
||||
|
||||
score = doc.metadata.score if doc.metadata.score is not None else 0.0
|
||||
if score < score_threshold:
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
|
||||
log.debug(f"WEAVIATE HYBRID SEARCH RESULTS: Found {len(chunks)} chunks with scores {scores}")
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProviderData, VectorStoresProtocolPrivate):
|
||||
def __init__(self, config: WeaviateVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
|
||||
super().__init__(files_api=files_api, kvstore=None)
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client_cache = {}
|
||||
self.cache = {}
|
||||
self.vector_store_table = None
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
def _get_client(self) -> weaviate.WeaviateClient:
|
||||
if "localhost" in self.config.weaviate_cluster_url:
|
||||
log.info("Using Weaviate locally in container")
|
||||
host, port = self.config.weaviate_cluster_url.split(":")
|
||||
key = "local_test"
|
||||
client = weaviate.connect_to_local(host=host, port=port)
|
||||
else:
|
||||
log.info("Using Weaviate remote cluster with URL")
|
||||
key = f"{self.config.weaviate_cluster_url}::{self.config.weaviate_api_key}"
|
||||
if key in self.client_cache:
|
||||
return self.client_cache[key]
|
||||
client = weaviate.connect_to_weaviate_cloud(
|
||||
cluster_url=self.config.weaviate_cluster_url,
|
||||
auth_credentials=Auth.api_key(self.config.weaviate_api_key),
|
||||
)
|
||||
self.client_cache[key] = client
|
||||
return client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""Set up KV store and load existing vector DBs and OpenAI vector stores."""
|
||||
# Initialize KV store for metadata if configured
|
||||
if self.config.persistence is not None:
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
else:
|
||||
self.kvstore = None
|
||||
log.info("No kvstore configured, registry will not persist across restarts")
|
||||
|
||||
# Load existing vector DB definitions
|
||||
if self.kvstore is not None:
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored = await self.kvstore.values_in_range(start_key, end_key)
|
||||
for raw in stored:
|
||||
vector_store = VectorStore.model_validate_json(raw)
|
||||
client = self._get_client()
|
||||
idx = WeaviateIndex(client=client, collection_name=vector_store.identifier, kvstore=self.kvstore)
|
||||
self.cache[vector_store.identifier] = VectorStoreWithIndex(
|
||||
vector_store=vector_store, index=idx, inference_api=self.inference_api
|
||||
)
|
||||
|
||||
# Load OpenAI vector stores metadata into cache
|
||||
await self.initialize_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
for client in self.client_cache.values():
|
||||
client.close()
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||
client = self._get_client()
|
||||
sanitized_collection_name = sanitize_collection_name(vector_store.identifier, weaviate_format=True)
|
||||
# Create collection if it doesn't exist
|
||||
if not client.collections.exists(sanitized_collection_name):
|
||||
client.collections.create(
|
||||
name=sanitized_collection_name,
|
||||
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
||||
properties=[
|
||||
wvc.config.Property(name="chunk_content", data_type=wvc.config.DataType.TEXT),
|
||||
],
|
||||
)
|
||||
|
||||
self.cache[vector_store.identifier] = VectorStoreWithIndex(
|
||||
vector_store, WeaviateIndex(client=client, collection_name=sanitized_collection_name), self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
client = self._get_client()
|
||||
sanitized_collection_name = sanitize_collection_name(vector_store_id, weaviate_format=True)
|
||||
if vector_store_id not in self.cache or client.collections.exists(sanitized_collection_name) is False:
|
||||
return
|
||||
client.collections.delete(sanitized_collection_name)
|
||||
await self.cache[vector_store_id].index.delete()
|
||||
del self.cache[vector_store_id]
|
||||
|
||||
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
|
||||
if vector_store_id in self.cache:
|
||||
return self.cache[vector_store_id]
|
||||
|
||||
if self.vector_store_table is None:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||
if not vector_store:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
client = self._get_client()
|
||||
sanitized_collection_name = sanitize_collection_name(vector_store.identifier, weaviate_format=True)
|
||||
if not client.collections.exists(sanitized_collection_name):
|
||||
raise ValueError(f"Collection with name `{sanitized_collection_name}` not found")
|
||||
|
||||
index = VectorStoreWithIndex(
|
||||
vector_store=vector_store,
|
||||
index=WeaviateIndex(client=client, collection_name=vector_store.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_store_id] = index
|
||||
return index
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
index = await self._get_and_cache_vector_store_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
Loading…
Add table
Add a link
Reference in a new issue