chore(package): migrate to src/ layout (#3920)

Migrates package structure to src/ layout following Python packaging
best practices.

All code moved from `llama_stack/` to `src/llama_stack/`. Public API
unchanged - imports remain `import llama_stack.*`.

Updated build configs, pre-commit hooks, scripts, and GitHub workflows
accordingly. All hooks pass, package builds cleanly.

**Developer note**: Reinstall after pulling: `pip install -e .`
This commit is contained in:
Ashwin Bharambe 2025-10-27 12:02:21 -07:00 committed by GitHub
parent 98a5047f9d
commit 471b1b248b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
791 changed files with 2983 additions and 456 deletions

View file

@ -1,102 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import base64
import platform
import struct
from typing import TYPE_CHECKING
import torch
from llama_stack.log import get_logger
if TYPE_CHECKING:
from sentence_transformers import SentenceTransformer
from llama_stack.apis.inference import (
ModelStore,
OpenAIEmbeddingData,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
EMBEDDING_MODELS = {}
DARWIN = "Darwin"
log = get_logger(name=__name__, category="providers::utils")
class SentenceTransformerEmbeddingMixin:
model_store: ModelStore
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
# Convert input to list format if it's a single string
input_list = [params.input] if isinstance(params.input, str) else params.input
if not input_list:
raise ValueError("Empty list not supported")
# Get the model and generate embeddings
model_obj = await self.model_store.get_model(params.model)
embedding_model = await self._load_sentence_transformer_model(model_obj.provider_resource_id)
embeddings = await asyncio.to_thread(embedding_model.encode, input_list, show_progress_bar=False)
# Convert embeddings to the requested format
data = []
for i, embedding in enumerate(embeddings):
if params.encoding_format == "base64":
# Convert float array to base64 string
float_bytes = struct.pack(f"{len(embedding)}f", *embedding)
embedding_value = base64.b64encode(float_bytes).decode("ascii")
else:
# Default to float format
embedding_value = embedding.tolist()
data.append(
OpenAIEmbeddingData(
embedding=embedding_value,
index=i,
)
)
# Not returning actual token usage
usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
return OpenAIEmbeddingsResponse(
data=data,
model=params.model,
usage=usage,
)
async def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
global EMBEDDING_MODELS
loaded_model = EMBEDDING_MODELS.get(model)
if loaded_model is not None:
return loaded_model
log.info(f"Loading sentence transformer for {model}...")
def _load_model():
from sentence_transformers import SentenceTransformer
platform_name = platform.system()
if platform_name == DARWIN:
# PyTorch's OpenMP kernels can segfault on macOS when spawned from background
# threads with the default parallel settings, so force a single-threaded CPU run.
log.debug(f"Constraining torch threads on {platform_name} to a single worker")
torch.set_num_threads(1)
return SentenceTransformer(model, trust_remote_code=True)
loaded_model = await asyncio.to_thread(_load_model)
EMBEDDING_MODELS[model] = loaded_model
return loaded_model