mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 02:03:44 +00:00
chore(package): migrate to src/ layout (#3920)
Migrates package structure to src/ layout following Python packaging best practices. All code moved from `llama_stack/` to `src/llama_stack/`. Public API unchanged - imports remain `import llama_stack.*`. Updated build configs, pre-commit hooks, scripts, and GitHub workflows accordingly. All hooks pass, package builds cleanly. **Developer note**: Reinstall after pulling: `pip install -e .`
This commit is contained in:
parent
98a5047f9d
commit
471b1b248b
791 changed files with 2983 additions and 456 deletions
5
src/llama_stack/apis/common/__init__.py
Normal file
5
src/llama_stack/apis/common/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
143
src/llama_stack/apis/common/content_types.py
Normal file
143
src/llama_stack/apis/common/content_types.py
Normal file
|
|
@ -0,0 +1,143 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
from llama_stack.models.llama.datatypes import ToolCall
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class URL(BaseModel):
|
||||
"""A URL reference to external content.
|
||||
|
||||
:param uri: The URL string pointing to the resource
|
||||
"""
|
||||
|
||||
uri: str
|
||||
|
||||
|
||||
class _URLOrData(BaseModel):
|
||||
"""
|
||||
A URL or a base64 encoded string
|
||||
|
||||
:param url: A URL of the image or data URL in the format of data:image/{type};base64,{data}. Note that URL could have length limits.
|
||||
:param data: base64 encoded image data as string
|
||||
"""
|
||||
|
||||
url: URL | None = None
|
||||
# data is a base64 encoded string, hint with contentEncoding=base64
|
||||
data: str | None = Field(default=None, json_schema_extra={"contentEncoding": "base64"})
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validator(cls, values):
|
||||
if isinstance(values, dict):
|
||||
return values
|
||||
return {"url": values}
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ImageContentItem(BaseModel):
|
||||
"""A image content item
|
||||
|
||||
:param type: Discriminator type of the content item. Always "image"
|
||||
:param image: Image as a base64 encoded string or an URL
|
||||
"""
|
||||
|
||||
type: Literal["image"] = "image"
|
||||
image: _URLOrData
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TextContentItem(BaseModel):
|
||||
"""A text content item
|
||||
|
||||
:param type: Discriminator type of the content item. Always "text"
|
||||
:param text: Text content
|
||||
"""
|
||||
|
||||
type: Literal["text"] = "text"
|
||||
text: str
|
||||
|
||||
|
||||
# other modalities can be added here
|
||||
InterleavedContentItem = Annotated[
|
||||
ImageContentItem | TextContentItem,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(InterleavedContentItem, name="InterleavedContentItem")
|
||||
|
||||
# accept a single "str" as a special case since it is common
|
||||
InterleavedContent = str | InterleavedContentItem | list[InterleavedContentItem]
|
||||
register_schema(InterleavedContent, name="InterleavedContent")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TextDelta(BaseModel):
|
||||
"""A text content delta for streaming responses.
|
||||
|
||||
:param type: Discriminator type of the delta. Always "text"
|
||||
:param text: The incremental text content
|
||||
"""
|
||||
|
||||
type: Literal["text"] = "text"
|
||||
text: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ImageDelta(BaseModel):
|
||||
"""An image content delta for streaming responses.
|
||||
|
||||
:param type: Discriminator type of the delta. Always "image"
|
||||
:param image: The incremental image data as bytes
|
||||
"""
|
||||
|
||||
type: Literal["image"] = "image"
|
||||
image: bytes
|
||||
|
||||
|
||||
class ToolCallParseStatus(Enum):
|
||||
"""Status of tool call parsing during streaming.
|
||||
:cvar started: Tool call parsing has begun
|
||||
:cvar in_progress: Tool call parsing is ongoing
|
||||
:cvar failed: Tool call parsing failed
|
||||
:cvar succeeded: Tool call parsing completed successfully
|
||||
"""
|
||||
|
||||
started = "started"
|
||||
in_progress = "in_progress"
|
||||
failed = "failed"
|
||||
succeeded = "succeeded"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolCallDelta(BaseModel):
|
||||
"""A tool call content delta for streaming responses.
|
||||
|
||||
:param type: Discriminator type of the delta. Always "tool_call"
|
||||
:param tool_call: Either an in-progress tool call string or the final parsed tool call
|
||||
:param parse_status: Current parsing status of the tool call
|
||||
"""
|
||||
|
||||
type: Literal["tool_call"] = "tool_call"
|
||||
|
||||
# you either send an in-progress tool call so the client can stream a long
|
||||
# code generation or you send the final parsed tool call at the end of the
|
||||
# stream
|
||||
tool_call: str | ToolCall
|
||||
parse_status: ToolCallParseStatus
|
||||
|
||||
|
||||
# streaming completions send a stream of ContentDeltas
|
||||
ContentDelta = Annotated[
|
||||
TextDelta | ImageDelta | ToolCallDelta,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(ContentDelta, name="ContentDelta")
|
||||
103
src/llama_stack/apis/common/errors.py
Normal file
103
src/llama_stack/apis/common/errors.py
Normal file
|
|
@ -0,0 +1,103 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Custom Llama Stack Exception classes should follow the following schema
|
||||
# 1. All classes should inherit from an existing Built-In Exception class: https://docs.python.org/3/library/exceptions.html
|
||||
# 2. All classes should have a custom error message with the goal of informing the Llama Stack user specifically
|
||||
# 3. All classes should propogate the inherited __init__ function otherwise via 'super().__init__(message)'
|
||||
|
||||
|
||||
class ResourceNotFoundError(ValueError):
|
||||
"""generic exception for a missing Llama Stack resource"""
|
||||
|
||||
def __init__(self, resource_name: str, resource_type: str, client_list: str) -> None:
|
||||
message = (
|
||||
f"{resource_type} '{resource_name}' not found. Use '{client_list}' to list available {resource_type}s."
|
||||
)
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class UnsupportedModelError(ValueError):
|
||||
"""raised when model is not present in the list of supported models"""
|
||||
|
||||
def __init__(self, model_name: str, supported_models_list: list[str]):
|
||||
message = f"'{model_name}' model is not supported. Supported models are: {', '.join(supported_models_list)}"
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ModelNotFoundError(ResourceNotFoundError):
|
||||
"""raised when Llama Stack cannot find a referenced model"""
|
||||
|
||||
def __init__(self, model_name: str) -> None:
|
||||
super().__init__(model_name, "Model", "client.models.list()")
|
||||
|
||||
|
||||
class VectorStoreNotFoundError(ResourceNotFoundError):
|
||||
"""raised when Llama Stack cannot find a referenced vector store"""
|
||||
|
||||
def __init__(self, vector_store_name: str) -> None:
|
||||
super().__init__(vector_store_name, "Vector Store", "client.vector_dbs.list()")
|
||||
|
||||
|
||||
class DatasetNotFoundError(ResourceNotFoundError):
|
||||
"""raised when Llama Stack cannot find a referenced dataset"""
|
||||
|
||||
def __init__(self, dataset_name: str) -> None:
|
||||
super().__init__(dataset_name, "Dataset", "client.datasets.list()")
|
||||
|
||||
|
||||
class ToolGroupNotFoundError(ResourceNotFoundError):
|
||||
"""raised when Llama Stack cannot find a referenced tool group"""
|
||||
|
||||
def __init__(self, toolgroup_name: str) -> None:
|
||||
super().__init__(toolgroup_name, "Tool Group", "client.toolgroups.list()")
|
||||
|
||||
|
||||
class SessionNotFoundError(ValueError):
|
||||
"""raised when Llama Stack cannot find a referenced session or access is denied"""
|
||||
|
||||
def __init__(self, session_name: str) -> None:
|
||||
message = f"Session '{session_name}' not found or access denied."
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ModelTypeError(TypeError):
|
||||
"""raised when a model is present but not the correct type"""
|
||||
|
||||
def __init__(self, model_name: str, model_type: str, expected_model_type: str) -> None:
|
||||
message = (
|
||||
f"Model '{model_name}' is of type '{model_type}' rather than the expected type '{expected_model_type}'"
|
||||
)
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ConflictError(ValueError):
|
||||
"""raised when an operation cannot be performed due to a conflict with the current state"""
|
||||
|
||||
def __init__(self, message: str) -> None:
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class TokenValidationError(ValueError):
|
||||
"""raised when token validation fails during authentication"""
|
||||
|
||||
def __init__(self, message: str) -> None:
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ConversationNotFoundError(ResourceNotFoundError):
|
||||
"""raised when Llama Stack cannot find a referenced conversation"""
|
||||
|
||||
def __init__(self, conversation_id: str) -> None:
|
||||
super().__init__(conversation_id, "Conversation", "client.conversations.list()")
|
||||
|
||||
|
||||
class InvalidConversationIdError(ValueError):
|
||||
"""raised when a conversation ID has an invalid format"""
|
||||
|
||||
def __init__(self, conversation_id: str) -> None:
|
||||
message = f"Invalid conversation ID '{conversation_id}'. Expected an ID that begins with 'conv_'."
|
||||
super().__init__(message)
|
||||
38
src/llama_stack/apis/common/job_types.py
Normal file
38
src/llama_stack/apis/common/job_types.py
Normal file
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from enum import Enum
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class JobStatus(Enum):
|
||||
"""Status of a job execution.
|
||||
:cvar completed: Job has finished successfully
|
||||
:cvar in_progress: Job is currently running
|
||||
:cvar failed: Job has failed during execution
|
||||
:cvar scheduled: Job is scheduled but not yet started
|
||||
:cvar cancelled: Job was cancelled before completion
|
||||
"""
|
||||
|
||||
completed = "completed"
|
||||
in_progress = "in_progress"
|
||||
failed = "failed"
|
||||
scheduled = "scheduled"
|
||||
cancelled = "cancelled"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Job(BaseModel):
|
||||
"""A job execution instance with status tracking.
|
||||
|
||||
:param job_id: Unique identifier for the job
|
||||
:param status: Current execution status of the job
|
||||
"""
|
||||
|
||||
job_id: str
|
||||
status: JobStatus
|
||||
36
src/llama_stack/apis/common/responses.py
Normal file
36
src/llama_stack/apis/common/responses.py
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class Order(Enum):
|
||||
"""Sort order for paginated responses.
|
||||
:cvar asc: Ascending order
|
||||
:cvar desc: Descending order
|
||||
"""
|
||||
|
||||
asc = "asc"
|
||||
desc = "desc"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PaginatedResponse(BaseModel):
|
||||
"""A generic paginated response that follows a simple format.
|
||||
|
||||
:param data: The list of items for the current page
|
||||
:param has_more: Whether there are more items available after this set
|
||||
:param url: The URL for accessing this list
|
||||
"""
|
||||
|
||||
data: list[dict[str, Any]]
|
||||
has_more: bool
|
||||
url: str | None = None
|
||||
47
src/llama_stack/apis/common/training_types.py
Normal file
47
src/llama_stack/apis/common/training_types.py
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingMetric(BaseModel):
|
||||
"""Training metrics captured during post-training jobs.
|
||||
|
||||
:param epoch: Training epoch number
|
||||
:param train_loss: Loss value on the training dataset
|
||||
:param validation_loss: Loss value on the validation dataset
|
||||
:param perplexity: Perplexity metric indicating model confidence
|
||||
"""
|
||||
|
||||
epoch: int
|
||||
train_loss: float
|
||||
validation_loss: float
|
||||
perplexity: float
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Checkpoint(BaseModel):
|
||||
"""Checkpoint created during training runs.
|
||||
|
||||
:param identifier: Unique identifier for the checkpoint
|
||||
:param created_at: Timestamp when the checkpoint was created
|
||||
:param epoch: Training epoch when the checkpoint was saved
|
||||
:param post_training_job_id: Identifier of the training job that created this checkpoint
|
||||
:param path: File system path where the checkpoint is stored
|
||||
:param training_metrics: (Optional) Training metrics associated with this checkpoint
|
||||
"""
|
||||
|
||||
identifier: str
|
||||
created_at: datetime
|
||||
epoch: int
|
||||
post_training_job_id: str
|
||||
path: str
|
||||
training_metrics: PostTrainingMetric | None = None
|
||||
158
src/llama_stack/apis/common/type_system.py
Normal file
158
src/llama_stack/apis/common/type_system.py
Normal file
|
|
@ -0,0 +1,158 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class StringType(BaseModel):
|
||||
"""Parameter type for string values.
|
||||
|
||||
:param type: Discriminator type. Always "string"
|
||||
"""
|
||||
|
||||
type: Literal["string"] = "string"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class NumberType(BaseModel):
|
||||
"""Parameter type for numeric values.
|
||||
|
||||
:param type: Discriminator type. Always "number"
|
||||
"""
|
||||
|
||||
type: Literal["number"] = "number"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BooleanType(BaseModel):
|
||||
"""Parameter type for boolean values.
|
||||
|
||||
:param type: Discriminator type. Always "boolean"
|
||||
"""
|
||||
|
||||
type: Literal["boolean"] = "boolean"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ArrayType(BaseModel):
|
||||
"""Parameter type for array values.
|
||||
|
||||
:param type: Discriminator type. Always "array"
|
||||
"""
|
||||
|
||||
type: Literal["array"] = "array"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ObjectType(BaseModel):
|
||||
"""Parameter type for object values.
|
||||
|
||||
:param type: Discriminator type. Always "object"
|
||||
"""
|
||||
|
||||
type: Literal["object"] = "object"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class JsonType(BaseModel):
|
||||
"""Parameter type for JSON values.
|
||||
|
||||
:param type: Discriminator type. Always "json"
|
||||
"""
|
||||
|
||||
type: Literal["json"] = "json"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class UnionType(BaseModel):
|
||||
"""Parameter type for union values.
|
||||
|
||||
:param type: Discriminator type. Always "union"
|
||||
"""
|
||||
|
||||
type: Literal["union"] = "union"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionInputType(BaseModel):
|
||||
"""Parameter type for chat completion input.
|
||||
|
||||
:param type: Discriminator type. Always "chat_completion_input"
|
||||
"""
|
||||
|
||||
# expects List[Message] for messages
|
||||
type: Literal["chat_completion_input"] = "chat_completion_input"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionInputType(BaseModel):
|
||||
"""Parameter type for completion input.
|
||||
|
||||
:param type: Discriminator type. Always "completion_input"
|
||||
"""
|
||||
|
||||
# expects InterleavedTextMedia for content
|
||||
type: Literal["completion_input"] = "completion_input"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnInputType(BaseModel):
|
||||
"""Parameter type for agent turn input.
|
||||
|
||||
:param type: Discriminator type. Always "agent_turn_input"
|
||||
"""
|
||||
|
||||
# expects List[Message] for messages (may also include attachments?)
|
||||
type: Literal["agent_turn_input"] = "agent_turn_input"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DialogType(BaseModel):
|
||||
"""Parameter type for dialog data with semantic output labels.
|
||||
|
||||
:param type: Discriminator type. Always "dialog"
|
||||
"""
|
||||
|
||||
# expects List[Message] for messages
|
||||
# this type semantically contains the output label whereas ChatCompletionInputType does not
|
||||
type: Literal["dialog"] = "dialog"
|
||||
|
||||
|
||||
ParamType = Annotated[
|
||||
StringType
|
||||
| NumberType
|
||||
| BooleanType
|
||||
| ArrayType
|
||||
| ObjectType
|
||||
| JsonType
|
||||
| UnionType
|
||||
| ChatCompletionInputType
|
||||
| CompletionInputType
|
||||
| AgentTurnInputType,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(ParamType, name="ParamType")
|
||||
|
||||
"""
|
||||
# TODO: recursive definition of ParamType in these containers
|
||||
# will cause infinite recursion in OpenAPI generation script
|
||||
# since we are going with ChatCompletionInputType and CompletionInputType
|
||||
# we don't need to worry about ArrayType/ObjectType/UnionType for now
|
||||
ArrayType.model_rebuild()
|
||||
ObjectType.model_rebuild()
|
||||
UnionType.model_rebuild()
|
||||
|
||||
|
||||
class CustomType(BaseModel):
|
||||
pylint: disable=syntax-error
|
||||
type: Literal["custom"] = "custom"
|
||||
validator_class: str
|
||||
"""
|
||||
Loading…
Add table
Add a link
Reference in a new issue