chore(package): migrate to src/ layout (#3920)

Migrates package structure to src/ layout following Python packaging
best practices.

All code moved from `llama_stack/` to `src/llama_stack/`. Public API
unchanged - imports remain `import llama_stack.*`.

Updated build configs, pre-commit hooks, scripts, and GitHub workflows
accordingly. All hooks pass, package builds cleanly.

**Developer note**: Reinstall after pulling: `pip install -e .`
This commit is contained in:
Ashwin Bharambe 2025-10-27 12:02:21 -07:00 committed by GitHub
parent 98a5047f9d
commit 471b1b248b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
791 changed files with 2983 additions and 456 deletions

View file

@ -0,0 +1,96 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.core.datatypes import (
AccessRule,
RoutedProtocol,
)
from llama_stack.core.stack import StackRunConfig
from llama_stack.core.store import DistributionRegistry
from llama_stack.providers.datatypes import Api, RoutingTable
from llama_stack.providers.utils.inference.inference_store import InferenceStore
async def get_routing_table_impl(
api: Api,
impls_by_provider_id: dict[str, RoutedProtocol],
_deps,
dist_registry: DistributionRegistry,
policy: list[AccessRule],
) -> Any:
from ..routing_tables.benchmarks import BenchmarksRoutingTable
from ..routing_tables.datasets import DatasetsRoutingTable
from ..routing_tables.models import ModelsRoutingTable
from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable
from ..routing_tables.shields import ShieldsRoutingTable
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
from ..routing_tables.vector_stores import VectorStoresRoutingTable
api_to_tables = {
"models": ModelsRoutingTable,
"shields": ShieldsRoutingTable,
"datasets": DatasetsRoutingTable,
"scoring_functions": ScoringFunctionsRoutingTable,
"benchmarks": BenchmarksRoutingTable,
"tool_groups": ToolGroupsRoutingTable,
"vector_stores": VectorStoresRoutingTable,
}
if api.value not in api_to_tables:
raise ValueError(f"API {api.value} not found in router map")
impl = api_to_tables[api.value](impls_by_provider_id, dist_registry, policy)
await impl.initialize()
return impl
async def get_auto_router_impl(
api: Api, routing_table: RoutingTable, deps: dict[str, Any], run_config: StackRunConfig, policy: list[AccessRule]
) -> Any:
from .datasets import DatasetIORouter
from .eval_scoring import EvalRouter, ScoringRouter
from .inference import InferenceRouter
from .safety import SafetyRouter
from .tool_runtime import ToolRuntimeRouter
from .vector_io import VectorIORouter
api_to_routers = {
"vector_io": VectorIORouter,
"inference": InferenceRouter,
"safety": SafetyRouter,
"datasetio": DatasetIORouter,
"scoring": ScoringRouter,
"eval": EvalRouter,
"tool_runtime": ToolRuntimeRouter,
}
if api.value not in api_to_routers:
raise ValueError(f"API {api.value} not found in router map")
api_to_dep_impl = {}
# TODO: move pass configs to routers instead
if api == Api.inference:
inference_ref = run_config.storage.stores.inference
if not inference_ref:
raise ValueError("storage.stores.inference must be configured in run config")
inference_store = InferenceStore(
reference=inference_ref,
policy=policy,
)
await inference_store.initialize()
api_to_dep_impl["store"] = inference_store
api_to_dep_impl["telemetry_enabled"] = run_config.telemetry.enabled
elif api == Api.vector_io:
api_to_dep_impl["vector_stores_config"] = run_config.vector_stores
elif api == Api.safety:
api_to_dep_impl["safety_config"] = run_config.safety
impl = api_to_routers[api.value](routing_table, **api_to_dep_impl)
await impl.initialize()
return impl

View file

@ -0,0 +1,73 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import DatasetPurpose, DataSource
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core::routers")
class DatasetIORouter(DatasetIO):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing DatasetIORouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("DatasetIORouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("DatasetIORouter.shutdown")
pass
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> None:
logger.debug(
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
)
await self.routing_table.register_dataset(
purpose=purpose,
source=source,
metadata=metadata,
dataset_id=dataset_id,
)
async def iterrows(
self,
dataset_id: str,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
logger.debug(
f"DatasetIORouter.iterrows: {dataset_id}, {start_index=} {limit=}",
)
provider = await self.routing_table.get_provider_impl(dataset_id)
return await provider.iterrows(
dataset_id=dataset_id,
start_index=start_index,
limit=limit,
)
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
logger.debug(f"DatasetIORouter.append_rows: {dataset_id}, {len(rows)} rows")
provider = await self.routing_table.get_provider_impl(dataset_id)
return await provider.append_rows(
dataset_id=dataset_id,
rows=rows,
)

View file

@ -0,0 +1,155 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.eval import BenchmarkConfig, Eval, EvaluateResponse, Job
from llama_stack.apis.scoring import (
ScoreBatchResponse,
ScoreResponse,
Scoring,
ScoringFnParams,
)
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core::routers")
class ScoringRouter(Scoring):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing ScoringRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("ScoringRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("ScoringRouter.shutdown")
pass
async def score_batch(
self,
dataset_id: str,
scoring_functions: dict[str, ScoringFnParams | None] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
res = {}
for fn_identifier in scoring_functions.keys():
provider = await self.routing_table.get_provider_impl(fn_identifier)
score_response = await provider.score_batch(
dataset_id=dataset_id,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
if save_results_dataset:
raise NotImplementedError("Save results dataset not implemented yet")
return ScoreBatchResponse(
results=res,
)
async def score(
self,
input_rows: list[dict[str, Any]],
scoring_functions: dict[str, ScoringFnParams | None] = None,
) -> ScoreResponse:
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
res = {}
# look up and map each scoring function to its provider impl
for fn_identifier in scoring_functions.keys():
provider = await self.routing_table.get_provider_impl(fn_identifier)
score_response = await provider.score(
input_rows=input_rows,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
return ScoreResponse(results=res)
class EvalRouter(Eval):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing EvalRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("EvalRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("EvalRouter.shutdown")
pass
async def run_eval(
self,
benchmark_id: str,
benchmark_config: BenchmarkConfig,
) -> Job:
logger.debug(f"EvalRouter.run_eval: {benchmark_id}")
provider = await self.routing_table.get_provider_impl(benchmark_id)
return await provider.run_eval(
benchmark_id=benchmark_id,
benchmark_config=benchmark_config,
)
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: list[dict[str, Any]],
scoring_functions: list[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
provider = await self.routing_table.get_provider_impl(benchmark_id)
return await provider.evaluate_rows(
benchmark_id=benchmark_id,
input_rows=input_rows,
scoring_functions=scoring_functions,
benchmark_config=benchmark_config,
)
async def job_status(
self,
benchmark_id: str,
job_id: str,
) -> Job:
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
provider = await self.routing_table.get_provider_impl(benchmark_id)
return await provider.job_status(benchmark_id, job_id)
async def job_cancel(
self,
benchmark_id: str,
job_id: str,
) -> None:
logger.debug(f"EvalRouter.job_cancel: {benchmark_id}, {job_id}")
provider = await self.routing_table.get_provider_impl(benchmark_id)
await provider.job_cancel(
benchmark_id,
job_id,
)
async def job_result(
self,
benchmark_id: str,
job_id: str,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.job_result: {benchmark_id}, {job_id}")
provider = await self.routing_table.get_provider_impl(benchmark_id)
return await provider.job_result(
benchmark_id,
job_id,
)

View file

@ -0,0 +1,608 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import time
from collections.abc import AsyncGenerator, AsyncIterator
from datetime import UTC, datetime
from typing import Annotated, Any
from fastapi import Body
from openai.types.chat import ChatCompletionToolChoiceOptionParam as OpenAIChatCompletionToolChoiceOptionParam
from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToolParam
from pydantic import TypeAdapter
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionResponse,
CompletionResponseStreamChunk,
Inference,
ListOpenAIChatCompletionResponse,
Message,
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
OpenAIChatCompletionToolCall,
OpenAIChatCompletionToolCallFunction,
OpenAIChoice,
OpenAIChoiceLogprobs,
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAICompletionWithInputMessages,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
Order,
RerankResponse,
StopReason,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartTextParam,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse
from llama_stack.core.telemetry.tracing import enqueue_event, get_current_span
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.chat_format import ChatFormat
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
from llama_stack.providers.utils.inference.inference_store import InferenceStore
logger = get_logger(name=__name__, category="core::routers")
class InferenceRouter(Inference):
"""Routes to an provider based on the model"""
def __init__(
self,
routing_table: RoutingTable,
store: InferenceStore | None = None,
telemetry_enabled: bool = False,
) -> None:
logger.debug("Initializing InferenceRouter")
self.routing_table = routing_table
self.telemetry_enabled = telemetry_enabled
self.store = store
if self.telemetry_enabled:
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
async def initialize(self) -> None:
logger.debug("InferenceRouter.initialize")
async def shutdown(self) -> None:
logger.debug("InferenceRouter.shutdown")
if self.store:
try:
await self.store.shutdown()
except Exception as e:
logger.warning(f"Error during InferenceStore shutdown: {e}")
async def register_model(
self,
model_id: str,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> None:
logger.debug(
f"InferenceRouter.register_model: {model_id=} {provider_model_id=} {provider_id=} {metadata=} {model_type=}",
)
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
def _construct_metrics(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
model: Model,
) -> list[MetricEvent]:
"""Constructs a list of MetricEvent objects containing token usage metrics.
Args:
prompt_tokens: Number of tokens in the prompt
completion_tokens: Number of tokens in the completion
total_tokens: Total number of tokens used
model: Model object containing model_id and provider_id
Returns:
List of MetricEvent objects with token usage metrics
"""
span = get_current_span()
if span is None:
logger.warning("No span found for token usage metrics")
return []
metrics = [
("prompt_tokens", prompt_tokens),
("completion_tokens", completion_tokens),
("total_tokens", total_tokens),
]
metric_events = []
for metric_name, value in metrics:
metric_events.append(
MetricEvent(
trace_id=span.trace_id,
span_id=span.span_id,
metric=metric_name,
value=value,
timestamp=datetime.now(UTC),
unit="tokens",
attributes={
"model_id": model.model_id,
"provider_id": model.provider_id,
},
)
)
return metric_events
async def _compute_and_log_token_usage(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
model: Model,
) -> list[MetricInResponse]:
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
if self.telemetry_enabled:
for metric in metrics:
enqueue_event(metric)
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
async def _count_tokens(
self,
messages: list[Message] | InterleavedContent,
tool_prompt_format: ToolPromptFormat | None = None,
) -> int | None:
if not hasattr(self, "formatter") or self.formatter is None:
return None
if isinstance(messages, list):
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
else:
encoded = self.formatter.encode_content(messages)
return len(encoded.tokens) if encoded and encoded.tokens else 0
async def _get_model(self, model_id: str, expected_model_type: str) -> Model:
"""takes a model id and gets model after ensuring that it is accessible and of the correct type"""
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type != expected_model_type:
raise ModelTypeError(model_id, model.model_type, expected_model_type)
return model
async def rerank(
self,
model: str,
query: str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
items: list[str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam],
max_num_results: int | None = None,
) -> RerankResponse:
logger.debug(f"InferenceRouter.rerank: {model}")
model_obj = await self._get_model(model, ModelType.rerank)
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.rerank(
model=model_obj.identifier,
query=query,
items=items,
max_num_results=max_num_results,
)
async def openai_completion(
self,
params: Annotated[OpenAICompletionRequestWithExtraBody, Body(...)],
) -> OpenAICompletion:
logger.debug(
f"InferenceRouter.openai_completion: model={params.model}, stream={params.stream}, prompt={params.prompt}",
)
model_obj = await self._get_model(params.model, ModelType.llm)
# Update params with the resolved model identifier
params.model = model_obj.identifier
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
if params.stream:
return await provider.openai_completion(params)
# TODO: Metrics do NOT work with openai_completion stream=True due to the fact
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
response = await provider.openai_completion(params)
if self.telemetry_enabled:
metrics = self._construct_metrics(
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,
total_tokens=response.usage.total_tokens,
model=model_obj,
)
for metric in metrics:
enqueue_event(metric)
# these metrics will show up in the client response.
response.metrics = (
metrics if not hasattr(response, "metrics") or response.metrics is None else response.metrics + metrics
)
return response
async def openai_chat_completion(
self,
params: Annotated[OpenAIChatCompletionRequestWithExtraBody, Body(...)],
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
logger.debug(
f"InferenceRouter.openai_chat_completion: model={params.model}, stream={params.stream}, messages={params.messages}",
)
model_obj = await self._get_model(params.model, ModelType.llm)
# Use the OpenAI client for a bit of extra input validation without
# exposing the OpenAI client itself as part of our API surface
if params.tool_choice:
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(params.tool_choice)
if params.tools is None:
raise ValueError("'tool_choice' is only allowed when 'tools' is also provided")
if params.tools:
for tool in params.tools:
TypeAdapter(OpenAIChatCompletionToolParam).validate_python(tool)
# Some providers make tool calls even when tool_choice is "none"
# so just clear them both out to avoid unexpected tool calls
if params.tool_choice == "none" and params.tools is not None:
params.tool_choice = None
params.tools = None
# Update params with the resolved model identifier
params.model = model_obj.identifier
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
if params.stream:
response_stream = await provider.openai_chat_completion(params)
# For streaming, the provider returns AsyncIterator[OpenAIChatCompletionChunk]
# We need to add metrics to each chunk and store the final completion
return self.stream_tokens_and_compute_metrics_openai_chat(
response=response_stream,
model=model_obj,
messages=params.messages,
)
response = await self._nonstream_openai_chat_completion(provider, params)
# Store the response with the ID that will be returned to the client
if self.store:
asyncio.create_task(self.store.store_chat_completion(response, params.messages))
if self.telemetry_enabled:
metrics = self._construct_metrics(
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,
total_tokens=response.usage.total_tokens,
model=model_obj,
)
for metric in metrics:
enqueue_event(metric)
# these metrics will show up in the client response.
response.metrics = (
metrics if not hasattr(response, "metrics") or response.metrics is None else response.metrics + metrics
)
return response
async def openai_embeddings(
self,
params: Annotated[OpenAIEmbeddingsRequestWithExtraBody, Body(...)],
) -> OpenAIEmbeddingsResponse:
logger.debug(
f"InferenceRouter.openai_embeddings: model={params.model}, input_type={type(params.input)}, encoding_format={params.encoding_format}, dimensions={params.dimensions}",
)
model_obj = await self._get_model(params.model, ModelType.embedding)
# Update model to use resolved identifier
params.model = model_obj.identifier
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.openai_embeddings(params)
async def list_chat_completions(
self,
after: str | None = None,
limit: int | None = 20,
model: str | None = None,
order: Order | None = Order.desc,
) -> ListOpenAIChatCompletionResponse:
if self.store:
return await self.store.list_chat_completions(after, limit, model, order)
raise NotImplementedError("List chat completions is not supported: inference store is not configured.")
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
if self.store:
return await self.store.get_chat_completion(completion_id)
raise NotImplementedError("Get chat completion is not supported: inference store is not configured.")
async def _nonstream_openai_chat_completion(
self, provider: Inference, params: OpenAIChatCompletionRequestWithExtraBody
) -> OpenAIChatCompletion:
response = await provider.openai_chat_completion(params)
for choice in response.choices:
# some providers return an empty list for no tool calls in non-streaming responses
# but the OpenAI API returns None. So, set tool_calls to None if it's empty
if choice.message and choice.message.tool_calls is not None and len(choice.message.tool_calls) == 0:
choice.message.tool_calls = None
return response
async def health(self) -> dict[str, HealthResponse]:
health_statuses = {}
timeout = 1 # increasing the timeout to 1 second for health checks
for provider_id, impl in self.routing_table.impls_by_provider_id.items():
try:
# check if the provider has a health method
if not hasattr(impl, "health"):
continue
health = await asyncio.wait_for(impl.health(), timeout=timeout)
health_statuses[provider_id] = health
except TimeoutError:
health_statuses[provider_id] = HealthResponse(
status=HealthStatus.ERROR,
message=f"Health check timed out after {timeout} seconds",
)
except NotImplementedError:
health_statuses[provider_id] = HealthResponse(status=HealthStatus.NOT_IMPLEMENTED)
except Exception as e:
health_statuses[provider_id] = HealthResponse(
status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}"
)
return health_statuses
async def stream_tokens_and_compute_metrics(
self,
response,
prompt_tokens,
model,
tool_prompt_format: ToolPromptFormat | None = None,
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None] | AsyncGenerator[CompletionResponseStreamChunk, None]:
completion_text = ""
async for chunk in response:
complete = False
if hasattr(chunk, "event"): # only ChatCompletions have .event
if chunk.event.event_type == ChatCompletionResponseEventType.progress:
if chunk.event.delta.type == "text":
completion_text += chunk.event.delta.text
if chunk.event.event_type == ChatCompletionResponseEventType.complete:
complete = True
completion_tokens = await self._count_tokens(
[
CompletionMessage(
content=completion_text,
stop_reason=StopReason.end_of_turn,
)
],
tool_prompt_format=tool_prompt_format,
)
else:
if hasattr(chunk, "delta"):
completion_text += chunk.delta
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry_enabled:
complete = True
completion_tokens = await self._count_tokens(completion_text)
# if we are done receiving tokens
if complete:
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
# Create a separate span for streaming completion metrics
if self.telemetry_enabled:
# Log metrics in the new span context
completion_metrics = self._construct_metrics(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
model=model,
)
for metric in completion_metrics:
if metric.metric in [
"completion_tokens",
"total_tokens",
]: # Only log completion and total tokens
enqueue_event(metric)
# Return metrics in response
async_metrics = [
MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics
]
chunk.metrics = async_metrics if chunk.metrics is None else chunk.metrics + async_metrics
else:
# Fallback if no telemetry
completion_metrics = self._construct_metrics(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
)
async_metrics = [
MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics
]
chunk.metrics = async_metrics if chunk.metrics is None else chunk.metrics + async_metrics
yield chunk
async def count_tokens_and_compute_metrics(
self,
response: ChatCompletionResponse | CompletionResponse,
prompt_tokens,
model,
tool_prompt_format: ToolPromptFormat | None = None,
):
if isinstance(response, ChatCompletionResponse):
content = [response.completion_message]
else:
content = response.content
completion_tokens = await self._count_tokens(messages=content, tool_prompt_format=tool_prompt_format)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
# Create a separate span for completion metrics
if self.telemetry_enabled:
# Log metrics in the new span context
completion_metrics = self._construct_metrics(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
model=model,
)
for metric in completion_metrics:
if metric.metric in ["completion_tokens", "total_tokens"]: # Only log completion and total tokens
enqueue_event(metric)
# Return metrics in response
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics]
# Fallback if no telemetry
metrics = self._construct_metrics(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
)
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
async def stream_tokens_and_compute_metrics_openai_chat(
self,
response: AsyncIterator[OpenAIChatCompletionChunk],
model: Model,
messages: list[OpenAIMessageParam] | None = None,
) -> AsyncIterator[OpenAIChatCompletionChunk]:
"""Stream OpenAI chat completion chunks, compute metrics, and store the final completion."""
id = None
created = None
choices_data: dict[int, dict[str, Any]] = {}
try:
async for chunk in response:
# Skip None chunks
if chunk is None:
continue
# Capture ID and created timestamp from first chunk
if id is None and chunk.id:
id = chunk.id
if created is None and chunk.created:
created = chunk.created
# Accumulate choice data for final assembly
if chunk.choices:
for choice_delta in chunk.choices:
idx = choice_delta.index
if idx not in choices_data:
choices_data[idx] = {
"content_parts": [],
"tool_calls_builder": {},
"finish_reason": "stop",
"logprobs_content_parts": [],
}
current_choice_data = choices_data[idx]
if choice_delta.delta:
delta = choice_delta.delta
if delta.content:
current_choice_data["content_parts"].append(delta.content)
if delta.tool_calls:
for tool_call_delta in delta.tool_calls:
tc_idx = tool_call_delta.index
if tc_idx not in current_choice_data["tool_calls_builder"]:
current_choice_data["tool_calls_builder"][tc_idx] = {
"id": None,
"type": "function",
"function_name_parts": [],
"function_arguments_parts": [],
}
builder = current_choice_data["tool_calls_builder"][tc_idx]
if tool_call_delta.id:
builder["id"] = tool_call_delta.id
if tool_call_delta.type:
builder["type"] = tool_call_delta.type
if tool_call_delta.function:
if tool_call_delta.function.name:
builder["function_name_parts"].append(tool_call_delta.function.name)
if tool_call_delta.function.arguments:
builder["function_arguments_parts"].append(
tool_call_delta.function.arguments
)
if choice_delta.finish_reason:
current_choice_data["finish_reason"] = choice_delta.finish_reason
if choice_delta.logprobs and choice_delta.logprobs.content:
current_choice_data["logprobs_content_parts"].extend(choice_delta.logprobs.content)
# Compute metrics on final chunk
if chunk.choices and chunk.choices[0].finish_reason:
completion_text = ""
for choice_data in choices_data.values():
completion_text += "".join(choice_data["content_parts"])
# Add metrics to the chunk
if self.telemetry_enabled and hasattr(chunk, "usage") and chunk.usage:
metrics = self._construct_metrics(
prompt_tokens=chunk.usage.prompt_tokens,
completion_tokens=chunk.usage.completion_tokens,
total_tokens=chunk.usage.total_tokens,
model=model,
)
for metric in metrics:
enqueue_event(metric)
yield chunk
finally:
# Store the final assembled completion
if id and self.store and messages:
assembled_choices: list[OpenAIChoice] = []
for choice_idx, choice_data in choices_data.items():
content_str = "".join(choice_data["content_parts"])
assembled_tool_calls: list[OpenAIChatCompletionToolCall] = []
if choice_data["tool_calls_builder"]:
for tc_build_data in choice_data["tool_calls_builder"].values():
if tc_build_data["id"]:
func_name = "".join(tc_build_data["function_name_parts"])
func_args = "".join(tc_build_data["function_arguments_parts"])
assembled_tool_calls.append(
OpenAIChatCompletionToolCall(
id=tc_build_data["id"],
type=tc_build_data["type"],
function=OpenAIChatCompletionToolCallFunction(
name=func_name, arguments=func_args
),
)
)
message = OpenAIAssistantMessageParam(
role="assistant",
content=content_str if content_str else None,
tool_calls=assembled_tool_calls if assembled_tool_calls else None,
)
logprobs_content = choice_data["logprobs_content_parts"]
final_logprobs = OpenAIChoiceLogprobs(content=logprobs_content) if logprobs_content else None
assembled_choices.append(
OpenAIChoice(
finish_reason=choice_data["finish_reason"],
index=choice_idx,
message=message,
logprobs=final_logprobs,
)
)
final_response = OpenAIChatCompletion(
id=id,
choices=assembled_choices,
created=created or int(time.time()),
model=model.identifier,
object="chat.completion",
)
logger.debug(f"InferenceRouter.completion_response: {final_response}")
asyncio.create_task(self.store.store_chat_completion(final_response, messages))

View file

@ -0,0 +1,109 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import RunShieldResponse, Safety
from llama_stack.apis.safety.safety import ModerationObject
from llama_stack.apis.shields import Shield
from llama_stack.core.datatypes import SafetyConfig
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core::routers")
class SafetyRouter(Safety):
def __init__(
self,
routing_table: RoutingTable,
safety_config: SafetyConfig | None = None,
) -> None:
logger.debug("Initializing SafetyRouter")
self.routing_table = routing_table
self.safety_config = safety_config
async def initialize(self) -> None:
logger.debug("SafetyRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("SafetyRouter.shutdown")
pass
async def register_shield(
self,
shield_id: str,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
async def unregister_shield(self, identifier: str) -> None:
logger.debug(f"SafetyRouter.unregister_shield: {identifier}")
return await self.routing_table.unregister_shield(identifier)
async def run_shield(
self,
shield_id: str,
messages: list[Message],
params: dict[str, Any] = None,
) -> RunShieldResponse:
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
provider = await self.routing_table.get_provider_impl(shield_id)
return await provider.run_shield(
shield_id=shield_id,
messages=messages,
params=params,
)
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
list_shields_response = await self.routing_table.list_shields()
shields = list_shields_response.data
selected_shield: Shield | None = None
provider_model: str | None = model
if model:
matches: list[Shield] = [s for s in shields if model == s.provider_resource_id]
if not matches:
raise ValueError(
f"No shield associated with provider_resource id {model}: choose from {[s.provider_resource_id for s in shields]}"
)
if len(matches) > 1:
raise ValueError(
f"Multiple shields associated with provider_resource id {model}: matched shields {[s.identifier for s in matches]}"
)
selected_shield = matches[0]
else:
default_shield_id = self.safety_config.default_shield_id if self.safety_config else None
if not default_shield_id:
raise ValueError(
"No moderation model specified and no default_shield_id configured in safety config: select model "
f"from {[s.provider_resource_id or s.identifier for s in shields]}"
)
selected_shield = next((s for s in shields if s.identifier == default_shield_id), None)
if selected_shield is None:
raise ValueError(
f"Default moderation model not found. Choose from {[s.provider_resource_id or s.identifier for s in shields]}."
)
provider_model = selected_shield.provider_resource_id
shield_id = selected_shield.identifier
logger.debug(f"SafetyRouter.run_moderation: {shield_id}")
provider = await self.routing_table.get_provider_impl(shield_id)
response = await provider.run_moderation(
input=input,
model=provider_model,
)
return response

View file

@ -0,0 +1,91 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
)
from llama_stack.apis.tools import (
ListToolDefsResponse,
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
RAGToolRuntime,
ToolRuntime,
)
from llama_stack.log import get_logger
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
logger = get_logger(name=__name__, category="core::routers")
class ToolRuntimeRouter(ToolRuntime):
class RagToolImpl(RAGToolRuntime):
def __init__(
self,
routing_table: ToolGroupsRoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
self.routing_table = routing_table
async def query(
self,
content: InterleavedContent,
vector_store_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_store_ids}")
provider = await self.routing_table.get_provider_impl("knowledge_search")
return await provider.query(content, vector_store_ids, query_config)
async def insert(
self,
documents: list[RAGDocument],
vector_store_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
logger.debug(
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_store_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
)
provider = await self.routing_table.get_provider_impl("insert_into_memory")
return await provider.insert(documents, vector_store_id, chunk_size_in_tokens)
def __init__(
self,
routing_table: ToolGroupsRoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter")
self.routing_table = routing_table
# HACK ALERT this should be in sync with "get_all_api_endpoints()"
self.rag_tool = self.RagToolImpl(routing_table)
for method in ("query", "insert"):
setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method))
async def initialize(self) -> None:
logger.debug("ToolRuntimeRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("ToolRuntimeRouter.shutdown")
pass
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> Any:
logger.debug(f"ToolRuntimeRouter.invoke_tool: {tool_name}")
provider = await self.routing_table.get_provider_impl(tool_name)
return await provider.invoke_tool(
tool_name=tool_name,
kwargs=kwargs,
)
async def list_runtime_tools(
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
) -> ListToolDefsResponse:
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
return await self.routing_table.list_tools(tool_group_id)

View file

@ -0,0 +1,442 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import uuid
from typing import Annotated, Any
from fastapi import Body
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.models import ModelType
from llama_stack.apis.vector_io import (
Chunk,
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
OpenAICreateVectorStoreRequestWithExtraBody,
QueryChunksResponse,
SearchRankingOptions,
VectorIO,
VectorStoreChunkingStrategy,
VectorStoreDeleteResponse,
VectorStoreFileBatchObject,
VectorStoreFileContentsResponse,
VectorStoreFileDeleteResponse,
VectorStoreFileObject,
VectorStoreFilesListInBatchResponse,
VectorStoreFileStatus,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.core.datatypes import VectorStoresConfig
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
logger = get_logger(name=__name__, category="core::routers")
class VectorIORouter(VectorIO):
"""Routes to an provider based on the vector db identifier"""
def __init__(
self,
routing_table: RoutingTable,
vector_stores_config: VectorStoresConfig | None = None,
) -> None:
logger.debug("Initializing VectorIORouter")
self.routing_table = routing_table
self.vector_stores_config = vector_stores_config
async def initialize(self) -> None:
logger.debug("VectorIORouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("VectorIORouter.shutdown")
pass
async def _get_embedding_model_dimension(self, embedding_model_id: str) -> int:
"""Get the embedding dimension for a specific embedding model."""
all_models = await self.routing_table.get_all_with_type("model")
for model in all_models:
if model.identifier == embedding_model_id and model.model_type == ModelType.embedding:
dimension = model.metadata.get("embedding_dimension")
if dimension is None:
raise ValueError(f"Embedding model '{embedding_model_id}' has no embedding_dimension in metadata")
return int(dimension)
raise ValueError(f"Embedding model '{embedding_model_id}' not found or not an embedding model")
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
doc_ids = [chunk.document_id for chunk in chunks[:3]]
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, "
f"ttl_seconds={ttl_seconds}, chunk_ids={doc_ids}{' and more...' if len(chunks) > 3 else ''}"
)
provider = await self.routing_table.get_provider_impl(vector_db_id)
return await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
provider = await self.routing_table.get_provider_impl(vector_db_id)
return await provider.query_chunks(vector_db_id, query, params)
# OpenAI Vector Stores API endpoints
async def openai_create_vector_store(
self,
params: Annotated[OpenAICreateVectorStoreRequestWithExtraBody, Body(...)],
) -> VectorStoreObject:
# Extract llama-stack-specific parameters from extra_body
extra = params.model_extra or {}
embedding_model = extra.get("embedding_model")
embedding_dimension = extra.get("embedding_dimension")
provider_id = extra.get("provider_id")
# Use default embedding model if not specified
if (
embedding_model is None
and self.vector_stores_config
and self.vector_stores_config.default_embedding_model is not None
):
# Construct the full model ID with provider prefix
embedding_provider_id = self.vector_stores_config.default_embedding_model.provider_id
model_id = self.vector_stores_config.default_embedding_model.model_id
embedding_model = f"{embedding_provider_id}/{model_id}"
if embedding_model is not None and embedding_dimension is None:
embedding_dimension = await self._get_embedding_model_dimension(embedding_model)
# Auto-select provider if not specified
if provider_id is None:
num_providers = len(self.routing_table.impls_by_provider_id)
if num_providers == 0:
raise ValueError("No vector_io providers available")
if num_providers > 1:
available_providers = list(self.routing_table.impls_by_provider_id.keys())
# Use default configured provider
if self.vector_stores_config and self.vector_stores_config.default_provider_id:
default_provider = self.vector_stores_config.default_provider_id
if default_provider in available_providers:
provider_id = default_provider
logger.debug(f"Using configured default vector store provider: {provider_id}")
else:
raise ValueError(
f"Configured default vector store provider '{default_provider}' not found. "
f"Available providers: {available_providers}"
)
else:
raise ValueError(
f"Multiple vector_io providers available. Please specify provider_id in extra_body. "
f"Available providers: {available_providers}"
)
else:
provider_id = list(self.routing_table.impls_by_provider_id.keys())[0]
vector_store_id = f"vs_{uuid.uuid4()}"
registered_vector_store = await self.routing_table.register_vector_store(
vector_store_id=vector_store_id,
embedding_model=embedding_model,
embedding_dimension=embedding_dimension,
provider_id=provider_id,
provider_vector_store_id=vector_store_id,
vector_store_name=params.name,
)
provider = await self.routing_table.get_provider_impl(registered_vector_store.identifier)
# Update model_extra with registered values so provider uses the already-registered vector_store
if params.model_extra is None:
params.model_extra = {}
params.model_extra["provider_vector_store_id"] = registered_vector_store.provider_resource_id
params.model_extra["provider_id"] = registered_vector_store.provider_id
if embedding_model is not None:
params.model_extra["embedding_model"] = embedding_model
if embedding_dimension is not None:
params.model_extra["embedding_dimension"] = embedding_dimension
return await provider.openai_create_vector_store(params)
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
logger.debug(f"VectorIORouter.openai_list_vector_stores: limit={limit}")
# Route to default provider for now - could aggregate from all providers in the future
# call retrieve on each vector dbs to get list of vector stores
vector_stores = await self.routing_table.get_all_with_type("vector_store")
all_stores = []
for vector_store in vector_stores:
try:
provider = await self.routing_table.get_provider_impl(vector_store.identifier)
vector_store = await provider.openai_retrieve_vector_store(vector_store.identifier)
all_stores.append(vector_store)
except Exception as e:
logger.error(f"Error retrieving vector store {vector_store.identifier}: {e}")
continue
# Sort by created_at
reverse_order = order == "desc"
all_stores.sort(key=lambda x: x.created_at, reverse=reverse_order)
# Apply cursor-based pagination
if after:
after_index = next((i for i, store in enumerate(all_stores) if store.id == after), -1)
if after_index >= 0:
all_stores = all_stores[after_index + 1 :]
if before:
before_index = next(
(i for i, store in enumerate(all_stores) if store.id == before),
len(all_stores),
)
all_stores = all_stores[:before_index]
# Apply limit
limited_stores = all_stores[:limit]
# Determine pagination info
has_more = len(all_stores) > limit
first_id = limited_stores[0].id if limited_stores else None
last_id = limited_stores[-1].id if limited_stores else None
return VectorStoreListResponse(
data=limited_stores,
has_more=has_more,
first_id=first_id,
last_id=last_id,
)
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store: {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store(vector_store_id)
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
logger.debug(f"VectorIORouter.openai_update_vector_store: {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_update_vector_store(
vector_store_id=vector_store_id,
name=name,
expires_after=expires_after,
metadata=metadata,
)
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
logger.debug(f"VectorIORouter.openai_delete_vector_store: {vector_store_id}")
return await self.routing_table.openai_delete_vector_store(vector_store_id)
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: SearchRankingOptions | None = None,
rewrite_query: bool | None = False,
search_mode: str | None = "vector",
) -> VectorStoreSearchResponsePage:
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_search_vector_store(
vector_store_id=vector_store_id,
query=query,
filters=filters,
max_num_results=max_num_results,
ranking_options=ranking_options,
rewrite_query=rewrite_query,
search_mode=search_mode,
)
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_attach_file_to_vector_store: {vector_store_id}, {file_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_attach_file_to_vector_store(
vector_store_id=vector_store_id,
file_id=file_id,
attributes=attributes,
chunking_strategy=chunking_strategy,
)
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
filter: VectorStoreFileStatus | None = None,
) -> list[VectorStoreFileObject]:
logger.debug(f"VectorIORouter.openai_list_files_in_vector_store: {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_list_files_in_vector_store(
vector_store_id=vector_store_id,
limit=limit,
order=order,
after=after,
before=before,
filter=filter,
)
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file: {vector_store_id}, {file_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file(
vector_store_id=vector_store_id,
file_id=file_id,
)
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_contents: {vector_store_id}, {file_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file_contents(
vector_store_id=vector_store_id,
file_id=file_id,
)
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any],
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_update_vector_store_file: {vector_store_id}, {file_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_update_vector_store_file(
vector_store_id=vector_store_id,
file_id=file_id,
attributes=attributes,
)
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileDeleteResponse:
logger.debug(f"VectorIORouter.openai_delete_vector_store_file: {vector_store_id}, {file_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_delete_vector_store_file(
vector_store_id=vector_store_id,
file_id=file_id,
)
async def health(self) -> dict[str, HealthResponse]:
health_statuses = {}
timeout = 1 # increasing the timeout to 1 second for health checks
for provider_id, impl in self.routing_table.impls_by_provider_id.items():
try:
# check if the provider has a health method
if not hasattr(impl, "health"):
continue
health = await asyncio.wait_for(impl.health(), timeout=timeout)
health_statuses[provider_id] = health
except TimeoutError:
health_statuses[provider_id] = HealthResponse(
status=HealthStatus.ERROR,
message=f"Health check timed out after {timeout} seconds",
)
except NotImplementedError:
health_statuses[provider_id] = HealthResponse(status=HealthStatus.NOT_IMPLEMENTED)
except Exception as e:
health_statuses[provider_id] = HealthResponse(
status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}"
)
return health_statuses
async def openai_create_vector_store_file_batch(
self,
vector_store_id: str,
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
) -> VectorStoreFileBatchObject:
logger.debug(
f"VectorIORouter.openai_create_vector_store_file_batch: {vector_store_id}, {len(params.file_ids)} files"
)
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_create_vector_store_file_batch(vector_store_id, params)
async def openai_retrieve_vector_store_file_batch(
self,
batch_id: str,
vector_store_id: str,
) -> VectorStoreFileBatchObject:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_batch: {batch_id}, {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file_batch(
batch_id=batch_id,
vector_store_id=vector_store_id,
)
async def openai_list_files_in_vector_store_file_batch(
self,
batch_id: str,
vector_store_id: str,
after: str | None = None,
before: str | None = None,
filter: str | None = None,
limit: int | None = 20,
order: str | None = "desc",
) -> VectorStoreFilesListInBatchResponse:
logger.debug(f"VectorIORouter.openai_list_files_in_vector_store_file_batch: {batch_id}, {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_list_files_in_vector_store_file_batch(
batch_id=batch_id,
vector_store_id=vector_store_id,
after=after,
before=before,
filter=filter,
limit=limit,
order=order,
)
async def openai_cancel_vector_store_file_batch(
self,
batch_id: str,
vector_store_id: str,
) -> VectorStoreFileBatchObject:
logger.debug(f"VectorIORouter.openai_cancel_vector_store_file_batch: {batch_id}, {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_cancel_vector_store_file_batch(
batch_id=batch_id,
vector_store_id=vector_store_id,
)