chore(package): migrate to src/ layout (#3920)

Migrates package structure to src/ layout following Python packaging
best practices.

All code moved from `llama_stack/` to `src/llama_stack/`. Public API
unchanged - imports remain `import llama_stack.*`.

Updated build configs, pre-commit hooks, scripts, and GitHub workflows
accordingly. All hooks pass, package builds cleanly.

**Developer note**: Reinstall after pulling: `pip install -e .`
This commit is contained in:
Ashwin Bharambe 2025-10-27 12:02:21 -07:00 committed by GitHub
parent 98a5047f9d
commit 471b1b248b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
791 changed files with 2983 additions and 456 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,164 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import concurrent.futures
import re
from pathlib import Path
from typing import Any
import numpy as np
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank, get_model_parallel_world_size
def map_mp_rank(old_mp_size: int, new_mp_size: int, new_mp_rank: int) -> list[int]:
"""Map a new MP rank to a list of old MP ranks given a change in MP size."""
if new_mp_size % old_mp_size == 0:
# Read old MP shard and split it into smaller ones
return [new_mp_rank * old_mp_size // new_mp_size]
elif old_mp_size % new_mp_size == 0:
# Merge old MP shards into a single one
mp_factor = old_mp_size // new_mp_size
return list(range(new_mp_rank * mp_factor, (new_mp_rank + 1) * mp_factor))
else:
raise ValueError(
f"Either old MP size or new MP size should be a multiple of the other: "
f"{old_mp_size} % {new_mp_size} != 0 and {new_mp_size} % {old_mp_size} != 0"
)
def maybe_reshard_state_dict(
ckpt_paths: list[Path],
n_kv_heads: int,
moe_num_experts: int | None = None,
map_location: str | torch.device = "cpu",
mmap: bool = True,
) -> dict[str, torch.Tensor]:
if str(map_location) == "cpu":
torch.set_default_tensor_type(torch.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
ckpt_paths = np.array(sorted(ckpt_paths))
new_mp_size, new_mp_rank = get_model_parallel_world_size(), get_model_parallel_rank()
old_mp_size = len(ckpt_paths)
old_mp_ranks = map_mp_rank(old_mp_size, new_mp_size, new_mp_rank)
print(f"Loading checkpoint shards:\n{str(ckpt_paths[old_mp_ranks])}") # type: ignore
paths = ckpt_paths[old_mp_ranks] # type: ignore
state_dicts = [torch.load(str(p), map_location=map_location, mmap=mmap) for p in paths]
if new_mp_size == old_mp_size:
return state_dicts[0] # type: ignore
if moe_num_experts is not None:
state_dicts = [convert_moe_weights(d, moe_num_experts) for d in state_dicts]
print(f"Resharding {len(state_dicts)} state dicts from MP size {old_mp_size} to MP size {new_mp_size}")
return reshard_mp(
state_dicts,
size=max(new_mp_size // old_mp_size, 1),
rank=new_mp_rank % max(new_mp_size // old_mp_size, 1),
repeat_qk_qv=max(new_mp_size // n_kv_heads, 1),
)
_WEIGHT_ROW_KEY = {
"feed_forward.w2",
"feed_forward.mlp.fc2",
"attention.wo",
"feed_forward.mlp.fc2_weight",
"feed_forward.w_out_shared_DF.weight",
"attn.wo.weight",
"mlp.c_proj.weight",
}
_MOE_WEIGHT_ROW_KEY = {"feed_forward.experts.(moe_w_in_eD_F|moe_w_swiglu_eD_F)"}
_WEIGHT_COLUMN_KEY = {
"output",
"feed_forward.(w1|w3)",
"feed_forward.mlp.(fc1|fc3)",
"feed_forward.mlp.fc1_weight",
"attention.(wk|wq|wv|wqkv).weight",
"feed_forward.(w_in_shared_FD|w_swiglu_FD)",
"attn.(wk|wq|wv).weight",
"attn.(wk|wq|wv).bias",
"mlp.c_fc.weight",
"mlp.c_fc.bias",
"conv1._linear.weight",
"tok_embeddings.weight",
"vision_projection.weight",
}
_MOE_WEIGHT_COLUMN_KEY = {"feed_forward.experts.moe_w_out_eF_D"}
def reshard_mp(
state_dicts: list[dict[str, torch.Tensor]],
size: int,
rank: int,
repeat_qk_qv: int = 1,
) -> dict[str, torch.Tensor]:
"""
Reshard a list of state dicts into a single state dict given a change in MP size.
If the list has more than one state dict, we concatenate the values of the same
key across all state dicts. Otherwise, we just slice it for the current MP rank.
"""
def concat_or_chunk(tensors: list[torch.Tensor], dim: int) -> torch.Tensor:
if len(tensors) > 1:
return torch.cat(tensors, dim=dim)
return tensors[0].chunk(size, dim=dim)[rank].clone()
def process_key(key: str) -> torch.Tensor:
if row_regex.search(key):
return concat_or_chunk([s[key] for s in state_dicts], dim=-1)
elif column_regex.search(key):
if "w13" in key or "fc1_weight" in key:
dims = state_dicts[0][key].size()
values = [s[key].view(2, dims[0] // 2, *dims[1:]) for s in state_dicts]
return concat_or_chunk(values, dim=1).flatten(0, 1)
elif "qkv" in key:
q_dim = state_dicts[0][key.replace("qkv", "o")].size(1)
kv_dim = (state_dicts[0][key].size(0) - q_dim) // 2
values = [s[key].split((q_dim, kv_dim, kv_dim)) for s in state_dicts]
return torch.cat([concat_or_chunk(x, dim=0) for x in zip(*values, strict=False)]) # type: ignore
elif "wk.weight" in key or "wv.weight" in key:
# Support MP > #kv_head
return concat_or_chunk([s[key].repeat(repeat_qk_qv, 1) for s in state_dicts], dim=0)
elif key == "output.bias" or key == "fc.weight":
return concat_or_chunk([s[key] for s in state_dicts], dim=0)
elif "w_" in key:
return concat_or_chunk([s[key] for s in state_dicts], dim=-2)
else:
return concat_or_chunk([s[key] for s in state_dicts], dim=0)
else:
return state_dicts[0][key].clone()
row_keys = _WEIGHT_ROW_KEY | _MOE_WEIGHT_ROW_KEY
column_keys = _WEIGHT_COLUMN_KEY | _MOE_WEIGHT_COLUMN_KEY
column_regex = re.compile("|".join(column_keys))
row_regex = re.compile("|".join(row_keys))
output: dict[str, torch.Tensor] = {}
with concurrent.futures.ThreadPoolExecutor() as executor:
# Note: only processes keys in the first state dict.
# Assumes keys are the same across all state dicts.
mappings = {executor.submit(process_key, key): key for key in state_dicts[0]}
for future in concurrent.futures.as_completed(mappings):
output[mappings[future]] = future.result()
return output
def convert_moe_weights(state_dict: dict[str, Any], num_experts: int) -> dict[str, Any]:
routed_keys = _MOE_WEIGHT_ROW_KEY | _MOE_WEIGHT_COLUMN_KEY
routed_regex = re.compile("|".join(routed_keys))
keys = list(state_dict.keys())
for key in keys:
if routed_regex.search(key):
state_dict[key] = state_dict.pop(key).unflatten(0, (num_experts, -1)).squeeze(dim=0)
return state_dict

View file

@ -0,0 +1,164 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
from enum import Enum, StrEnum
from io import BytesIO
from typing import Annotated, Any, Literal
from pydantic import BaseModel, ConfigDict, Field, field_serializer, field_validator
# The goal is that these set of types are relevant for all Llama models.
# That isn't the current state yet -- e.g., BuiltinTool is somewhat specific to
# the llama3 series of models.
class Role(Enum):
system = "system"
user = "user"
assistant = "assistant"
tool = "tool"
class BuiltinTool(Enum):
brave_search = "brave_search"
wolfram_alpha = "wolfram_alpha"
photogen = "photogen"
code_interpreter = "code_interpreter"
Primitive = str | int | float | bool | None
RecursiveType = Primitive | list[Primitive] | dict[str, Primitive]
class ToolCall(BaseModel):
call_id: str
tool_name: BuiltinTool | str
arguments: str
@field_validator("tool_name", mode="before")
@classmethod
def validate_field(cls, v):
if isinstance(v, str):
try:
return BuiltinTool(v)
except ValueError:
return v
return v
class ToolPromptFormat(Enum):
"""Prompt format for calling custom / zero shot tools.
:cvar json: JSON format for calling tools. It takes the form:
{
"type": "function",
"function" : {
"name": "function_name",
"description": "function_description",
"parameters": {...}
}
}
:cvar function_tag: Function tag format, pseudo-XML. This looks like:
<function=function_name>(parameters)</function>
:cvar python_list: Python list. The output is a valid Python expression that can be
evaluated to a list. Each element in the list is a function call. Example:
["function_name(param1, param2)", "function_name(param1, param2)"]
"""
json = "json"
function_tag = "function_tag"
python_list = "python_list"
class StopReason(Enum):
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
class ToolDefinition(BaseModel):
tool_name: BuiltinTool | str
description: str | None = None
input_schema: dict[str, Any] | None = None
output_schema: dict[str, Any] | None = None
@field_validator("tool_name", mode="before")
@classmethod
def validate_field(cls, v):
if isinstance(v, str):
try:
return BuiltinTool(v)
except ValueError:
return v
return v
class RawMediaItem(BaseModel):
type: Literal["image"] = "image"
data: bytes | BytesIO
model_config = ConfigDict(arbitrary_types_allowed=True)
@field_serializer("data")
def serialize_data(self, data: bytes | None, _info):
if data is None:
return None
return base64.b64encode(data).decode("utf-8")
@field_validator("data", mode="before")
@classmethod
def validate_data(cls, v):
if isinstance(v, str):
return base64.b64decode(v)
return v
class RawTextItem(BaseModel):
type: Literal["text"] = "text"
text: str
RawContentItem = Annotated[RawTextItem | RawMediaItem, Field(discriminator="type")]
RawContent = str | RawContentItem | list[RawContentItem]
class RawMessage(BaseModel):
role: Literal["user"] | Literal["system"] | Literal["tool"] | Literal["assistant"]
content: RawContent
# This is for RAG but likely should be absorbed into content
context: RawContent | None = None
# These are for the output message coming from the assistant
stop_reason: StopReason | None = None
tool_calls: list[ToolCall] = Field(default_factory=list)
class GenerationResult(BaseModel):
token: int
text: str
logprobs: list[float] | None = None
source: Literal["input"] | Literal["output"]
# index within the batch
batch_idx: int
# whether generation for this item is already finished. note that tokens can
# get returned even afterwards since other items in the batch can still be generating tokens
finished: bool
# because a batch is parallel processed, useful decoding for one item can correspond to processing
# pad tokens or tokens beyond EOS for other items. we could have decided to return None for this case
# but it's more convenient to return a list of GenerationResult and filter out the ignored tokens
ignore_token: bool
class QuantizationMode(StrEnum):
none = "none"
fp8_mixed = "fp8_mixed"
int4_mixed = "int4_mixed"

View file

@ -0,0 +1,86 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import math
import re
import torch
from torch import nn
def hadamard_transform(x: torch.Tensor) -> torch.Tensor:
"""Hadamard transform.
This function performs the Hadamard transform on the input tensor 'x'.
The Hadamard transform is a linear transformation that multiplies the input
tensor by the Hadamard matrix of dimension n x n, where n is the size of
the last dimension of the input tensor.
"""
*_, n = x.shape
m = int(math.log2(n))
assert n == 1 << m, "n must be a power of 2"
x = x[..., None]
inv_sqrt2 = 0.5**0.5
for _ in range(m):
top = x[..., ::2, :] + x[..., 1::2, :]
bot = x[..., ::2, :] - x[..., 1::2, :]
x = torch.cat((top, bot), dim=-1)
x *= inv_sqrt2
res = x.squeeze(-2)
return res
class HadamardModule(torch.nn.Module):
"""A module that applies the Hadamard transform to the input tensor.
Args:
group_size: The size of the groups that the input tensor will be divided into
before applying the Hadamard transform.
"""
def __init__(self, group_size: int) -> None:
super().__init__()
self.group_size = group_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
reshape_back = False
orig_shape = x.shape
if self.group_size != x.shape[-1]:
reshape_back = True
x = x.reshape(-1, x.shape[-1] // self.group_size, self.group_size)
x = hadamard_transform(x)
if reshape_back:
x = x.reshape(orig_shape)
return x
def add_hadamard_transform_for_spinquant(model: torch.nn.Module, prefix: str = "") -> None:
"""
Adds a Hadamard transform to the last linear layer of each feedforward network (FFN) in the model.
This function recursively traverses the model's children and looks for layers that match the pattern
"layers.<digit>.feed_forward.w2", where <digit> is one or more digits. When such a layer is found,
it is replaced with a new sequential module that consists of a HadamardModule followed by the original
layer. The HadamardModule applies the Hadamard transform to the input tensor.
See `SpinQuant <https://arxiv.org/abs/2405.16406>_` paper for more details.
Args:
model: An instance of 'torch.nn.Module' (e.g., Transformer model).
prefix: A string prefix to add to the full name of each child module.
Returns:
None
"""
pattern_last_linear_ffn = r"layers.\d+.feed_forward.w2"
for module_name, module in model.named_children():
child_full_name = prefix + "." + module_name
if re.search(pattern_last_linear_ffn, child_full_name):
new_module = nn.Sequential(HadamardModule(group_size=module.in_features), module)
del module
setattr(model, module_name, new_module)
else:
add_hadamard_transform_for_spinquant(module, (prefix + "." if prefix else prefix) + module_name)

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,74 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from dataclasses import dataclass
from enum import Enum
class QuantizationScheme(Enum):
int4_weight_int8_dynamic_activation = "int4_weight_int8_dynamic_activation"
@dataclass
class QuantizationArgs:
scheme: QuantizationScheme | None = None
group_size: int | None = None
spinquant: bool = False
def __init__(self, **kwargs):
for k, v in kwargs.items():
if k == "scheme":
setattr(self, k, QuantizationScheme(v))
else:
if hasattr(self, k):
setattr(self, k, v)
@dataclass
class LoRAArgs:
rank: int
scale: float
@dataclass
class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: int | None = None
vocab_size: int = -1
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: float | None = None
norm_eps: float = 1e-5
rope_theta: float = 500000
use_scaled_rope: bool = False
max_batch_size: int = 32
max_seq_len: int = 2048
# vision model params
vision_chunk_size: int = -1 # image resolution for image models
vision_max_num_chunks: int = 4
vision_num_cross_attention_layers: int = -1
quantization_args: QuantizationArgs | None = None
lora_args: LoRAArgs | None = None
def __init__(self, **kwargs):
for k, v in kwargs.items():
if k == "lora_args":
setattr(self, k, LoRAArgs(**v))
elif k == "quantization_args":
setattr(self, k, QuantizationArgs(**v))
else:
if hasattr(self, k):
setattr(self, k, v)
if self.n_kv_heads is None:
self.n_kv_heads = self.n_heads
assert self.n_kv_heads <= self.n_heads
assert self.n_heads % self.n_kv_heads == 0
assert self.dim % self.n_heads == 0

View file

@ -0,0 +1,286 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import io
import json
import uuid
from dataclasses import dataclass
from typing import Any
from PIL import Image as PIL_Image
from ..datatypes import (
BuiltinTool,
RawContent,
RawMediaItem,
RawMessage,
RawTextItem,
Role,
StopReason,
ToolCall,
ToolPromptFormat,
)
from .tokenizer import Tokenizer
from .tool_utils import ToolUtils
@dataclass
class VisionInput:
mask: list[list[int]]
images: list[PIL_Image.Image]
@dataclass
class LLMInput:
tokens: list[int]
vision: VisionInput | None = None
def role_str(role: Role) -> str:
role_strs = {
Role.user: "user",
Role.system: "system",
Role.tool: "ipython", # special
Role.assistant: "assistant",
}
return role_strs[role]
class ChatFormat:
possible_headers: dict[Role, str]
def __init__(self, tokenizer: Tokenizer):
self.tokenizer = tokenizer
self.possible_headers = {role: f"<|start_header_id|>{role_str(role)}<|end_header_id|>\n\n" for role in Role}
self.vision_token = self.tokenizer.special_tokens["<|image|>"]
def _encode_header(self, role: str) -> list[int]:
tokens = []
tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
tokens.extend(self.tokenizer.encode("ipython" if role == "tool" else role, bos=False, eos=False))
tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"])
tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
return tokens
def encode_content(self, content: RawContent) -> LLMInput:
tokens, images = self._encode_content(content, bos=True)
return self._model_input_from_tokens_images(tokens, images)
def _encode_content(self, content: RawContent, bos: bool = False) -> tuple[list[int], list[PIL_Image.Image]]:
tokens = []
images = []
added_bos = False
def _process(c):
nonlocal added_bos, bos
if isinstance(c, str) or isinstance(c, RawTextItem):
if isinstance(c, RawTextItem):
c = c.text
tokens.extend(self.tokenizer.encode(c, bos=False if added_bos else bos, eos=False))
added_bos = True
elif isinstance(c, RawMediaItem):
bos = False if added_bos else bos
if bos:
tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"])
added_bos = True
tokens.append(self.vision_token)
bytes_io = io.BytesIO(c.data) if isinstance(c.data, bytes) else c.data
image = PIL_Image.open(bytes_io)
image = image.convert("RGB")
images.append(image)
if isinstance(content, list):
for c in content:
_process(c)
else:
_process(content)
return tokens, images
def encode_message(
self, message: RawMessage, tool_prompt_format: ToolPromptFormat
) -> tuple[list[int], list[PIL_Image.Image]]:
tokens = self._encode_header(message.role)
images = []
def _process_content(c):
toks, imgs = self._encode_content(c)
tokens.extend(toks)
images.extend(imgs)
if (
message.role == "assistant"
and len(message.tool_calls) > 0
and message.tool_calls[0].tool_name == BuiltinTool.code_interpreter
):
tokens.append(self.tokenizer.special_tokens["<|python_tag|>"])
_process_content(message.content)
if message.role == "user" and message.context is not None:
# This is RAG context; why is it here in the chat format? I don't think
# this is needed and can be moved upwards
_process_content("\n\n")
_process_content(message.context)
if message.role == "assistant":
for t in message.tool_calls:
content = ToolUtils.encode_tool_call(t, tool_prompt_format)
_process_content(content)
eom = False
if message.role == "assistant":
eom = message.stop_reason == StopReason.end_of_message
tokens.append(self.tokenizer.special_tokens["<|eom_id|>" if eom else "<|eot_id|>"])
return tokens, images
def encode_dialog_prompt(
self,
messages: list[RawMessage],
tool_prompt_format: ToolPromptFormat | None = None,
) -> LLMInput:
tool_prompt_format = tool_prompt_format or ToolPromptFormat.json
tokens = []
images = []
tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"])
for message in messages:
toks, imgs = self.encode_message(message, tool_prompt_format)
tokens.extend(toks)
images.extend(imgs)
# Add the start of an assistant message for the model to complete.
tokens.extend(self._encode_header("assistant"))
return self._model_input_from_tokens_images(tokens, images)
# TODO(this should be generic, not only for assistant messages)
def decode_assistant_message(self, tokens: list[int], stop_reason: StopReason) -> RawMessage:
content = self.tokenizer.decode(tokens)
return self.decode_assistant_message_from_content(content, stop_reason)
def decode_assistant_message_from_content(self, content: str, stop_reason: StopReason) -> RawMessage:
content = content.strip(" ")
header_str = self.possible_headers[Role.assistant]
if content.startswith(header_str):
content = content[len(header_str) :]
ipython = content.startswith("<|python_tag|>")
if ipython:
content = content[len("<|python_tag|>") :]
if content.endswith("<|eot_id|>"):
content = content[: -len("<|eot_id|>")]
stop_reason = StopReason.end_of_turn
elif content.endswith("<|eom_id|>"):
content = content[: -len("<|eom_id|>")]
stop_reason = StopReason.end_of_message
tool_name: str | BuiltinTool | None = None
tool_arguments: dict[str, Any] = {}
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
if custom_tool_info is not None:
# Type guard: ensure custom_tool_info is a tuple of correct types
if isinstance(custom_tool_info, tuple) and len(custom_tool_info) == 2:
extracted_tool_name, extracted_tool_arguments = custom_tool_info
# Handle both dict and str return types from the function
if isinstance(extracted_tool_arguments, dict):
tool_name, tool_arguments = extracted_tool_name, extracted_tool_arguments
else:
# If it's a string, treat it as a query parameter
tool_name, tool_arguments = extracted_tool_name, {"query": extracted_tool_arguments}
else:
tool_name, tool_arguments = None, {}
# Sometimes when agent has custom tools alongside builin tools
# Agent responds for builtin tool calls in the format of the custom tools
# This code tries to handle that case
if tool_name is not None and tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
if isinstance(tool_arguments, dict):
tool_arguments = {
"query": list(tool_arguments.values())[0],
}
else:
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
if builtin_tool_info is not None:
tool_name, query = builtin_tool_info
tool_arguments = {
"query": query,
}
if tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
elif ipython:
tool_name = BuiltinTool.code_interpreter
tool_arguments = {
"code": content,
}
tool_calls = []
if tool_name is not None and tool_arguments is not None:
call_id = str(uuid.uuid4())
tool_calls.append(
ToolCall(
call_id=call_id,
tool_name=tool_name,
arguments=json.dumps(tool_arguments),
)
)
content = ""
return RawMessage(
role="assistant",
content=content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
def _model_input_from_tokens_images(self, tokens: list[int], images: list[PIL_Image.Image]) -> LLMInput:
vision_input = None
if len(images) > 0:
vision_input = VisionInput(
mask=create_vision_mask(tokens, self.vision_token),
images=images,
)
return LLMInput(
tokens=[128256 if token == self.vision_token else token for token in tokens],
vision=vision_input,
)
def create_vision_mask(
tokens: list[int],
vision_token: int,
) -> list[list[int]]:
vision_token_locations = [i for i, token in enumerate(tokens) if token == vision_token]
if len(vision_token_locations) == 0:
return []
if len(vision_token_locations) == 1:
# only one image present, unmask until end of sequence
return [[vision_token_locations[0], -1]]
vision_masks = [
[loc1, loc2] for loc1, loc2 in zip(vision_token_locations[:-1], vision_token_locations[1:], strict=False)
]
# last image will attend to all subsequent text
vision_masks.append([vision_token_locations[-1], len(tokens)])
# if there are two or more consecutive vision tokens,
# they should all attend to all subsequent
# text present
last_mask_end = vision_masks[-1][1]
for vision_mask in vision_masks[::-1]:
if vision_mask[0] == vision_mask[1] - 1:
vision_mask[1] = last_mask_end
last_mask_end = vision_mask[1]
return vision_masks

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

View file

@ -0,0 +1,376 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import json
import os
import sys
import time
from collections.abc import Callable, Generator
from pathlib import Path
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
initialize_model_parallel,
model_parallel_is_initialized,
)
from termcolor import cprint
from ..checkpoint import maybe_reshard_state_dict
from ..datatypes import GenerationResult, QuantizationMode, RawContent, RawMessage, ToolPromptFormat
from .args import ModelArgs
from .chat_format import ChatFormat, LLMInput
from .model import Transformer
from .multimodal.model import CrossAttentionTransformer
from .tokenizer import Tokenizer
class Llama3:
@staticmethod
def build(
ckpt_dir: str,
max_seq_len: int,
max_batch_size: int,
world_size: int | None = None,
quantization_mode: QuantizationMode | None = None,
seed: int = 1,
device: str = "cuda",
):
device = torch.device(device)
if (
device.type == "cuda"
and not torch.cuda.is_available()
or device.type == "xpu"
and not torch.xpu.is_available()
):
raise RuntimeError(f"PyTorch backend for {device.type} device type is not available")
if not torch.distributed.is_initialized():
if device.type == "cuda":
torch.distributed.init_process_group("nccl")
else:
torch.distributed.init_process_group("gloo")
if not model_parallel_is_initialized():
if world_size is None:
world_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(world_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if device.type == "cuda":
torch.cuda.set_device(local_rank)
elif device.type == "xpu":
torch.xpu.set_device(local_rank)
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}"
print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})")
with open(Path(ckpt_dir) / "params.json") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params,
)
tokenizer = Tokenizer.get_instance()
state_dict = maybe_reshard_state_dict(
ckpt_paths,
n_kv_heads=model_args.n_kv_heads if model_args.n_kv_heads else model_args.n_heads,
)
assert model_args.vocab_size == tokenizer.n_words
def build_model():
if model_args.vision_chunk_size > 0:
model = CrossAttentionTransformer(model_args)
model.setup_cache(model_args.max_batch_size, device=device, dtype=torch.get_default_dtype())
else:
model = Transformer(model_args)
return model
if quantization_mode == QuantizationMode.fp8_mixed or quantization_mode == QuantizationMode.int4_mixed:
from .quantization.loader import convert_to_quantized_model
torch.set_default_tensor_type(torch.BFloat16Tensor)
model = build_model()
print("Loading state dict...")
model.load_state_dict(state_dict, strict=False)
print("Done...")
model = convert_to_quantized_model(model, ckpt_dir, quantization_mode, device=device)
torch.set_default_device(device)
else:
print(f"Setting default device to {device}")
if device.type == "cuda":
if torch.cuda.is_bf16_supported():
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.cuda.Float16Tensor)
elif device.type == "xpu":
if torch.xpu.is_bf16_supported():
torch.set_default_tensor_type(torch.xpu.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.xpu.Float16Tensor)
model = build_model()
print("Loading state dict...")
model.load_state_dict(state_dict, strict=True)
model.to(device)
print("Done...")
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama3(model, tokenizer, model_args)
def __init__(
self,
model: Transformer | CrossAttentionTransformer,
tokenizer: Tokenizer,
args: ModelArgs,
):
self.args = args
self.model = model
self.tokenizer = tokenizer
self.formatter = ChatFormat(tokenizer)
@torch.inference_mode()
def generate(
self,
llm_inputs: list[LLMInput],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
print_model_input: bool = False,
logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None,
) -> Generator[list[GenerationResult], None, None]:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
max_gen_len = self.args.max_seq_len - 1
params = self.model.params
print_model_input = print_model_input or os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1"
if print_model_input:
for inp in llm_inputs:
tokens_to_print = [self.formatter.vision_token if t == 128256 else t for t in inp.tokens]
cprint(
"Input to model:\n" + self.tokenizer.decode(tokens_to_print) + "\n",
"red",
file=sys.stderr,
)
prompt_tokens = [inp.tokens for inp in llm_inputs]
bsz = len(llm_inputs)
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
if max_prompt_len >= params.max_seq_len:
cprint(
f"Out of token budget {max_prompt_len} vs {params.max_seq_len}",
color="red",
file=sys.stderr,
)
return
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
pad_id = self.tokenizer.pad_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long)
for k, t in enumerate(prompt_tokens):
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long)
if logprobs:
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
is_vision = not isinstance(self.model, Transformer)
if is_vision:
images = [inp.vision.images if inp.vision is not None else [] for inp in llm_inputs]
mask = [inp.vision.mask if inp.vision is not None else [] for inp in llm_inputs]
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
batch_images=images,
batch_masks=mask,
total_len=total_len,
device=tokens.device,
)
eos_reached = torch.tensor([False] * bsz)
input_text_mask = tokens != pad_id
if echo:
for i in range(max_prompt_len):
results = []
for j, t in enumerate(tokens[:, i]):
results.append(
GenerationResult(
token=t.item(),
text=self.tokenizer.decode([t.item()]),
source="input",
logprobs=(token_logprobs[j, i : i + 1].tolist() if logprobs else None),
batch_idx=j,
finished=False,
ignore_token=t.item() == pad_id,
)
)
yield results
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
prev_pos = 0
for cur_pos in range(min_prompt_len, total_len):
if is_vision:
position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long)
text_only_inference = all(inp.vision is None for inp in llm_inputs)
logits = self.model.forward(
position_ids,
tokens,
cross_attention_masks,
full_text_row_masked_out_mask,
xattn_caches,
text_only_inference,
)
else:
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if logits_processor is not None:
logits = logits_processor(tokens[:, :cur_pos], logits)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
# only replace token if prompt has already been generated
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
target = tokens[:, prev_pos + 1 : cur_pos + 1]
if is_vision:
# the logits space (num_classes) is designed to never contain a media_token
# however our input token stream does contain them. we need to nuke them here
# or else the CUDA kernels will crash with an illegal memory access
vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256]
masks = [target.eq(t) for t in vision_tokens]
if len(masks) > 1:
mask = torch.logical_or(*masks)
else:
mask = masks[0]
target[mask] = 0
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
target=target,
reduction="none",
ignore_index=pad_id,
)
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
results = []
for idx, t in enumerate(next_token):
results.append(
GenerationResult(
token=t.item(),
text=self.tokenizer.decode([t.item()]),
source="output",
logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None),
batch_idx=idx,
finished=eos_reached[idx].item(),
ignore_token=cur_pos < len(prompt_tokens[idx]),
)
)
yield results
prev_pos = cur_pos
if all(eos_reached):
break
def completion(
self,
contents: list[RawContent],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[list[GenerationResult], None, None]:
model_inputs = [self.formatter.encode_content(c) for c in contents]
for result in self.generate(
model_inputs=model_inputs,
temperature=temperature,
top_p=top_p,
max_gen_len=max_gen_len,
logprobs=logprobs,
echo=echo,
):
yield result
if all(r.finished for r in result):
break
def chat_completion(
self,
messages_batch: list[list[RawMessage]],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
echo: bool = False,
) -> Generator[list[GenerationResult], None, None]:
model_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch]
for result in self.generate(
model_inputs=model_inputs,
temperature=temperature,
top_p=top_p,
max_gen_len=max_gen_len,
logprobs=logprobs,
echo=echo,
):
yield result
if all(r.finished for r in result):
break
def sample_top_p(probs, p):
"""
Perform top-p (nucleus) sampling on a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
p (float): Probability threshold for top-p sampling.
Returns:
torch.Tensor: Sampled token indices.
Note:
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token

View file

@ -0,0 +1,255 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from pathlib import Path
from termcolor import colored
from ..datatypes import (
BuiltinTool,
RawMessage,
StopReason,
ToolCall,
ToolDefinition,
ToolPromptFormat,
)
from . import template_data
from .chat_format import ChatFormat
from .prompt_templates import (
BuiltinToolGenerator,
FunctionTagCustomToolGenerator,
JsonCustomToolGenerator,
SystemDefaultGenerator,
ToolResponseGenerator,
)
from .tokenizer import Tokenizer
THIS_DIR = Path(__file__).parent
class Template:
def __init__(
self,
role,
template_name,
data_provider=None,
notes=None,
):
self.role = role
self.template_name = template_name
self.data_provider = data_provider or ""
self._notes = notes or ""
@property
def notes(self):
default = "↵ represents newline"
notes = default
if self._notes:
notes += "\n"
notes += self._notes
return notes
TEMPLATES = [
Template(
"user",
"user-default",
"user_default",
),
Template(
"user",
"user-images",
"user_images",
),
Template("user", "user-interleaved-images", "user_interleaved_images"),
Template(
"assistant",
"assistant-builtin-tool-call",
"assistant_builtin_tool_call",
"Notice <|python_tag|>",
),
Template(
"assistant",
"assistant-custom-tool-call",
"assistant_custom_tool_call",
"Notice <function=...> format",
),
Template(
"assistant",
"assistant-default",
"assistant_default",
),
Template(
"system",
"system-builtin-and-custom-tools",
"system_message_builtin_and_custom_tools",
),
Template(
"system",
"system-builtin-tools-only",
"system_message_builtin_tools_only",
),
Template(
"system",
"system-custom-tools-only",
"system_message_custom_tools_only",
),
Template(
"system",
"system-default",
"system_default",
),
Template(
"tool",
"tool-success",
"tool_success",
"Note ipython header and [stdout]",
),
Template(
"tool",
"tool-failure",
"tool_failure",
"Note ipython header and [stderr]",
),
]
class LLama31Interface:
def __init__(self, tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json):
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
self.tool_prompt_format = tool_prompt_format
def get_tokens(self, messages: list[RawMessage]) -> list[int]:
model_input = self.formatter.encode_dialog_prompt(
messages,
self.tool_prompt_format,
)
return model_input.tokens
def tool_response_messages(self, *args, **kwargs):
template = ToolResponseGenerator().gen(*args, **kwargs)
return [
RawMessage(
role="tool",
content=template.render(),
)
]
def system_messages(
self,
builtin_tools: list[BuiltinTool],
custom_tools: list[ToolDefinition],
instruction: str | None = None,
) -> list[RawMessage]:
messages = []
default_gen = SystemDefaultGenerator()
default_template = default_gen.gen()
sys_content = ""
tool_template = None
if builtin_tools or custom_tools:
tool_gen = BuiltinToolGenerator()
tool_template = tool_gen.gen(builtin_tools + custom_tools)
sys_content += tool_template.render()
sys_content += "\n"
sys_content += default_template.render()
if instruction:
sys_content += "\n\n"
sys_content += instruction
sys_content += "\n"
messages.append(RawMessage(role="system", content=sys_content))
if custom_tools:
if self.tool_prompt_format == ToolPromptFormat.json:
tool_gen = JsonCustomToolGenerator()
elif self.tool_prompt_format == ToolPromptFormat.function_tag:
tool_gen = FunctionTagCustomToolGenerator()
else:
raise ValueError(f"Non supported ToolPromptFormat {self.tool_prompt_format}")
custom_template = tool_gen.gen(custom_tools)
messages.append(RawMessage(role="user", content=custom_template.render()))
return messages
def assistant_response_messages(
self,
content: str,
stop_reason: StopReason,
tool_call: ToolCall | None = None,
) -> list[RawMessage]:
tool_calls = []
if tool_call:
tool_calls.append(tool_call)
return [
RawMessage(
role="assistant",
content=content,
tool_calls=tool_calls,
stop_reason=stop_reason,
)
]
def user_message(self, content: str) -> list[RawMessage]:
return [RawMessage(role="user", content=content)]
def display_message_as_tokens(self, message: RawMessage) -> None:
"""Util to print tokenized string to shell"""
tokens = self.formatter.encode_message(message, self.tool_prompt_format)
on_colors = [
"on_red",
"on_green",
"on_yellow",
"on_blue",
"on_magenta",
"on_cyan",
]
for i, t in enumerate(tokens):
on_col = on_colors[i % len(on_colors)]
print(colored(self.tokenizer.decode([t]), "white", on_col), end="")
print("\n", end="")
def list_jinja_templates() -> list[Template]:
return TEMPLATES
def render_jinja_template(name: str, tool_prompt_format: ToolPromptFormat):
by_name = {t.template_name: t for t in TEMPLATES}
if name not in by_name:
raise ValueError(f"No template found for `{name}`")
template = by_name[name]
interface = LLama31Interface(tool_prompt_format)
data_func = getattr(template_data, template.data_provider)
if template.role == "system":
messages = interface.system_messages(**data_func())
elif template.role == "tool":
messages = interface.tool_response_messages(**data_func())
elif template.role == "assistant":
messages = interface.assistant_response_messages(**data_func())
elif template.role == "user":
messages = interface.user_message(**data_func())
tokens = interface.get_tokens(messages)
special_tokens = list(interface.tokenizer.special_tokens.values())
tokens = [(interface.tokenizer.decode([t]), t in special_tokens) for t in tokens]
return template, tokens

View file

@ -0,0 +1,304 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import math
import fairscale.nn.model_parallel.initialize as fs_init
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.layers import (
ColumnParallelLinear,
RowParallelLinear,
VocabParallelEmbedding,
)
from torch import nn
from .args import ModelArgs
# **NOTE**: This code is not runnable without installing `torch` and `fairscale`
# dependencies. These dependencies are not part of the default dependencies
# (requirements.txt) of the `llama-models` package.
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def apply_scaling(freqs: torch.Tensor) -> torch.Tensor:
# Values obtained from grid search
scale_factor = 8
low_freq_factor = 1
high_freq_factor = 4
old_context_len = 8192 # original llama3 length
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
wavelen = 2 * torch.pi / freqs
new_freqs = torch.where(wavelen > low_freq_wavelen, freqs / scale_factor, freqs)
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
return torch.where(
(wavelen >= high_freq_wavelen) & (wavelen <= low_freq_wavelen),
(1 - smooth) * new_freqs / scale_factor + smooth * new_freqs,
new_freqs,
)
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, use_scaled: bool = False):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
if use_scaled:
freqs = apply_scaling(freqs)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
world_size = fs_init.get_model_parallel_world_size()
self.n_local_heads = args.n_heads // world_size
self.n_local_kv_heads = self.n_kv_heads // world_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=lambda x: x,
)
self.wk = ColumnParallelLinear(
args.dim,
self.n_kv_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=lambda x: x,
)
self.wv = ColumnParallelLinear(
args.dim,
self.n_kv_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=lambda x: x,
)
self.wo = RowParallelLinear(
args.n_heads * self.head_dim,
args.dim,
bias=False,
input_is_parallel=True,
init_method=lambda x: x,
)
self.cache_k = torch.zeros(
(
args.max_batch_size,
args.max_seq_len,
self.n_local_kv_heads,
self.head_dim,
)
)
self.cache_v = torch.zeros(
(
args.max_batch_size,
args.max_seq_len,
self.n_local_kv_heads,
self.head_dim,
)
)
def forward(
self,
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: torch.Tensor | None,
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
keys = self.cache_k[:bsz, : start_pos + seqlen]
values = self.cache_v[:bsz, : start_pos + seqlen]
# repeat k/v heads if n_kv_heads < n_heads
keys = repeat_kv(keys, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim)
values = repeat_kv(values, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim)
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
keys = keys.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
values = values.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: float | None,
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=4 * args.dim,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(
self,
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: torch.Tensor | None,
):
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = VocabParallelEmbedding(params.vocab_size, params.dim, init_method=lambda x: x)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = ColumnParallelLinear(params.dim, params.vocab_size, bias=False, init_method=lambda x: x)
self.freqs_cis = precompute_freqs_cis(
params.dim // params.n_heads,
params.max_seq_len * 2,
params.rope_theta,
params.use_scaled_rope,
)
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
mask = None
if seqlen > 1:
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=1)
# https://github.com/pytorch/pytorch/issues/100005
# torch.triu is buggy when the device is mps: filled values are
# nan instead of 0.
if mask.device.type == torch.device("mps").type:
mask = torch.nan_to_num(mask, nan=0.0)
# When performing key-value caching, we compute the attention scores
# only for the new sequence. Thus, the matrix of scores is of size
# (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
# j > cache_len + i, since row i corresponds to token cache_len + i.
mask = torch.hstack([torch.zeros((seqlen, start_pos), device=tokens.device), mask]).type_as(h)
for layer in self.layers:
h = layer(h, start_pos, freqs_cis, mask)
h = self.norm(h)
output = self.output(h).float()
return output

View file

@ -0,0 +1,12 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.

View file

@ -0,0 +1,180 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
# Copyright (c) Meta Platforms, Inc. and its affiliates.
import math
import torch
import torch.nn.functional as F
from llama_stack.log import get_logger
from .utils import get_negative_inf_value, to_2tuple
logger = get_logger(name=__name__, category="models::llama")
def resize_local_position_embedding(orig_pos_embed, grid_size):
"""
Resize position embedding for vision encoder.
Original position embedding is [n_tiles * n_tiles + 1, dim]
New position embedding will be [grid_size[0] * grid_size[1] + 1, dim]
"""
new_grid_size = to_2tuple(grid_size)
orig_grid_size = to_2tuple(int(math.sqrt(len(orig_pos_embed) - 1)))
new_pos_emb_tok, new_pos_emb_img = (
orig_pos_embed[:1],
orig_pos_embed[1:],
)
logger.info(f"resizing position embedding grid-size from {orig_grid_size} to {new_grid_size}")
new_pos_emb_img = new_pos_emb_img.reshape(1, orig_grid_size[0], orig_grid_size[1], -1).permute(0, 3, 1, 2)
new_pos_emb_img = F.interpolate(
new_pos_emb_img,
size=new_grid_size,
mode="bilinear",
align_corners=True,
)
new_pos_emb_img = new_pos_emb_img.permute(0, 2, 3, 1).reshape(1, new_grid_size[0] * new_grid_size[1], -1)[0]
new_pos_embed = torch.cat([new_pos_emb_tok, new_pos_emb_img], dim=0)
return new_pos_embed
def initialize_global_position_embedding_from_local(pos_and_cls_embed, grid_size, x_scale, y_scale):
"""
Takes a local position embedding for vision encoder and uses it
to initialize the global position embedding.
Input: local position embedding of shape [grid_size[0] * grid_size[1] + 1, dim]
Returns: global position embedding of shape [x_scale, y_scale, grid_size[0] * grid_size[1] + 1, dim]
Here x_scale and y_scale are the number of tiles along x-axis and y-axis respectively.
"""
pos_embed = pos_and_cls_embed[1:]
cls_embed = pos_and_cls_embed[0].view(1, 1, 1, -1)
grid_size = to_2tuple(grid_size)
new_pos_emb_img = pos_embed.reshape(1, grid_size[0], grid_size[1], -1).permute(0, 3, 1, 2)
new_grid_size = (x_scale * grid_size[0], y_scale * grid_size[1])
new_pos_emb_img = F.interpolate(
new_pos_emb_img,
size=new_grid_size,
mode="bilinear",
align_corners=True,
)
new_pos_emb_img = new_pos_emb_img.permute(0, 2, 3, 1)
new_pos_emb_img = new_pos_emb_img.view(x_scale, grid_size[0], y_scale, grid_size[1], -1)
new_pos_emb_img = new_pos_emb_img.permute(0, 2, 1, 3, 4).contiguous()
new_pos_emb_img = new_pos_emb_img.reshape(x_scale, y_scale, grid_size[0] * grid_size[1], -1)
cls_embed = cls_embed.expand(x_scale, y_scale, -1, -1)
pos_and_cls_embed = torch.cat([cls_embed, new_pos_emb_img], dim=2)
return pos_and_cls_embed
def resize_global_position_embedding(pos_and_cls_embed, grid_size, x_scale, y_scale):
"""
Takes a global position embedding for vision encoder and resizes it to new size.
Input: global position embedding of shape [x_old, y_old, old_grid_size[0] * old_grid_size[1] + 1, dim]
Returns: global position embedding of shape [x_scale, y_scale, grid_size[0] * grid_size[1] + 1, dim]
Here x_scale and y_scale are the number of tiles along x-axis and y-axis respectively.
"""
# first remove cls token
pos_embed = pos_and_cls_embed[:, :, 1:]
cls_embed = pos_and_cls_embed[:, :, 0].unsqueeze(2)
xs_old, ys_old, ntok, dim = pos_embed.shape
old_grid_size = int(math.sqrt(ntok))
# move to correct form for interpolation
pos_embed = pos_embed.view(xs_old, ys_old, old_grid_size, old_grid_size, dim)
pos_embed = pos_embed.permute(0, 2, 1, 3, 4).contiguous()
pos_embed = pos_embed.view(xs_old * old_grid_size, ys_old * old_grid_size, dim)
pos_embed = pos_embed.unsqueeze(0)
# interpolate
new_size = (grid_size[0] * x_scale, grid_size[1] * y_scale)
pos_embed = pos_embed.permute(0, 3, 1, 2)
pos_embed_resized = F.interpolate(
pos_embed,
size=new_size,
mode="bilinear",
align_corners=True,
)
pos_embed = pos_embed_resized.permute(0, 2, 3, 1)[0]
# move it back in place
pos_embed = pos_embed.view(x_scale, grid_size[0], y_scale, grid_size[1], dim)
pos_embed = pos_embed.permute(0, 2, 1, 3, 4).contiguous()
pos_embed = pos_embed.view(x_scale, y_scale, grid_size[0] * grid_size[1], dim)
# interpolate cls token
cls_embed = cls_embed.permute(2, 3, 0, 1)
cls_embed_resized = F.interpolate(
cls_embed,
size=(x_scale, y_scale),
mode="bilinear",
align_corners=True,
)
cls_embed = cls_embed_resized.permute(2, 3, 0, 1)
# add cls token back in
pos_and_cls_embed = torch.cat([cls_embed, pos_embed], dim=2)
return pos_and_cls_embed
def build_encoder_attention_mask(
x: torch.Tensor,
ar: torch.Tensor,
ntok: int,
num_chunks: int,
n_heads: int,
):
"""
Build vision encoder attention mask that omits padding tokens.
"""
masks = []
for arx in ar:
mask_i = torch.ones((num_chunks, x.shape[2], 1), dtype=x.dtype)
mask_i[: arx[0] * arx[1], :ntok] = 0
mask_i = mask_i.view(num_chunks * x.shape[2], -1)
mask_i = mask_i @ mask_i.T * get_negative_inf_value(x.dtype)
mask_i = mask_i.unsqueeze(0)
masks.append(mask_i)
masks = torch.stack(masks).to(x.device).expand(-1, n_heads, -1, -1)
return masks
def expand_num_tokens_to_mult8(x):
num_pad_tokens = 8 - (x.shape[-2] % 8)
if num_pad_tokens == 0:
return x, 0
else:
return (
torch.cat(
[
x,
torch.zeros(
(x.shape[0], x.shape[1], num_pad_tokens, x.shape[-1]),
dtype=x.dtype,
device=x.device,
),
],
dim=-2,
),
num_pad_tokens,
)
def contract_num_tokens_from_mult8(x, num_pad_tokens):
if num_pad_tokens == 0:
return x
return x[:, :, :-num_pad_tokens]

View file

@ -0,0 +1,409 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import math
from collections import defaultdict
from typing import Any
import torch
import torchvision.transforms as tv
from PIL import Image
from torchvision.transforms import functional as F
from llama_stack.log import get_logger
IMAGE_RES = 224
logger = get_logger(name=__name__, category="models::llama")
class VariableSizeImageTransform:
"""
This class accepts images of any size and dynamically resize, pads and chunks it
based on the image aspect ratio and the number of image chunks we allow.
The algorithm will NOT distort the image fit a certain aspect ratio, because
that leads to a significant degradation in image quality.
It can be summarized in 6 steps:
1. Find all possible canvas combinations of max_num_chunks;
2. Find the best canvas to fit the image;
3. Resize without distortion
4. Pad
5. Normalize
6. Chunk
For example, if an input image is of size 300x800, patch_size of 224,
and max_num_chunks = 8, it will find the closest aspect ratio that
is allowed within 8 image chunks, with some restrictions.
In this case, 2:4 = 2 horizontal patches and 4 vertical patches,
giving a total of 8 chunks.
If resize_to_max_canvas, the image will be resized (without distortion),
to the largest possible resolution. In this case, 388:896, and padded to 448:896,
where we maintain the original aspect ratio and pad with zeros value for the rest.
This approach minimizes the amount of padding required for any arbitrary resolution.
However, if limit_upscaling_to_patch_size is set to True,
the upscaling will be limited to the patch size. In the example above,
the image would remain 300x800 (no upscaling), and then padded to 448:896.
The final output will therefore be of shape (8, 3, 224, 224), where 2x4
patches are coming from the resizing and chunking.
"""
def __init__(self, size: int = IMAGE_RES) -> None:
self.size = size
logger.info(f"VariableSizeImageTransform size: {self.size}")
self.to_tensor = tv.ToTensor()
self._mean = (0.48145466, 0.4578275, 0.40821073)
self._std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = tv.Normalize(
mean=self._mean,
std=self._std,
inplace=True,
)
self.resample = tv.InterpolationMode.BILINEAR
@staticmethod
def get_factors(n: int) -> set[int]:
"""
Calculate all factors of a given number, i.e. a dividor that leaves
no remainder. For example, if n=12, it will return {1, 2, 3, 4, 6, 12}.
Args:
n (int): The number to find factors for.
Returns:
set: A set containing all factors of the number.
"""
factors_set = set()
for i in range(1, int(n**0.5) + 1):
if n % i == 0:
factors_set.add(i)
factors_set.add(n // i)
return factors_set
def find_supported_resolutions(self, max_num_chunks: int, patch_size: int) -> torch.Tensor:
"""
Computes all of the allowed resoltuions for a fixed number of chunks
and patch_size. Useful for when dividing an image into chunks.
Args:
max_num_chunks (int): Maximum number of chunks for processing.
patch_size (int): Size of the side of the patch.
Returns:
torch.Tensor: List of possible resolutions as tuples (height, width).
Example:
>>> max_num_chunks = 5
>>> patch_size = 224
>>> find_supported_resolutions(max_num_chunks, patch_size)
tensor([(224, 896), (448, 448), (224, 224), (896, 224), (224, 672),
(672, 224), (224, 448), (448, 224)])
Given max_num_chunks=4, patch_size=224, it will create a dictionary:
{
0.25: [(1, 4)],
1.0: [(2, 2), (1, 1)],
4.0: [(4, 1)],
0.33: [(1, 3)],
3.0: [(3, 1)],
0.5: [(1, 2)],
2.0: [(2, 1)]
}
and return the resolutions multiplied by the patch_size:
[(1*224, 4*224), (2*224, 2*224), ..., (2*224, 1*224)]
"""
asp_dict = defaultdict(list)
for chunk_size in range(max_num_chunks, 0, -1):
_factors = sorted(self.get_factors(chunk_size))
_asp_ratios = [(factor, chunk_size // factor) for factor in _factors]
for height, width in _asp_ratios:
ratio_float = height / width
asp_dict[ratio_float].append((height, width))
# get the resolutions multiplied by the patch_size
possible_resolutions = []
for value in asp_dict.values():
for height, depth in value:
possible_resolutions.append((height * patch_size, depth * patch_size))
return possible_resolutions
@staticmethod
def get_max_res_without_distortion(
image_size: tuple[int, int],
target_size: tuple[int, int],
) -> tuple[int, int]:
"""
Determines the maximum resolution to which an image can be resized to without distorting its
aspect ratio, based on the target resolution.
Args:
image_size (Tuple[int, int]): The original resolution of the image (height, width).
target_resolution (Tuple[int, int]): The desired resolution to fit the image into (height, width).
Returns:
Tuple[int, int]: The optimal dimensions (height, width) to which the image should be resized.
Example:
>>> _get_max_res_without_distortion([200, 300], target_size = [450, 200])
(134, 200)
>>> _get_max_res_without_distortion([800, 600], target_size = [450, 1300])
(450, 338)
"""
original_width, original_height = image_size
target_width, target_height = target_size
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.floor(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.floor(original_width * scale_h), target_width)
return new_width, new_height
def _pad(self, image: Image.Image, target_size) -> Image.Image:
new_width, new_height = target_size
new_im = Image.new(mode="RGB", size=(new_width, new_height), color=(0, 0, 0)) # type: ignore
new_im.paste(image)
return new_im
def _split(self, image: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
# Split image into number of required tiles (width x height)
num_channels, height, width = image.size()
image = image.view(num_channels, nch, height // nch, ncw, width // ncw)
# Permute dimensions to reorder the axes
image = image.permute(1, 3, 0, 2, 4).contiguous()
# Reshape into the desired output shape (batch_size * 4, num_channels, width/2, height/2)
image = image.view(ncw * nch, num_channels, height // nch, width // ncw)
return image
def resize_without_distortion(
self,
image: torch.Tensor,
target_size: tuple[int, int],
max_upscaling_size: int | None,
) -> torch.Tensor:
"""
Used to resize an image to target_resolution, without distortion.
If target_size requires upscaling the image, the user can set max_upscaling_size to
limit the upscaling to a maximum size. In this case, since we rescale without distortion,
modifying target_size works as a boundary for the image's largest side.
Args:
resample (str): Resampling method used when resizing images.
Supports "nearest", "nearest_exact", "bilinear", "bicubic".
max_upscaling_size (int): The maximum size to upscale the image to.
If None, there is no limit.
Examples:
>>> target_size = (1000, 1200)
>>> max_upscaling_size = 600
>>> image_size = (400, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(600, 300) # new_size_without_distortion
>>> target_size = (1000, 1200)
>>> max_upscaling_size = 600
>>> image_size = (2000, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(1000, 100) # new_size_without_distortion
>>> target_size = (1000, 1200)
>>> max_upscaling_size = 2000
>>> image_size = (400, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(1000, 500) # new_size_without_distortion
>>> target_size = (1000, 1200)
>>> max_upscaling_size = None
>>> image_size = (400, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(1000, 500) # new_size_without_distortion
"""
image_width, image_height = image.size
image_size = (image_width, image_height)
# If target_size requires upscaling, we might want to limit the upscaling to max_upscaling_size
if max_upscaling_size is not None:
new_target_width = min(max(image_width, max_upscaling_size), target_size[0])
new_target_height = min(max(image_height, max_upscaling_size), target_size[1])
target_size = (new_target_width, new_target_height)
# resize to target_size while preserving aspect ratio
new_size_without_distortion = self.get_max_res_without_distortion(image_size, target_size)
image = F.resize(
image,
(new_size_without_distortion[1], new_size_without_distortion[0]),
interpolation=self.resample,
)
return image
def get_best_fit(
self,
image_size: tuple[int, int],
possible_resolutions: torch.Tensor,
resize_to_max_canvas: bool = False,
) -> tuple[int, int]:
"""
Determines the best canvas possible from a list of possible resolutions to, without distortion,
resize an image to.
For each possible resolution, calculates the scaling factors for
width and height, and selects the smallest one, which is the limiting side.
E.g. to match the canvas you can upscale height by 2x, and width by 1.5x,
therefore, the maximum upscaling you can do is min(2, 1.5) = 1.5.
If upscaling is possible (any of the scaling factors is greater than 1),
then picks the smallest upscaling factor > 1, unless resize_to_max_canvas is True.
If upscaling is not possible, then picks the largest scaling factor <= 1, i.e.
reduce downscaling as much as possible.
If there are multiple resolutions with the same max scale, we pick the one with the lowest area,
to minimize padding. E.g., the same image can be upscaled to 224x224 and 224x448, but the latter
has more padding.
Args:
image_size (Tuple[int, int]): A tuple containing the height and width of the image.
possible_resolutions (torch.Tensor): A tensor of shape (N, 2) where each
row represents a possible resolution (height, width).
use_max_upscaling (bool): If True, will return the largest upscaling resolution.
Returns:
List[int]: The best resolution [height, width] for the given image.
Example:
>>> image_size = (200, 300)
>>> possible_resolutions = torch.tensor([[224, 672],
... [672, 224],
... [224, 448],
... [448, 224],
... [224, 224]])
>>> _get_smallest_upscaling_possibility(image_size, possible_resolutions)
[224, 448]
We have:
scale_w = tensor([2.2400, 0.7467, 1.4933, 0.7467, 0.7467])
scale_h = tensor([1.1200, 3.3600, 1.1200, 2.2400, 1.1200])
scales = tensor([1.1200, 0.7467, 1.1200, 0.7467, 0.7467])
Only one of the scales > 1:
upscaling_possible = tensor([1.1200, 1.1200])
smallest_rescale = tensor(1.1200)
So we pick the resolution with the smallest smallest area:
areas = tensor([150528, 100352]) # [672, 224], [224, 448]
optimal_canvas = tensor([224, 448])
"""
original_width, original_height = image_size
# get all possible resolutions heights/widths
target_widths, target_heights = (
possible_resolutions[:, 0],
possible_resolutions[:, 1],
)
# get scaling factors to resize the image without distortion
scale_w = target_widths / original_width
scale_h = target_heights / original_height
# get the min scale between width and height (limiting side -> no distortion)
scales = torch.where(scale_w > scale_h, scale_h, scale_w)
# filter only scales that allow upscaling
upscaling_options = scales[scales >= 1]
if len(upscaling_options) > 0:
if resize_to_max_canvas:
selected_scale = torch.max(upscaling_options)
else:
selected_scale = torch.min(upscaling_options)
else:
# no upscaling possible,
# get the minimum downscaling (max scale for scales<1)
downscaling_options = scales[scales < 1]
selected_scale = torch.max(downscaling_options)
# get all resolutions that support this scaling factor,
# e.g. you can upscale to 224x224, 224x448, 224x672 without distortion
chosen_canvas = possible_resolutions[scales == selected_scale]
# if there are multiple resolutions,
# get the one with minimum area to reduce padding
if len(chosen_canvas) > 1:
areas = chosen_canvas[:, 0] * chosen_canvas[:, 1]
optimal_idx = torch.argmin(areas)
optimal_canvas = chosen_canvas[optimal_idx]
else:
optimal_canvas = chosen_canvas[0]
return tuple(optimal_canvas.tolist())
def __call__(
self,
image: Image.Image,
max_num_chunks: int,
normalize_img: bool = True,
resize_to_max_canvas: bool = False,
) -> tuple[Any, Any]:
"""
Args:
image (PIL.Image): Image to be resized.
max_num_chunks (int): Maximum number of chunks to split the image into.
normalize_img (bool): Whether to normalize the image.
resize_to_max_canvas (bool): Whether to resize the image to the maximum canvas size.
If True, picks the canvas the allows the largest resizing without distortion.
If False, downsample as little as possible, including no resizing at all,
but never upsample, unless the image is smaller than the patch size.
"""
assert max_num_chunks > 0
assert isinstance(image, Image.Image), type(image)
w, h = image.size
possible_resolutions = self.find_supported_resolutions(max_num_chunks=max_num_chunks, patch_size=self.size)
possible_resolutions = torch.tensor(possible_resolutions)
best_resolution = self.get_best_fit(
image_size=(w, h),
possible_resolutions=possible_resolutions,
resize_to_max_canvas=resize_to_max_canvas,
)
max_upscaling_size = None if resize_to_max_canvas else self.size
image = self.resize_without_distortion(image, best_resolution, max_upscaling_size)
image = self._pad(image, best_resolution)
image = self.to_tensor(image)
if normalize_img:
image = self.normalize(image)
ratio_w, ratio_h = (
best_resolution[0] // self.size,
best_resolution[1] // self.size,
)
image = self._split(image, ratio_w, ratio_h) # type: ignore
ar = (ratio_h, ratio_w)
return image, ar

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,26 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import collections
import torch
def get_negative_inf_value(dtype):
return torch.finfo(dtype).min
def to_2tuple(x):
if isinstance(x, collections.abc.Iterable):
return x
return (x, x)

Binary file not shown.

After

Width:  |  Height:  |  Size: 438 KiB

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from .base import PromptTemplate, PromptTemplateGeneratorBase # noqa: F401
from .system_prompts import ( # noqa: F401
BuiltinToolGenerator,
FunctionTagCustomToolGenerator,
JsonCustomToolGenerator,
PythonListCustomToolGenerator,
SystemDefaultGenerator,
)
from .tool_response import ToolResponseGenerator # noqa: F401

View file

@ -0,0 +1,39 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from dataclasses import dataclass
from typing import Any
from jinja2 import Template
@dataclass
class PromptTemplate:
template: str
data: dict[str, Any]
def render(self):
template = Template(self.template)
return template.render(self.data)
class PromptTemplateGeneratorBase:
"""
Base class for prompt template generators.
"""
def gen(self, *args, **kwargs) -> PromptTemplate:
raise NotImplementedError()
def data_examples(self) -> list[Any]:
raise NotImplementedError()

View file

@ -0,0 +1,319 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import textwrap
from datetime import datetime
from typing import Any
from llama_stack.apis.inference import (
BuiltinTool,
ToolDefinition,
)
from .base import PromptTemplate, PromptTemplateGeneratorBase
class SystemDefaultGenerator(PromptTemplateGeneratorBase):
def gen(self, *args, **kwargs) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Cutting Knowledge Date: December 2023
Today Date: {{ today }}
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{
"today": datetime.now().strftime("%d %B %Y") # noqa: DTZ005 - we don't care about timezones here since we are displaying the date
},
)
def data_examples(self) -> list[Any]:
return [None]
class BuiltinToolGenerator(PromptTemplateGeneratorBase):
def _tool_breakdown(self, tools: list[ToolDefinition]):
builtin_tools, custom_tools = [], []
for dfn in tools:
if isinstance(dfn.tool_name, BuiltinTool):
builtin_tools.append(dfn)
else:
custom_tools.append(dfn)
return builtin_tools, custom_tools
def gen(self, tools: list[ToolDefinition]) -> PromptTemplate:
builtin_tools, custom_tools = self._tool_breakdown(tools)
template_str = textwrap.dedent(
"""
{% if builtin_tools or custom_tools -%}
Environment: ipython
{% endif -%}
{% set builtin_tools = builtin_tools | reject('equalto', 'code_interpreter') | list -%}
{% if builtin_tools -%}
Tools: {{ builtin_tools | join(", ") | trim -}}
{% endif %}
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{
"builtin_tools": [t.tool_name.value for t in builtin_tools],
"custom_tools": custom_tools,
},
)
def data_examples(self) -> list[list[ToolDefinition]]:
return [
# builtin tools
[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
ToolDefinition(tool_name=BuiltinTool.brave_search),
ToolDefinition(tool_name=BuiltinTool.wolfram_alpha),
],
# only code interpretor
[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
],
]
class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Answer the user's question by making use of the following functions if needed.
If none of the function can be used, please say so.
Here is a list of functions in JSON format:
{% for t in custom_tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set tprops = t.input_schema.get('properties', {}) -%}
{%- set required_params = t.input_schema.get('required', []) -%}
{
"type": "function",
"function": {
"name": "{{tname}}",
"description": "{{tdesc}}",
"parameters": {
"type": "object",
"properties": [
{%- for name, param in tprops.items() %}
{
"{{name}}": {
"type": "object",
"description": "{{param.get('description', '')}}"
}
}{% if not loop.last %},{% endif %}
{%- endfor %}
],
"required": {{ required_params | tojson }}
}
}
}
{% endfor %}
Return function calls in JSON format.
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{"custom_tools": [t.model_dump() for t in custom_tools]},
)
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="trending_songs",
description="Returns the trending songs on a Music site",
input_schema={
"type": "object",
"properties": {
"n": {
"type": "int",
"description": "The number of songs to return",
},
"genre": {
"type": "str",
"description": "The genre of the songs to return",
},
},
"required": ["n"],
},
),
]
]
class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
You have access to the following functions:
{% for t in custom_tools %}
{#- manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set tprops = t.input_schema.get('properties', {}) -%}
{%- set modified_params = {} -%}
{%- for key, value in tprops.items() -%}
{%- set param_copy = value.copy() -%}
{%- if 'default' in param_copy -%}
{%- set _ = param_copy.pop('default', None) -%}
{%- endif -%}
{%- set _ = modified_params.update({key: param_copy}) -%}
{%- endfor -%}
{%- set tparams = modified_params | tojson -%}
Use the function '{{ tname }}' to '{{ tdesc }}':
{"name": "{{tname}}", "description": "{{tdesc}}", "parameters": {{tparams}}}
{% endfor -%}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{"custom_tools": [t.model_dump() for t in custom_tools]},
)
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="trending_songs",
description="Returns the trending songs on a Music site",
input_schema={
"type": "object",
"properties": {
"n": {
"type": "int",
"description": "The number of songs to return",
},
"genre": {
"type": "str",
"description": "The genre of the songs to return",
},
},
"required": ["n"],
},
),
]
]
class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
DEFAULT_PROMPT = textwrap.dedent(
"""
You are a helpful assistant. You have access to functions, but you should only use them if they are required.
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you may or may not need to make one function/tool call to achieve the purpose.
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
If you decide to invoke a function, you SHOULD NOT include any other text in the response. besides the function call in the above format.
For a boolean parameter, be sure to use `True` or `False` (capitalized) for the value.
{{ function_description }}
""".strip("\n")
)
def gen(self, custom_tools: list[ToolDefinition], system_prompt: str | None = None) -> PromptTemplate:
system_prompt = system_prompt or self.DEFAULT_PROMPT
return PromptTemplate(
system_prompt,
{"function_description": self._gen_function_description(custom_tools)},
)
def _gen_function_description(self, custom_tools: list[ToolDefinition]) -> str:
template_str = textwrap.dedent(
"""
Here is a list of functions in JSON format that you can invoke.
[
{% for t in tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set tprops = (t.input_schema or {}).get('properties', {}) -%}
{%- set required_params = (t.input_schema or {}).get('required', []) -%}
{
"name": "{{tname}}",
"description": "{{tdesc}}",
"parameters": {
"type": "dict",
"required": {{ required_params | tojson }},
"properties": {
{%- for name, param in tprops.items() %}
"{{name}}": {
"type": "{{param.get('type', 'string')}}",
"description": "{{param.get('description', '')}}"{% if param.get('default') %},
"default": "{{param.get('default')}}"{% endif %}
}{% if not loop.last %},{% endif %}
{%- endfor %}
}
}
}{% if not loop.last %},
{% endif -%}
{%- endfor %}
]
You can answer general questions or invoke tools when necessary.
In addition to tool calls, you should also augment your responses by using the tool outputs.
"""
)
template = PromptTemplate(
template_str.strip("\n"),
{"tools": [t.model_dump() for t in custom_tools]},
)
rendered: str = template.render()
return rendered
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="get_weather",
description="Get weather info for places",
input_schema={
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The name of the city to get the weather for",
},
"metric": {
"type": "string",
"description": "The metric for weather. Options are: celsius, fahrenheit",
"default": "celsius",
},
},
"required": ["city"],
},
),
]
]

View file

@ -0,0 +1,62 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import textwrap
from .base import PromptTemplate, PromptTemplateGeneratorBase
class ToolResponseGenerator(PromptTemplateGeneratorBase):
def gen(
self,
status: str,
stdout: str | None = None,
stderr: str | None = None,
):
assert status in [
"success",
"failure",
], f"status must be 'success' or 'failure'; Got: {status}"
template_str = textwrap.dedent(
"""
{% if status == "success" %}completed{% else %}failed{% endif %}
{%- if stdout %}
[stdout]{{ stdout }}[/stdout]
{%- endif -%}
{%- if stderr %}
[stderr]{{ stderr }}[/stderr]
{%- endif -%}
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{
"status": status,
"stdout": stdout,
"stderr": stderr,
},
)
def data_examples(self):
return [
# success
{
"status": "success",
"stdout": '{"results":["something something"]}',
},
# failure
{
"status": "failure",
"stderr": "brave_search encounter an error: could not communicate with api.brave.com",
},
]

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,316 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# type: ignore
import os
from typing import Any, cast
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
from torch import Tensor, nn
from torchao.quantization.GPTQ import Int8DynActInt4WeightLinear
from ...datatypes import QuantizationMode
from ...quantize_impls import (
Fp8ScaledWeights,
ffn_swiglu,
load_fp8,
quantize_fp8,
)
from ..model import Transformer, TransformerBlock
from ..multimodal.model import CrossAttentionTransformer
def swiglu_wrapper(
self,
x: Tensor,
):
out = ffn_swiglu(x, self.w1.weight, self.w3.weight, self.w2.weight)
return reduce_from_model_parallel_region(out)
def convert_to_quantized_model(
model: Transformer | CrossAttentionTransformer,
checkpoint_dir: str,
quantization_mode: str | None = None,
fp8_activation_scale_ub: float | None = 1200.0,
device: torch.device | None = None,
) -> Transformer | CrossAttentionTransformer:
if quantization_mode == QuantizationMode.fp8_mixed:
return convert_to_fp8_quantized_model(model, checkpoint_dir, fp8_activation_scale_ub, device)
elif quantization_mode == QuantizationMode.int4_mixed:
return convert_to_int4_quantized_model(model, checkpoint_dir, device)
else:
raise ValueError(f"Unsupported quantization mode: {quantization_mode}")
def convert_to_fp8_quantized_model(
model: Transformer,
checkpoint_dir: str,
fp8_activation_scale_ub: float | None = 1200.0,
device: torch.device | None = None,
) -> Transformer:
# Move weights to GPU with quantization
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt")
if os.path.isfile(fp8_scales_path):
print("Loading fp8 scales...")
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
for _, block in model.named_modules():
if isinstance(block, TransformerBlock):
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
continue
block.feed_forward.forward = swiglu_wrapper.__get__(block.feed_forward)
for key in ("w1", "w3", "w2"):
param = getattr(block.feed_forward, key)
param.weight = load_fp8(
param.weight,
fp8_scales[f"{block.layer_id}_feed_forward.{key}_{get_model_parallel_rank()}"],
fp8_activation_scale_ub,
)
else:
print("Quantizing fp8 weights from bf16...")
for _, block in model.named_modules():
if isinstance(block, TransformerBlock):
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
continue
block.feed_forward.forward = swiglu_wrapper.__get__(block.feed_forward) # type: ignore
for key in ("w1", "w3", "w2"):
param = getattr(block.feed_forward, key)
param.weight = quantize_fp8(
param.weight,
fp8_activation_scale_ub,
output_device=device,
)
for _, parameter in model.named_parameters():
if not isinstance(parameter, Fp8ScaledWeights):
parameter.data = parameter.to(device=device)
return model
class Int8DynActInt4WeightLinearLoRA(Int8DynActInt4WeightLinear):
"""
Int8DynActInt4WeightLinear with LoRA adaptor.
Args:
in_features: Number of input features.
out_features: Number of output features.
bias: Whether to use bias.
device: Device to use.
group_size: Group size for quantization.
precision: Precision of quantization.
scales_precision: Precision of scales.
lora_rank: Rank of LoRA adaptor.
lora_scale: Scale of LoRA adaptor.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias=False,
device=None,
# quantization parameters
group_size: int = 256,
precision: torch.dtype = torch.float32,
scales_precision: torch.dtype = torch.float32,
# LoRA parameters
lora_rank: int | None = None,
lora_scale: float | None = None,
) -> None:
super().__init__(
in_features,
out_features,
bias=bias,
device=device,
groupsize=group_size,
precision=precision,
scales_precision=scales_precision,
)
self.lora_scale: float | None = None
self.adaptor: nn.Sequential | None = None
if lora_rank is not None:
assert lora_scale is not None, "Please specify lora scale for LoRA."
# Low-rank adaptation. See paper for more details: https://arxiv.org/abs/2106.09685
self.adaptor = nn.Sequential()
self.adaptor.add_module("A", nn.Linear(in_features, lora_rank, bias=False))
self.adaptor.add_module("B", nn.Linear(lora_rank, out_features, bias=False))
self.lora_scale = lora_scale
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""A hook to load the quantized weights from the state dict."""
if prefix + "zeros" not in state_dict:
# Zero-point may not be saved in the state dict. In this case, we assume it's zero.
assert prefix + "scales" in state_dict
state_dict[prefix + "zeros"] = torch.zeros_like(state_dict[prefix + "scales"])
def forward(self, input_: torch.Tensor) -> torch.Tensor:
module_out = super().forward(input_)
if self.adaptor is not None:
adaptor_out = self.adaptor(input_) * self.lora_scale
return module_out + adaptor_out
return module_out
class Int8WeightEmbedding(torch.nn.Embedding):
"""An embedding layer to load int8 weights.
Args:
num_embeddings: Number of embeddings.
embedding_dim: Embedding dimension.
padding_idx: Padding index.
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: int,
device=None,
) -> None:
super().__init__(num_embeddings, embedding_dim, padding_idx, device=device)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""A hook to load the quantized embedding weight and scales from the state dict."""
weights = state_dict.pop(prefix + "weight")
scales = state_dict.pop(prefix + "scales")
state_dict[prefix + "weight"] = weights * scales
class Int8WeightLinear(torch.nn.Linear):
"""A linear layer to load int8 weights.
Args:
in_features: Number of input features.
out_features: Number of output features.
bias: Whether to use bias.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None) -> None:
super().__init__(in_features, out_features, bias, device=device)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""A hook to load the quantized linear weight and scales from the state dict."""
weights = state_dict.pop(prefix + "weight")
scales = state_dict.pop(prefix + "scales")
state_dict[prefix + "weight"] = weights * scales
def _prepare_model_int4_weight_int8_dynamic_activation(
model: torch.nn.Module,
group_size: int,
lora_rank: int | None,
lora_scale: float | None,
):
"""Prepare the model for int4 weight and int8 dynamic activation quantization.
Note that the weights of embedding and output layers are quantized to int8.
"""
device = None
for module_name, module in model.named_children():
if module_name == "output":
quantized_module = Int8WeightLinear(
in_features=module.in_features,
out_features=module.out_features,
bias=module.bias,
device=device,
)
del module
setattr(model, module_name, quantized_module)
elif module_name == "tok_embeddings":
quantized_module = Int8WeightEmbedding(
num_embeddings=module.num_embeddings,
embedding_dim=module.embedding_dim,
padding_idx=module.padding_idx,
device=device,
)
del module
setattr(model, module_name, quantized_module)
elif isinstance(module, ColumnParallelLinear | RowParallelLinear | nn.Linear):
quantized_module = Int8DynActInt4WeightLinearLoRA(
in_features=module.in_features,
out_features=module.out_features,
bias=False,
group_size=group_size,
lora_rank=lora_rank,
lora_scale=lora_scale,
device=device,
)
del module
setattr(model, module_name, quantized_module)
else:
_prepare_model_int4_weight_int8_dynamic_activation(module, group_size, lora_rank, lora_scale)
return model
def convert_to_int4_quantized_model(
model: Transformer | CrossAttentionTransformer,
checkpoint_dir: str,
device: torch.device | None = None,
) -> Transformer | CrossAttentionTransformer:
"""Convert the model to int4 quantized model."""
model_args = model.params
assert model_args.quantization_args is not None, "Quantization args must be specified."
quantization_args = model_args.quantization_args
if quantization_args.scheme is None:
raise ValueError("Quantization scheme must be specified in 'quantization_args'.")
if quantization_args.scheme.value != "int4_weight_int8_dynamic_activation":
raise NotImplementedError(
"Only int4 quantization with 'int4_weight_int8_dynamic_activation' scheme is supported."
)
group_size = model_args.quantization_args.group_size
if group_size is None:
raise ValueError("'group_size' cannot be None in 'quantization_args'. Please specify it.")
if model_args.lora_args is None:
# Certain quantized models (e.g., SpinQuant) may not have LoRA.
lora_rank = None
lora_scale = None
else:
lora_rank = model_args.lora_args.rank
lora_scale = model_args.lora_args.scale
_prepare_model_int4_weight_int8_dynamic_activation(model, group_size, lora_rank, lora_scale)
return cast(Transformer | CrossAttentionTransformer, model.to(device=device))

View file

@ -0,0 +1,116 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from ..datatypes import BuiltinTool, StopReason, ToolCall
from .prompt_templates import (
BuiltinToolGenerator,
JsonCustomToolGenerator,
ToolResponseGenerator,
)
INSTRUCTION = "You are a helpful assistant."
def system_message_builtin_tools_only():
return {
"builtin_tools": BuiltinToolGenerator().data_examples()[0],
"custom_tools": [],
"instruction": INSTRUCTION,
}
def system_message_builtin_code_only():
return {
"builtin_tools": BuiltinToolGenerator().data_examples()[1],
"custom_tools": [],
"instruction": "",
}
def system_message_custom_tools_only():
return {
"builtin_tools": [],
"custom_tools": JsonCustomToolGenerator().data_examples()[0],
"instruction": INSTRUCTION,
}
def system_message_builtin_and_custom_tools():
return {
"builtin_tools": BuiltinToolGenerator().data_examples()[0],
"custom_tools": JsonCustomToolGenerator().data_examples()[0],
"instruction": INSTRUCTION,
}
def system_default():
return {
"builtin_tools": [],
"custom_tools": [],
"instruction": INSTRUCTION,
}
def tool_success():
return ToolResponseGenerator().data_examples()[0]
def tool_failure():
return ToolResponseGenerator().data_examples()[1]
def assistant_builtin_tool_call():
return {
"content": "",
"tool_call": ToolCall(
call_id="uuid",
tool_name=BuiltinTool.brave_search,
arguments={
"query": "Who won NBA in 2024?",
},
),
"stop_reason": StopReason.end_of_message,
}
def assistant_custom_tool_call():
return {
"content": "",
"tool_call": ToolCall(
call_id="uuid",
tool_name="trending_songs",
arguments={"country": "US", "n": 10},
),
"stop_reason": StopReason.end_of_turn,
}
def assistant_default():
return {
"content": "Hi, I am a helpful assistant. What can I help you with today?",
"tool_call": None,
"stop_reason": StopReason.end_of_turn,
}
def user_default():
return {"content": "Please tell me how to plan a trip to New York"}
def user_images():
return {"content": "<|image|><|image|>What do these images depict?"}
def user_interleaved_images():
return {"content": "<|image|>Describe the image in one sentence.<|image|>Write a haiku about these images"}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,198 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Collection, Iterator, Sequence, Set
from pathlib import Path
from typing import (
Literal,
cast,
)
import tiktoken
from llama_stack.log import get_logger
from llama_stack.models.llama.tokenizer_utils import load_bpe_file
# The tiktoken tokenizer can handle <=400k chars without
# pyo3_runtime.PanicException.
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
# https://github.com/openai/tiktoken/issues/195
# Here we iterate over subsequences and split if we exceed the limit
# of max consecutive non-whitespace or whitespace characters.
MAX_NO_WHITESPACES_CHARS = 25_000
_INSTANCE = None
logger = get_logger(name=__name__, category="models::llama")
class Tokenizer:
"""
Tokenizing and encoding/decoding text using the Tiktoken tokenizer.
"""
special_tokens: dict[str, int]
num_reserved_special_tokens = 256
pat_str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" # noqa: E501
@classmethod
def get_instance(cls):
global _INSTANCE
if _INSTANCE is None:
_INSTANCE = Tokenizer(Path(__file__).parent / "tokenizer.model")
return _INSTANCE
def __init__(self, model_path: Path):
"""
Initializes the Tokenizer with a Tiktoken model.
Args:
model_path (str): The path to the Tiktoken model file.
"""
if not model_path.exists():
raise FileNotFoundError(f"Tokenizer model file not found: {model_path}")
mergeable_ranks = load_bpe_file(model_path)
num_base_tokens = len(mergeable_ranks)
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|finetune_right_pad_id|>",
"<|step_id|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|eom_id|>", # end of message
"<|eot_id|>", # end of turn
"<|python_tag|>",
"<|image|>",
]
reserved_tokens = [
f"<|reserved_special_token_{2 + i}|>" for i in range(self.num_reserved_special_tokens - len(special_tokens))
]
special_tokens = special_tokens + reserved_tokens
self.special_tokens = {token: num_base_tokens + i for i, token in enumerate(special_tokens)}
self.model = tiktoken.Encoding(
name=model_path.name,
pat_str=self.pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens,
)
self.n_words: int = num_base_tokens + len(special_tokens)
# BOS / EOS token IDs
self.bos_id: int = self.special_tokens["<|begin_of_text|>"]
self.eos_id: int = self.special_tokens["<|end_of_text|>"]
self.eot_id: int = self.special_tokens["<|eot_id|>"]
self.eom_id: int = self.special_tokens["<|eom_id|>"]
self.python_tag_id = self.special_tokens["<|python_tag|>"]
self.pad_id: int = self.special_tokens["<|finetune_right_pad_id|>"]
self.stop_tokens = [
self.eos_id,
self.special_tokens["<|eom_id|>"],
self.special_tokens["<|eot_id|>"],
]
def encode(
self,
s: str,
*,
bos: bool,
eos: bool,
allowed_special: Literal["all"] | Set[str] | None = None,
disallowed_special: Literal["all"] | Collection[str] = (),
) -> list[int]:
"""
Encodes a string into a list of token IDs.
Args:
s (str): The input string to be encoded.
bos (bool): Whether to prepend the beginning-of-sequence token.
eos (bool): Whether to append the end-of-sequence token.
allowed_special ("all"|set[str]): allowed special tokens in string
disallowed_special ("all"|set[str]): special tokens that raise an error when in string
Returns:
list[int]: A list of token IDs.
By default, setting disallowed_special=() encodes a string by ignoring
special tokens. Specifically:
- Setting `disallowed_special` to () will cause all text corresponding
to special tokens to be encoded as natural text (insteading of raising
an error).
- Setting `allowed_special` to "all" will treat all text corresponding
to special tokens to be encoded as special tokens.
"""
if allowed_special is None:
allowed_special = set()
assert type(s) is str
substrs = (
substr
for i in range(0, len(s), TIKTOKEN_MAX_ENCODE_CHARS)
for substr in self._split_whitespaces_or_nonwhitespaces(
s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
)
)
t: list[int] = []
for substr in substrs:
t.extend(
self.model.encode(
substr,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
)
if bos:
t.insert(0, self.bos_id)
if eos:
t.append(self.eos_id)
return t
def decode(self, t: Sequence[int]) -> str:
"""
Decodes a list of token IDs into a string.
Args:
t (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
# Typecast is safe here. Tiktoken doesn't do anything list-related with the sequence.
return self.model.decode(cast(list[int], t))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(s: str, max_consecutive_slice_len: int) -> Iterator[str]:
"""
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
consecutive whitespaces or consecutive non-whitespaces.
"""
current_slice_len = 0
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
slice_start = 0
for i in range(len(s)):
is_now_space = s[i].isspace()
if current_slice_is_space ^ is_now_space:
current_slice_len = 1
current_slice_is_space = is_now_space
else:
current_slice_len += 1
if current_slice_len > max_consecutive_slice_len:
yield s[slice_start:i]
slice_start = i
current_slice_len = 1
yield s[slice_start:]

View file

@ -0,0 +1,266 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import re
from llama_stack.log import get_logger
from ..datatypes import BuiltinTool, RecursiveType, ToolCall, ToolPromptFormat
logger = get_logger(name=__name__, category="models::llama")
BUILTIN_TOOL_PATTERN = r'\b(?P<tool_name>\w+)\.call\(query="(?P<query>[^"]*)"\)'
CUSTOM_TOOL_CALL_PATTERN = re.compile(r"<function=(?P<function_name>[^}]+)>(?P<args>{.*?})")
def is_json(s):
try:
parsed = json.loads(s)
# Return True for valid objects and not for ints, strings, etc
return isinstance(parsed, dict)
except json.JSONDecodeError:
return False
return True
def parse_llama_tool_call_format(input_string):
"""
Parse tool calls in the format:
[func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
Returns a list of (function_name, arguments_dict) tuples or None if parsing fails.
"""
# Strip outer brackets and whitespace
input_string = input_string.strip()
if not (input_string.startswith("[") and input_string.endswith("]")):
return None
content = input_string[1:-1].strip()
if not content:
return None
result = []
# State variables for parsing
pos = 0
length = len(content)
while pos < length:
# Find function name
name_end = content.find("(", pos)
if name_end == -1:
break
func_name = content[pos:name_end].strip()
# Find closing parenthesis for this function call
paren_level = 1
args_start = name_end + 1
args_end = args_start
while args_end < length and paren_level > 0:
if content[args_end] == "(":
paren_level += 1
elif content[args_end] == ")":
paren_level -= 1
args_end += 1
if paren_level != 0:
# Unmatched parentheses
return None
# Parse arguments
args_str = content[args_start : args_end - 1].strip()
args_dict = {}
if args_str:
# Split by commas, but respect nested structures
parts = []
part_start = 0
in_quotes = False
quote_char = None
nested_level = 0
for i, char in enumerate(args_str):
if char in ('"', "'") and (i == 0 or args_str[i - 1] != "\\"):
if not in_quotes:
in_quotes = True
quote_char = char
elif char == quote_char:
in_quotes = False
quote_char = None
elif not in_quotes:
if char in ("{", "["):
nested_level += 1
elif char in ("}", "]"):
nested_level -= 1
elif char == "," and nested_level == 0:
parts.append(args_str[part_start:i].strip())
part_start = i + 1
parts.append(args_str[part_start:].strip())
# Process each key=value pair
for part in parts:
if "=" in part:
key, value = part.split("=", 1)
key = key.strip()
value = value.strip()
# Try to convert value to appropriate Python type
if (value.startswith('"') and value.endswith('"')) or (
value.startswith("'") and value.endswith("'")
):
# String
value = value[1:-1]
elif value.lower() == "true":
value = True
elif value.lower() == "false":
value = False
elif value.lower() == "none":
value = None
elif value.startswith("{") and value.endswith("}"):
# This is a nested dictionary
try:
# Try to parse as JSON
value = json.loads(value.replace("'", '"'))
except json.JSONDecodeError:
# Keep as string if parsing fails
pass
elif value.startswith("[") and value.endswith("]"):
# This is a nested list
try:
# Try to parse as JSON
value = json.loads(value.replace("'", '"'))
except json.JSONDecodeError:
# Keep as string if parsing fails
pass
else:
# Try to convert to number
try:
if "." in value:
value = float(value)
else:
value = int(value)
except ValueError:
# Keep as string if not a valid number
pass
args_dict[key] = value
result.append((func_name, args_dict))
# Move to the next function call
pos = args_end
# Skip the comma between function calls if present
if pos < length and content[pos] == ",":
pos += 1
return result if result else None
class ToolUtils:
@staticmethod
def is_builtin_tool_call(message_body: str) -> bool:
match = re.search(ToolUtils.BUILTIN_TOOL_PATTERN, message_body)
return match is not None
@staticmethod
def maybe_extract_builtin_tool_call(message_body: str) -> tuple[str, str] | None:
# Find the first match in the text
match = re.search(BUILTIN_TOOL_PATTERN, message_body)
# Check if a match is found and return it
if match:
tool_name = match.group("tool_name")
query = match.group("query")
return tool_name, query
else:
return None
@staticmethod
def maybe_extract_custom_tool_call(message_body: str) -> tuple[str, str] | None:
# NOTE: Custom function too calls are still experimental
# Sometimes, response is of the form
# {"type": "function", "name": "function_name", "parameters": {...}
# and some times
# <function=function_name>(parameters)</function>
# Find the first match in the text
match = re.search(CUSTOM_TOOL_CALL_PATTERN, message_body)
if match:
tool_name = match.group("function_name")
query = match.group("args")
try:
return tool_name, json.loads(query.replace("'", '"'))
except Exception as e:
print("Exception while parsing json query for custom tool call", query, e)
return None
elif is_json(message_body):
response = json.loads(message_body)
if ("type" in response and response["type"] == "function") or (
"name" in response and "parameters" in response
):
function_name = response["name"]
args = response["parameters"]
return function_name, args
else:
return None
elif function_calls := parse_llama_tool_call_format(message_body):
# FIXME: Enable multiple tool calls
return function_calls[0]
else:
logger.debug(f"Did not parse tool call from message body: {message_body}")
return None
@staticmethod
def encode_tool_call(t: ToolCall, tool_prompt_format: ToolPromptFormat) -> str:
args = json.loads(t.arguments)
if t.tool_name == BuiltinTool.brave_search:
q = args["query"]
return f'brave_search.call(query="{q}")'
elif t.tool_name == BuiltinTool.wolfram_alpha:
q = args["query"]
return f'wolfram_alpha.call(query="{q}")'
elif t.tool_name == BuiltinTool.photogen:
q = args["query"]
return f'photogen.call(query="{q}")'
elif t.tool_name == BuiltinTool.code_interpreter:
return args["code"]
else:
fname = t.tool_name
if tool_prompt_format == ToolPromptFormat.json:
return json.dumps(
{
"type": "function",
"name": fname,
"parameters": args,
}
)
elif tool_prompt_format == ToolPromptFormat.function_tag:
return f"<function={fname}>{t.arguments}</function>"
elif tool_prompt_format == ToolPromptFormat.python_list:
def format_value(value: RecursiveType) -> str:
if isinstance(value, str):
return f'"{value}"'
elif isinstance(value, int | float | bool) or value is None:
return str(value)
elif isinstance(value, list):
return f"[{', '.join(format_value(v) for v in value)}]"
elif isinstance(value, dict):
return f"{{{', '.join(f'{k}={format_value(v)}' for k, v in value.items())}}}"
else:
raise ValueError(f"Unsupported type: {type(value)}")
args_str = ", ".join(f"{k}={format_value(v)}" for k, v in args.items())
return f"[{fname}({args_str})]"
else:
raise ValueError(f"Unsupported tool prompt format: {tool_prompt_format}")

View file

@ -0,0 +1,12 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.

View file

@ -0,0 +1,358 @@
# Llama 3.1 - Prompt Formats
## Tokens
Here is a list of special tokens that are supported by Llama 3.1:
- `<|begin_of_text|>`: Specifies the start of the prompt
- `<|end_of_text|>`: Model will cease to generate more tokens. This token is generated only by the base models.
- `<|finetune_right_pad_id|>`: This token is used for padding text sequences to the same length in a batch.
- `<|start_header_id|>` and `<|end_header_id|>`: These tokens enclose the role for a particular message. The possible roles are: [system, user, assistant and ipython]
- `<|eom_id|>`: End of message. A message represents a possible stopping point for execution where the model can inform the executor that a tool call needs to be made. This is used for multi-step interactions between the model and any available tools. This token is emitted by the model when the Environment: ipython instruction is used in the system prompt, or if the model calls for a built-in tool.
- `<|eot_id|>`: End of turn. Represents when the model has determined that it has finished interacting with the user message that initiated its response. This is used in two scenarios:
- at the end of a direct interaction between the model and the user
- at the end of multiple interactions between the model and any available tools
This token signals to the executor that the model has finished generating a response.
- `<|python_tag|>`: Is a special tag used in the model's response to signify a tool call.
There are 4 different roles that are supported by Llama 3.1
- `system`: Sets the context in which to interact with the AI model. It typically includes rules, guidelines, or necessary information that helps the model respond effectively.
- `user`: Represents the human interacting with the model. It includes the inputs, commands, and questions to the model.
- `ipython`: A new role introduced in Llama 3.1. Semantically, this role means "tool". This role is used to mark messages with the output of a tool call when sent back to the model from the executor.
- `assistant`: Represents the response generated by the AI model based on the context provided in the `system`, `ipython` and `user` prompts.
## Llama 3.1 Base Model
Text completion for Llama 3.1 base model uses this format.
##### Input Prompt Format
```
<|begin_of_text|>Color of sky is blue but sometimes can also be
```
##### Model Response Format
```
red, orange, yellow, green, purple, pink, brown, gray, black, white, and even rainbow colors. The color of the sky can change due to various reasons such as time of day, weather conditions, pollution, and atmospheric phenomena.
The color of the sky is primarily blue because of a phenomenon called
```
Note start special tag
## Llama 3.1 Instruct Model
## User and assistant conversation
Here is a regular multi-turn user assistant conversation and how its formatted.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
Answer who are you in the form of jeopardy?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
Here's my response
"What is a helpful assistant?"<|eot_id|>
```
## Tool Calling Formats
The three built-in tools (brave_search, wolfram_alpha, and code interpreter) can be turned on using the system prompt:
- Brave Search: Tool call to perform web searches.
- Wolfram Alpha: Tool call to perform complex mathematical calculations.
- Code Interpreter: Enables the model to output python code.
## Builtin Tool Calling
Here is an example of a conversation using brave search
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Tools: brave_search, wolfram_alpha
Cutting Knowledge Date: December 2023
Today Date: 21 September 2024
You are a helpful assistant.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Search the web for the latest price of 1oz gold?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
<|python_tag|>brave_search.call(query="latest price of 1oz gold")<|eom_id|>
```
- Just including Environment: ipython turns on code interpreter; therefore, you don't need to specify code interpretation on the Tools: line. The model can generate python code which is interpreted by the executor, with the result provided back to the model.
- The message body of the assistant response starts with a special tag <|python_tag|>
- As alluded to above, in such an environment, the model can generate <|eom_id|> instead of just the standard <|eot_id|> . The latter indicates the turn is finished, while the former indicates continued multi-step reasoning. That is, the model is expecting a continuation message with the output of the tool call.
- The model tool call response is of the form `tool.call(query="...")` wher tool is `brave_search` or `wolfram_alpha`
## Builtin Code Interpreter
Here is an actual example of model responding with code
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython<|eot_id|><|start_header_id|>user<|end_header_id|>
Write code to check if number is prime, use that to see if the number 7 is prime<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
<|python_tag|>def is_prime(n):
if n <= 1
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
print(is_prime(7)) # Output: True<|eom_id|>
```
- Model starts with <|python_tag|> and continues writing python code that it needs to be executed
- No explicit mention of code_interpreter in system prompt. `Environment: ipython` implicitly enables it.
## Built-in tools full interaction
Here is a full interaction with the built-in tools including the tool response and the final assistant response.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Tools: brave_search, wolfram_alpha
<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the 100th decimal of pi?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
<|python_tag|>wolfram_alpha.call(query="100th decimal of pi")<|eom_id|><|start_header_id|>ipython<|end_header_id|>
{
"queryresult": {
"success": true,
"inputstring": "100th decimal of pi",
"pods": [
{
"title": "Input interpretation",
"subpods": [
{
"title": "",
"plaintext": "100th digit | π"
}
]
},
{
"title": "Nearby digits",
"subpods": [
{
"title": "",
"plaintext": "...86208998628034825342117067982148086513282306647093..."
}
]
},
{
"title": "Result",
"primary": true,
"subpods": [
{
"title": "",
"plaintext": "7"
}
]
}
]
}
}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
The 100th decimal of pi is 7.<|eot_id|>
```
- Note the `<|python_tag|>` in the assistant response.
- Role is `ipython` for the wolfram alpha response that is passed back to the model.
- Final message from assistant has <|eot_id|> tag.
## Zero shot tool calling
## JSON based tool calling
Llama models can now output custom tool calls from a single message to allow easier tool calling.
The following prompts provide an example of how custom tools can be called from the output of the model.
It's important to note that the model itself does not execute the calls; it provides structured output to facilitate calling by an executor.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 21 September 2024
You are a helpful assistant.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Answer the user's question by making use of the following functions if needed.
If none of the function can be used, please say so.
Here is a list of functions in JSON format:
{
"type": "function",
"function": {
"name": "trending_songs",
"description": "Returns the trending songs on a Music site",
"parameters": {
"type": "object",
"properties": [
{
"n": {
"type": "object",
"description": "The number of songs to return"
}
},
{
"genre": {
"type": "object",
"description": "The genre of the songs to return"
}
}
],
"required": ["n"]
}
}
}
Return function calls in JSON format.<|eot_id|><|start_header_id|>user<|end_header_id|>
Use tools to get latest trending songs<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
<|python_tag|>{
"type": "function",
"name": "trending_songs",
"parameters": {
"n": "10",
"genre": "all"
}
}<|eom_id|>
```
- JSON format for providing tools needs name, description and parameters
- Model responds with `<|python_tag|>` and `<|eom_id|>` as `Environment: ipython` was in the system prompt
- Instructions for tools added as a user message
- Only single tool calls are supported as of now
## Example of a user defined tool calling
## `<function>` based tool calling
Here is an example of how you could also write custom instructions for model to do zero shot tool calling.
In this example, we define a custom tool calling format using the `<function>` tag.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 21 September 2024
You are a helpful assistant.
<|eot_id|><|start_header_id|>user<|end_header_id|>
You have access to the following functions:
Use the function 'trending_songs' to 'Returns the trending songs on a Music site':
{"name": "trending_songs", "description": "Returns the trending songs on a Music site", "parameters": {"genre": {"description": "The genre of the songs to return", "param_type": "str", "required": false}, "n": {"description": "The number of songs to return", "param_type": "int", "required": true}}}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line<|eot_id|><|start_header_id|>user<|end_header_id|>
Use tools to get latest trending songs<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
<function=trending_songs>{"n": 10}</function><|eot_id|>
```
- In this case, model does NOT respond with `<|python_tag|>` and ends with `<|eot_id|>`
- Instructions for tools added as a user message
Thank You!

View file

@ -0,0 +1,258 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import json
import textwrap
from llama_stack.models.llama.datatypes import (
BuiltinTool,
RawMessage,
StopReason,
ToolCall,
ToolPromptFormat,
)
from llama_stack.models.llama.prompt_format import (
# llama3_1_e2e_tool_call_dialog,
TextCompletionContent,
UseCase,
llama3_1_builtin_tool_call_dialog,
llama3_1_custom_tool_call_dialog,
)
def wolfram_alpha_response():
return textwrap.dedent(
"""
{
"queryresult": {
"success": true,
"inputstring": "100th decimal of pi",
"pods": [
{
"title": "Input interpretation",
"subpods": [
{
"title": "",
"plaintext": "100th digit | \u03c0"
}
]
},
{
"title": "Nearby digits",
"subpods": [
{
"title": "",
"plaintext": "...86208998628034825342117067982148086513282306647093..."
}
]
},
{
"title": "Result",
"primary": true,
"subpods": [
{
"title": "",
"plaintext": "7"
}
]
}
]
}
}
"""
)
def usecases() -> list[UseCase | str]:
return [
textwrap.dedent(
"""
# Llama 3.1 - Prompt Formats
## Tokens
Here is a list of special tokens that are supported by Llama 3.1:
- `<|begin_of_text|>`: Specifies the start of the prompt
- `<|end_of_text|>`: Model will cease to generate more tokens. This token is generated only by the base models.
- `<|finetune_right_pad_id|>`: This token is used for padding text sequences to the same length in a batch.
- `<|start_header_id|>` and `<|end_header_id|>`: These tokens enclose the role for a particular message. The possible roles are: [system, user, assistant and tool]
- `<|eom_id|>`: End of message. A message represents a possible stopping point for execution where the model can inform the executor that a tool call needs to be made. This is used for multi-step interactions between the model and any available tools. This token is emitted by the model when the Environment: ipython instruction is used in the system prompt, or if the model calls for a built-in tool.
- `<|eot_id|>`: End of turn. Represents when the model has determined that it has finished interacting with the user message that initiated its response. This is used in two scenarios:
- at the end of a direct interaction between the model and the user
- at the end of multiple interactions between the model and any available tools
This token signals to the executor that the model has finished generating a response.
- `<|python_tag|>`: Is a special tag used in the model's response to signify a tool call.
"""
),
textwrap.dedent(
"""
There are 4 different roles that are supported by Llama 3.1
- `system`: Sets the context in which to interact with the AI model. It typically includes rules, guidelines, or necessary information that helps the model respond effectively.
- `user`: Represents the human interacting with the model. It includes the inputs, commands, and questions to the model.
- `tool`: A new role introduced in Llama 3.1. This role is used to mark messages with the output of a tool call when sent back to the model from the executor. (The actual token used by the model for this role is "ipython".)
- `assistant`: Represents the response generated by the AI model based on the context provided in the `system`, `tool` and `user` prompts.
"""
),
UseCase(
title="Llama 3.1 Base Model",
description="Text completion for Llama 3.1 base model uses this format.",
dialogs=[TextCompletionContent(content="Color of sky is blue but sometimes can also be")],
notes="Note start special tag",
),
"## Llama 3.1 Instruct Model",
UseCase(
title="User and assistant conversation",
description="Here is a regular multi-turn user assistant conversation and how its formatted.",
dialogs=[
[
RawMessage(role="system", content="You are a helpful assistant"),
RawMessage(
role="user",
content="Answer who are you in the form of jeopardy?",
),
]
],
notes="",
),
"## Tool Calling Formats",
textwrap.dedent(
"""
The three built-in tools (brave_search, wolfram_alpha, and code interpreter) can be turned on using the system prompt:
- Brave Search: Tool call to perform web searches.
- Wolfram Alpha: Tool call to perform complex mathematical calculations.
- Code Interpreter: Enables the model to output python code.
"""
),
UseCase(
title="Builtin Tool Calling",
description=textwrap.dedent(
"""
Here is an example of a conversation using brave search
"""
),
dialogs=[llama3_1_builtin_tool_call_dialog()],
notes=textwrap.dedent(
"""
- Just including Environment: ipython turns on code interpreter; therefore, you don't need to specify code interpretation on the Tools: line. The model can generate python code which is interpreted by the executor, with the result provided back to the model.
- The message body of the assistant response starts with a special tag <|python_tag|>
- As alluded to above, in such an environment, the model can generate <|eom_id|> instead of just the standard <|eot_id|> . The latter indicates the turn is finished, while the former indicates continued multi-step reasoning. That is, the model is expecting a continuation message with the output of the tool call.
- The model tool call response is of the form `tool.call(query="...")` wher tool is `brave_search` or `wolfram_alpha`
"""
),
),
UseCase(
title="Builtin Code Interpreter",
description="Here is an actual example of model responding with code",
dialogs=[
[
RawMessage(role="system", content="Environment: ipython"),
RawMessage(
role="user",
content="Write code to check if number is prime, use that to see if the number 7 is prime",
),
],
],
notes=textwrap.dedent(
"""
- Model starts with <|python_tag|> and continues writing python code that it needs to be executed
- No explicit mention of code_interpreter in system prompt. `Environment: ipython` implicitly enables it.
"""
),
),
UseCase(
title="Built-in tools full interaction",
description="Here is a full interaction with the built-in tools including the tool response and the final assistant response.",
dialogs=[
[
RawMessage(
role="system",
content="Environment: ipython\nTools: brave_search, wolfram_alpha\n",
),
RawMessage(role="user", content="What is the 100th decimal of pi?"),
RawMessage(
role="assistant",
content="",
stop_reason=StopReason.end_of_message,
tool_calls=[
ToolCall(
call_id="tool_call_id",
tool_name=BuiltinTool.wolfram_alpha,
arguments=json.dumps({"query": "100th decimal of pi"}),
)
],
),
RawMessage(
role="tool",
content=wolfram_alpha_response(),
),
],
],
notes=textwrap.dedent(
"""
- Note the `<|python_tag|>` in the assistant response.
- Role is `tool` for the wolfram alpha response that is passed back to the model.
- Final message from assistant has <|eot_id|> tag.
"""
),
),
"## Zero shot tool calling",
UseCase(
title="JSON based tool calling",
description=textwrap.dedent(
"""
Llama models can now output custom tool calls from a single message to allow easier tool calling.
The following prompts provide an example of how custom tools can be called from the output of the model.
It's important to note that the model itself does not execute the calls; it provides structured output to facilitate calling by an executor.
"""
),
dialogs=[llama3_1_custom_tool_call_dialog()],
notes=textwrap.dedent(
"""
- JSON format for providing tools needs name, description and parameters
- Model responds with `<|python_tag|>` and `<|eom_id|>` as `Environment: ipython` was in the system prompt
- Instructions for tools added as a user message
- Only single tool calls are supported as of now
"""
),
),
# FIXME: This is not working yet as expected
# UseCase(
# title="E2E tool call example",
# description=textwrap.dedent(
# """
# Here is an example showing the whole multi-step turn by taking custom tool outputs and passing back to the model.
# """
# ),
# dialogs=[
# llama3_1_e2e_tool_call_dialog(
# tool_prompt_format=ToolPromptFormat.function_tag
# )
# ],
# notes="",
# ),
"## Example of a user defined tool calling",
UseCase(
title="`<function>` based tool calling",
description=textwrap.dedent(
"""
Here is an example of how you could also write custom instructions for model to do zero shot tool calling.
In this example, we define a custom tool calling format using the `<function>` tag.
"""
),
dialogs=[llama3_1_custom_tool_call_dialog(ToolPromptFormat.function_tag)],
notes=textwrap.dedent(
"""
- In this case, model does NOT respond with `<|python_tag|>` and ends with `<|eot_id|>`
- Instructions for tools added as a user message
"""
),
),
]

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,229 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import textwrap
from llama_stack.models.llama.datatypes import (
RawMessage,
StopReason,
ToolCall,
ToolPromptFormat,
)
from ..prompt_format import (
TextCompletionContent,
UseCase,
llama3_1_builtin_code_interpreter_dialog,
)
def user_tool_call():
content = textwrap.dedent(
"""
Questions: Can you retrieve the details for the user with the ID 7890, who has black as their special request?
Here is a list of functions in JSON format that you can invoke:
[
{
"name": "get_user_info",
"description": "Retrieve details for a specific user by their unique identifier. Note that the provided function is in Python 3 syntax.",
"parameters": {
"type": "dict",
"required": [
"user_id"
],
"properties": {
"user_id": {
"type": "integer",
"description": "The unique identifier of the user. It is used to fetch the specific user details from the database."
},
"special": {
"type": "string",
"description": "Any special information or parameters that need to be considered while fetching user details.",
"default": "none"
}
}
}
}
]
Should you decide to return the function call(s),Put it in the format of [func1(params_name=params_value, params_name2=params_value2...), func2(params)]
NO other text MUST be included.
"""
)
return content.strip()
def system_tool_call():
content = textwrap.dedent(
"""
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
[
{
"name": "get_weather",
"description": "Get weather info for places",
"parameters": {
"type": "dict",
"required": [
"city"
],
"properties": {
"city": {
"type": "string",
"description": "The name of the city to get the weather for"
},
"metric": {
"type": "string",
"description": "The metric for weather. Options are: celsius, fahrenheit",
"default": "celsius"
}
}
}
}
]
"""
)
return content.strip()
def usecases():
return [
UseCase(
title="User and assistant conversation",
description="Here is a regular multi-turn user assistant conversation and how its formatted.",
dialogs=[
[
RawMessage(role="system", content="You are a helpful assistant"),
RawMessage(role="user", content="Who are you?"),
]
],
notes="This format is unchanged from Llama3.1",
),
UseCase(
title="Zero shot function calling",
description=textwrap.dedent(
"""
For Llama3.2 1B and 3B instruct models, we are introducing a new format for zero shot function calling.
This new format is designed to be more flexible and powerful than the previous format.
All available functions can be provided in the system message. A key difference is in the format of how the assistant responds with function calls.
It is pythonic in the form of `[func1(params_name=params_value, params_name2=params_value2...), func2(params)]` instead of the `json` or `<function>` tag that were defined in Llama3.1.
Here is an example for the same,
"""
),
dialogs=[
# Zero shot tool calls as system message
[
RawMessage(role="system", content=system_tool_call()),
RawMessage(role="user", content="What is the weather in SF and Seattle?"),
],
],
notes=textwrap.dedent(
"""
- The output supports multiple tool calls natively
- JSON format for defining the functions in the system prompt is similar to Llama3.1
"""
),
),
UseCase(
title="Zero shot function calling with user message",
description=textwrap.dedent(
"""
While the default is to provide all function calls in a system message, in Llama3.2 text models you can also provide information for all the available tools in a user message.
"""
),
dialogs=[
# Zero shot tool call as user message
[
RawMessage(role="user", content=user_tool_call()),
],
],
notes=textwrap.dedent(
"""
- The tool call format for the model is the same whether your function calls are provided in the system or user message.
- While builtin tool calls end with a <|eom_id|>, notice the <|eot_id|> for zero shot tool calls.
"""
),
),
UseCase(
title="Code Interpreter",
description=textwrap.dedent(
"""
Code Interpreter continues to work in 3.2 text models similar to Llama 3.1 model family.
Here is an example,
"""
),
dialogs=[llama3_1_builtin_code_interpreter_dialog()],
notes=textwrap.dedent(
"""
- Note `Environment: ipython` in the system prompt.
- Note that the response starts with `<|python_tag|>` and ends with `<|eom_id|>`
"""
),
),
UseCase(
title="Zero shot function calling E2E format",
description=textwrap.dedent(
"""
Here is an example of the e2e cycle of tool calls with the model in a muti-step way.
"""
),
dialogs=[
[
RawMessage(role="system", content=system_tool_call()),
RawMessage(role="user", content="What is the weather in SF?"),
RawMessage(
role="assistant",
content="",
stop_reason=StopReason.end_of_turn,
tool_calls=[
ToolCall(
call_id="cc",
tool_name="get_weather",
arguments={
"city": "San Francisco",
"metric": "celsius",
},
)
],
),
RawMessage(
role="tool",
content=json.dumps("25 C"),
),
],
],
notes=textwrap.dedent(
"""
- The output of the function call is provided back to the model as a tool response ( in json format ).
- Notice `<|start_header_id|>ipython<|end_header_id|>` as the header message preceding the tool response.
- The model finally summarizes the information from the tool response and returns the result to the user.
"""
),
tool_prompt_format=ToolPromptFormat.python_list,
),
UseCase(
title="Prompt format for base models",
description=textwrap.dedent(
"""
For base models (Llama3.2-1B and Llama3.2-3B), the prompt format for a simple completion is as follows
"""
),
dialogs=[
TextCompletionContent(content="The color of the sky is blue but sometimes it can also be"),
],
notes="Same as Llama3.1",
),
]

View file

@ -0,0 +1,126 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import textwrap
from pathlib import Path
from llama_stack.models.llama.datatypes import (
RawMediaItem,
RawMessage,
RawTextItem,
)
from ..prompt_format import (
TextCompletionContent,
UseCase,
llama3_1_builtin_tool_call_dialog,
# llama3_1_builtin_tool_call_with_image_dialog,
llama3_2_user_assistant_conversation,
)
def usecases():
this_dir = Path(__file__).parent.parent.resolve()
with open(this_dir / "scripts/resources/dog.jpg", "rb") as f:
img = f.read()
return [
llama3_2_user_assistant_conversation(),
UseCase(
title="User and assistant conversation with Images",
description="This example shows how to pass and image to the model as part of the messages.",
dialogs=[
[
RawMessage(
role="user",
content=[
RawMediaItem(data=img),
RawTextItem(text="Describe this image in two sentences"),
],
)
],
],
notes=textwrap.dedent(
"""
- The `<|image|>` tag is used to indicate presence of the image
- The model isn't an early fusion model so doesn't actually translate an image into several tokens. Instead the cross-attention layers take input "on the side" from a vision encoder
![Image](mm-model.png)
- Its important to postion the <|image|> tag appropriately in the prompt. Image will only attend to the subsequent text tokens
- The <|image|> tag is part of the user message body, implying that it should only come after the header `<|start_header_id|>{role}<|end_header_id|>` in the message body
- We recommend using a single image in one prompt
"""
),
),
UseCase(
title="Builtin and Zero Shot Tool Calling",
description=textwrap.dedent(
"""
Llama3.2 vision models follow the same tool calling format as Llama3.1 models when inputs are text only.
Use `Environment: ipython` to enable tools.
Add `Tools: {{tool_name1}},{{tool_name2}}` for each of the builtin tools.
The same builtin tools as Llama3.1 are available,
- code_interpreter (for executing python code)
- brave_search (to search the web)
- wolfram_alpha (for querying wolfram alpha for mathematical questions)
""",
),
dialogs=[llama3_1_builtin_tool_call_dialog()],
notes=textwrap.dedent(
"""
- Note the `<|python_tag|>` before `brave_search` function call.
- The `<|eom_id|>` tag is used to indicate the end of the message.
- Similar to Llama3.1, code_interpreter is not explicitly mentioned but is enabled via `Environment: ipython`.
- Tool Calling does NOT work with images in the prompt as of now.
"""
),
),
# UseCase(
# title="Tool Calling for vision models",
# description=textwrap.dedent(
# """
# While Llama3.2 vision models follow the same tool calling format as Llama3.1 models when inputs are text only,
# they are not able to do tool calling when prompt contains image inputs (along with text).
# The recommended way would be to separate out the image understanding from the tool calling in successive prompts.
# Here is an example of how that could be done,
# """,
# ),
# dialogs=[llama3_1_builtin_tool_call_with_image_dialog()],
# notes=textwrap.dedent(
# """
# - Instead of a single prompt (image understanding + tool call), we split into two prompts to achieve the same result.
# """
# ),
# ),
UseCase(
title="Prompt format for base models",
description=textwrap.dedent(
"""
For base models (Llama3.2-11B-Vision and Llama3.2-90B-Vision), the prompt format for a simple completion is as follows
"""
),
dialogs=[
TextCompletionContent(content="The color of the sky is blue but sometimes it can also be"),
],
notes="- Same as Llama3.1",
),
UseCase(
title="Prompt format for base models with Image",
description=textwrap.dedent(
"""
For base models (Llama3.2-11B-Vision and Llama3.2-90B-Vision), here is an example of how the text completion format looks with an image,
"""
),
dialogs=[
TextCompletionContent(
content=[
RawMediaItem(data=img),
RawTextItem(text="If I had to write a haiku for this one"),
]
),
],
notes="- Note the placement of the special tags <|begin_of_text|> and <|image|>",
),
]

View file

@ -0,0 +1,286 @@
## User and assistant conversation
Here is a regular multi-turn user assistant conversation and how its formatted.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
Who are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
I'm an AI assistant, which means I'm a computer program designed to simulate conversation and answer questions to the best of my ability. I'm here to help you with any questions or tasks you may have, and I'll do my best to provide you with accurate and helpful information.
I don't have a personal name, but I'm often referred to as a "virtual assistant" or a "chatbot." I'm a machine learning model, which means I've been trained on a large dataset of text and can generate responses based on patterns and context.
I can help with a wide range of topics, from general knowledge and trivia to more specialized subjects like science, history, and technology. I can also assist with tasks like language translation, text summarization, and even generating creative content like stories or poetry.
So, what can I help you with today?<|eot_id|>
```
##### Notes
This format is unchanged from Llama3.1
## Zero shot function calling
For Llama3.2 1B and 3B instruct models, we are introducing a new format for zero shot function calling.
This new format is designed to be more flexible and powerful than the previous format.
All available functions can be provided in the system message. A key difference is in the format of how the assistant responds with function calls.
It is pythonic in the form of `[func1(params_name=params_value, params_name2=params_value2...), func2(params)]` instead of the `json` or `<function>` tag that were defined in Llama3.1.
Here is an example for the same,
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
[
{
"name": "get_weather",
"description": "Get weather info for places",
"parameters": {
"type": "dict",
"required": [
"city"
],
"properties": {
"city": {
"type": "string",
"description": "The name of the city to get the weather for"
},
"metric": {
"type": "string",
"description": "The metric for weather. Options are: celsius, fahrenheit",
"default": "celsius"
}
}
}
}
]<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the weather in SF and Seattle?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
[get_weather(city='San Francisco', metric='celsius'), get_weather(city='Seattle', metric='celsius')]<|eot_id|>
```
##### Notes
- The output supports multiple tool calls natively
- JSON format for defining the functions in the system prompt is similar to Llama3.1
## Zero shot function calling with user message
While the default is to provide all function calls in a system message, in Llama3.2 text models you can also provide information for all the available tools in a user message.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Questions: Can you retrieve the details for the user with the ID 7890, who has black as their special request?
Here is a list of functions in JSON format that you can invoke:
[
{
"name": "get_user_info",
"description": "Retrieve details for a specific user by their unique identifier. Note that the provided function is in Python 3 syntax.",
"parameters": {
"type": "dict",
"required": [
"user_id"
],
"properties": {
"user_id": {
"type": "integer",
"description": "The unique identifier of the user. It is used to fetch the specific user details from the database."
},
"special": {
"type": "string",
"description": "Any special information or parameters that need to be considered while fetching user details.",
"default": "none"
}
}
}
}
]
Should you decide to return the function call(s),Put it in the format of [func1(params_name=params_value, params_name2=params_value2...), func2(params)]
NO other text MUST be included.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
[get_user_info(user_id=7890, special='black')]<|eot_id|>
```
##### Notes
- The tool call format for the model is the same whether your function calls are provided in the system or user message.
- While builtin tool calls end with a <|eom_id|>, notice the <|eot_id|> for zero shot tool calls.
## Code Interpreter
Code Interpreter continues to work in 3.2 text models similar to Llama 3.1 model family.
Here is an example,
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 24 September 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>
Write code to check if number is prime. Use it to verify if number 7 is prime<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
<|python_tag|>def is_prime(n):
if n <= 1:
return False
if n == 2:
return True
if n % 2 == 0:
return False
max_divisor = int(n**0.5) + 1
for d in range(3, max_divisor, 2):
if n % d == 0:
return False
return True
print(is_prime(7)) # Output: True<|eom_id|>
```
##### Notes
- Note `Environment: ipython` in the system prompt.
- Note that the response starts with `<|python_tag|>` and ends with `<|eom_id|>`
## Zero shot function calling E2E format
Here is an example of the e2e cycle of tool calls with the model in a muti-step way.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
[
{
"name": "get_weather",
"description": "Get weather info for places",
"parameters": {
"type": "dict",
"required": [
"city"
],
"properties": {
"city": {
"type": "string",
"description": "The name of the city to get the weather for"
},
"metric": {
"type": "string",
"description": "The metric for weather. Options are: celsius, fahrenheit",
"default": "celsius"
}
}
}
}
]<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the weather in SF?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
<|python_tag|>[get_weather(city="San Francisco", metric="celsius")]<|eot_id|><|start_header_id|>ipython<|end_header_id|>
"25 C"<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
The weather in San Francisco is 25 C.<|eot_id|>
```
##### Notes
- The output of the function call is provided back to the model as a tool response ( in json format ).
- Notice `<|start_header_id|>ipython<|end_header_id|>` as the header message preceding the tool response.
- The model finally summarizes the information from the tool response and returns the result to the user.
## Prompt format for base models
For base models (Llama3.2-1B and Llama3.2-3B), the prompt format for a simple completion is as follows
##### Input Prompt Format
```
<|begin_of_text|>The color of the sky is blue but sometimes it can also be
```
##### Model Response Format
```
gray or even purple. The color of the sky can change depending on the time of day, the weather, and the amount of pollution in the air. The color of the sky can also be affected by the presence of dust, smoke, and other particles in the air.
## Step 1: Identify the factors that
```
##### Notes
Same as Llama3.1
Thank You!

View file

@ -0,0 +1,141 @@
## User and assistant conversation
Here is a regular multi-turn user assistant conversation and how its formatted.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
Who are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
I'm a helpful assistant, here to provide information, answer questions, and assist with tasks to the best of my abilities. I'm a large language model, which means I can understand and respond to natural language inputs, and I'm constantly learning and improving to provide more accurate and helpful responses.
I can help with a wide range of topics, from general knowledge and trivia to more specific areas like science, history, technology, and more. I can also assist with tasks like language translation, text summarization, and even generating creative content like stories or dialogues.
What can I help you with today?<|eot_id|>
```
##### Notes
This format is unchanged from Llama3.1
## User and assistant conversation with Images
This example shows how to pass and image to the model as part of the messages.
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
<|image|>Describe this image in two sentences<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
The image depicts a small dog standing on a skateboard, with its front paws firmly planted on the board and its back paws slightly raised. The dog's fur is predominantly brown and white, with a distinctive black stripe running down its back, and it is wearing a black collar around its neck.<|eot_id|>
```
##### Notes
- The `<|image|>` tag is used to indicate presence of the image
- The model isn't an early fusion model so doesn't actually translate an image into several tokens. Instead the cross-attention layers take input "on the side" from a vision encoder
![Image](mm-model.png)
- Its important to postion the <|image|> tag appropriately in the prompt. Image will only attend to the subsequent text tokens
- The <|image|> tag is part of the user message body, implying that it should only come after the header `<|start_header_id|>{role}<|end_header_id|>` in the message body
- We recommend using a single image in one prompt
## Builtin and Zero Shot Tool Calling
Llama3.2 vision models follow the same tool calling format as Llama3.1 models when inputs are text only.
Use `Environment: ipython` to enable tools.
Add `Tools: {{tool_name1}},{{tool_name2}}` for each of the builtin tools.
The same builtin tools as Llama3.1 are available,
- code_interpreter (for executing python code)
- brave_search (to search the web)
- wolfram_alpha (for querying wolfram alpha for mathematical questions)
##### Input Prompt Format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Tools: brave_search, wolfram_alpha
Cutting Knowledge Date: December 2023
Today Date: 23 September 2024
You are a helpful assistant.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Search the web for the latest price of 1oz gold?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
##### Model Response Format
```
<|python_tag|>brave_search.call(query="latest price of 1oz gold")<|eom_id|>
```
##### Notes
- Note the `<|python_tag|>` before `brave_search` function call.
- The `<|eom_id|>` tag is used to indicate the end of the message.
- Similar to Llama3.1, code_interpreter is not explicitly mentioned but is enabled via `Environment: ipython`.
- Tool Calling does NOT work with images in the prompt as of now.
## Prompt format for base models
For base models (Llama3.2-11B-Vision and Llama3.2-90B-Vision), the prompt format for a simple completion is as follows
##### Input Prompt Format
```
<|begin_of_text|>The color of the sky is blue but sometimes it can also be
```
##### Model Response Format
```
red, orange, pink, purple, and even black. The color of the sky is determined by the amount of sunlight that is scattered by the atmosphere and the amount of dust and water vapor present in the atmosphere. During sunrise and sunset, the sky can take on a range of colors due to the scattering of light by
```
##### Notes
- Same as Llama3.1
## Prompt format for base models with Image
For base models (Llama3.2-11B-Vision and Llama3.2-90B-Vision), here is an example of how the text completion format looks with an image,
##### Input Prompt Format
```
<|begin_of_text|><|image|>If I had to write a haiku for this one
```
##### Model Response Format
```
, it would be: A skateboarder's delight, a puppy on a board, a furry little thrill-seeker. This puppy is a true skateboarding enthusiast, always eager to hit the streets and show off his skills. He's a master of the board, gliding effortlessly across the pavement with grace and style.
```
##### Notes
- Note the placement of the special tags <|begin_of_text|> and <|image|>
Thank You!

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,259 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import json
import textwrap
from llama_stack.models.llama.datatypes import (
BuiltinTool,
RawMessage,
StopReason,
ToolCall,
ToolPromptFormat,
)
from ..prompt_format import (
# llama3_1_e2e_tool_call_dialog,
TextCompletionContent,
UseCase,
llama3_1_builtin_tool_call_dialog,
llama3_1_custom_tool_call_dialog,
)
def wolfram_alpha_response():
return textwrap.dedent(
"""
{
"queryresult": {
"success": true,
"inputstring": "100th decimal of pi",
"pods": [
{
"title": "Input interpretation",
"subpods": [
{
"title": "",
"plaintext": "100th digit | \u03c0"
}
]
},
{
"title": "Nearby digits",
"subpods": [
{
"title": "",
"plaintext": "...86208998628034825342117067982148086513282306647093..."
}
]
},
{
"title": "Result",
"primary": true,
"subpods": [
{
"title": "",
"plaintext": "7"
}
]
}
]
}
}
"""
)
def usecases() -> list[UseCase | str]:
return [
textwrap.dedent(
"""
# Llama 3.1 - Prompt Formats
## Tokens
Here is a list of special tokens that are supported by Llama 3.1:
- `<|begin_of_text|>`: Specifies the start of the prompt
- `<|end_of_text|>`: Model will cease to generate more tokens. This token is generated only by the base models.
- `<|finetune_right_pad_id|>`: This token is used for padding text sequences to the same length in a batch.
- `<|start_header_id|>` and `<|end_header_id|>`: These tokens enclose the role for a particular message. The possible roles are: [system, user, assistant and tool]
- `<|eom_id|>`: End of message. A message represents a possible stopping point for execution where the model can inform the executor that a tool call needs to be made. This is used for multi-step interactions between the model and any available tools. This token is emitted by the model when the Environment: ipython instruction is used in the system prompt, or if the model calls for a built-in tool.
- `<|eot_id|>`: End of turn. Represents when the model has determined that it has finished interacting with the user message that initiated its response. This is used in two scenarios:
- at the end of a direct interaction between the model and the user
- at the end of multiple interactions between the model and any available tools
This token signals to the executor that the model has finished generating a response.
- `<|python_tag|>`: Is a special tag used in the model's response to signify a tool call.
"""
),
textwrap.dedent(
"""
There are 4 different roles that are supported by Llama 3.1
- `system`: Sets the context in which to interact with the AI model. It typically includes rules, guidelines, or necessary information that helps the model respond effectively.
- `user`: Represents the human interacting with the model. It includes the inputs, commands, and questions to the model.
- `tool`: A new role introduced in Llama 3.1. This role is used to mark messages with the output of a tool call when sent back to the model from the executor. (The actual token used by the model for this role is "ipython".)
- `assistant`: Represents the response generated by the AI model based on the context provided in the `system`, `tool` and `user` prompts.
"""
),
UseCase(
title="Llama 3.1 Base Model",
description="Text completion for Llama 3.1 base model uses this format.",
dialogs=[TextCompletionContent(content="Color of sky is blue but sometimes can also be")],
notes="Note start special tag",
),
"## Llama 3.1 Instruct Model",
UseCase(
title="User and assistant conversation",
description="Here is a regular multi-turn user assistant conversation and how its formatted.",
dialogs=[
[
RawMessage(role="system", content="You are a helpful assistant"),
RawMessage(
role="user",
content="Answer who are you in the form of jeopardy?",
),
]
],
notes="",
),
"## Tool Calling Formats",
textwrap.dedent(
"""
The three built-in tools (brave_search, wolfram_alpha, and code interpreter) can be turned on using the system prompt:
- Brave Search: Tool call to perform web searches.
- Wolfram Alpha: Tool call to perform complex mathematical calculations.
- Code Interpreter: Enables the model to output python code.
"""
),
UseCase(
title="Builtin Tool Calling",
description=textwrap.dedent(
"""
Here is an example of a conversation using brave search
"""
),
dialogs=[llama3_1_builtin_tool_call_dialog()],
notes=textwrap.dedent(
"""
- Just including Environment: ipython turns on code interpreter; therefore, you don't need to specify code interpretation on the Tools: line. The model can generate python code which is interpreted by the executor, with the result provided back to the model.
- The message body of the assistant response starts with a special tag <|python_tag|>
- As alluded to above, in such an environment, the model can generate <|eom_id|> instead of just the standard <|eot_id|> . The latter indicates the turn is finished, while the former indicates continued multi-step reasoning. That is, the model is expecting a continuation message with the output of the tool call.
- The model tool call response is of the form `tool.call(query="...")` wher tool is `brave_search` or `wolfram_alpha`
"""
),
),
UseCase(
title="Builtin Code Interpreter",
description="Here is an actual example of model responding with code",
dialogs=[
[
RawMessage(role="system", content="Environment: ipython"),
RawMessage(
role="user",
content="Write code to check if number is prime, use that to see if the number 7 is prime",
),
],
],
notes=textwrap.dedent(
"""
- Model starts with <|python_tag|> and continues writing python code that it needs to be executed
- No explicit mention of code_interpreter in system prompt. `Environment: ipython` implicitly enables it.
"""
),
),
UseCase(
title="Built-in tools full interaction",
description="Here is a full interaction with the built-in tools including the tool response and the final assistant response.",
dialogs=[
[
RawMessage(
role="system",
content="Environment: ipython\nTools: brave_search, wolfram_alpha\n",
),
RawMessage(role="user", content="What is the 100th decimal of pi?"),
RawMessage(
role="assistant",
content="",
stop_reason=StopReason.end_of_message,
tool_calls=[
ToolCall(
call_id="tool_call_id",
tool_name=BuiltinTool.wolfram_alpha,
arguments=json.dumps({"query": "100th decimal of pi"}),
)
],
),
RawMessage(
role="tool",
content=wolfram_alpha_response(),
),
],
],
notes=textwrap.dedent(
"""
- Note the `<|python_tag|>` in the assistant response.
- Role is `tool` for the wolfram alpha response that is passed back to the model.
- Final message from assistant has <|eot_id|> tag.
"""
),
),
"## Zero shot tool calling",
UseCase(
title="JSON based tool calling",
description=textwrap.dedent(
"""
Llama models can now output custom tool calls from a single message to allow easier tool calling.
The following prompts provide an example of how custom tools can be called from the output of the model.
It's important to note that the model itself does not execute the calls; it provides structured output to facilitate calling by an executor.
"""
),
dialogs=[llama3_1_custom_tool_call_dialog()],
notes=textwrap.dedent(
"""
- JSON format for providing tools needs name, description and parameters
- Model responds with `<|python_tag|>` and `<|eom_id|>` as `Environment: ipython` was in the system prompt
- Instructions for tools added as a user message
- Only single tool calls are supported as of now
"""
),
),
# FIXME: This is not working yet as expected
# UseCase(
# title="E2E tool call example",
# description=textwrap.dedent(
# """
# Here is an example showing the whole multi-step turn by taking custom tool outputs and passing back to the model.
# """
# ),
# dialogs=[
# llama3_1_e2e_tool_call_dialog(
# tool_prompt_format=ToolPromptFormat.function_tag
# )
# ],
# notes="",
# ),
"## Example of a user defined tool calling",
UseCase(
title="`<function>` based tool calling",
description=textwrap.dedent(
"""
Here is an example of how you could also write custom instructions for model to do zero shot tool calling.
In this example, we define a custom tool calling format using the `<function>` tag.
"""
),
dialogs=[llama3_1_custom_tool_call_dialog(ToolPromptFormat.function_tag)],
notes=textwrap.dedent(
"""
- In this case, model does NOT respond with `<|python_tag|>` and ends with `<|eot_id|>`
- Instructions for tools added as a user message
"""
),
),
]

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,107 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from pydantic import BaseModel, model_validator
class QuantizationScheme(Enum):
int4_weight_int8_dynamic_activation = "int4_weight_int8_dynamic_activation"
class QuantizationArgs(BaseModel):
scheme: QuantizationScheme | None = None
group_size: int | None = None
spinquant: bool = False
class LoRAArgs(BaseModel):
rank: int
scale: float
class MoEArgs(BaseModel):
num_experts: int = -1
capacity_factor: float = 1.0 # capacity factor determines how many tokens each expert can choose
auto_scale_F: bool = ( # noqa: N815
True # if true, rescales hidden_dim such that number of activated params is same as equivalent dense layer
)
top_k: int = 1
interleave_moe_layer_step: int = 1
class Size(BaseModel):
height: int
width: int
class VisionArgs(BaseModel):
image_size: Size
patch_size: Size
# parameters for the encoder transformer
dim: int
n_layers: int
n_heads: int
mlp_ratio: float
output_dim: int
pixel_shuffle_ratio: float
class ModelArgs(BaseModel):
dim: int = -1
n_layers: int = -1
n_heads: int = -1
n_kv_heads: int | None = None
head_dim: int | None = None
vocab_size: int = -1
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: float | None = None
ffn_exp: float | None = None
norm_eps: float = 1e-5
attention_chunk_size: int | None = None
rope_theta: float = 500000
use_scaled_rope: bool = False
rope_scaling_factor: float | None = None
rope_high_freq_factor: float | None = None
nope_layer_interval: int | None = None # No position encoding in every n layers
use_qk_norm: bool = False
# Set to True to enable inference-time temperature tuning (useful for very long context)
attn_temperature_tuning: bool = False
floor_scale: float = 8192.0
attn_scale: float = 0.1
vision_args: VisionArgs | None = None
moe_args: MoEArgs | None = None
quantization_args: QuantizationArgs | None = None
lora_args: LoRAArgs | None = None
max_batch_size: int = 32
max_seq_len: int = 2048
@model_validator(mode="after")
def validate(self) -> "ModelArgs":
assert self.n_kv_heads <= self.n_heads, f"n_kv_heads ({self.n_kv_heads}) must be <= n_heads ({self.n_heads})"
assert self.n_heads % self.n_kv_heads == 0, (
f"n_heads ({self.n_heads}) must be divisible by n_kv_heads ({self.n_kv_heads})"
)
assert self.dim % self.n_heads == 0, f"dim ({self.dim}) must be divisible by n_heads ({self.n_heads})"
if self.use_scaled_rope:
# NOTE: ideally these values should have come from params.json. However, we have
# shipped the models everywhere. Only Llama-4-Scout uses scaled rope and needs these
# specific values.
if self.rope_scaling_factor is None:
self.rope_scaling_factor = 16
if self.rope_high_freq_factor is None:
self.rope_high_freq_factor = 1
return self

View file

@ -0,0 +1,317 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import io
import json
import uuid
from dataclasses import dataclass
import torch
from PIL import Image as PIL_Image
# TODO: either fork these or move them to the common package
from ..datatypes import (
BuiltinTool,
RawContent,
RawMediaItem,
RawMessage,
RawTextItem,
Role,
StopReason,
ToolCall,
ToolPromptFormat,
)
from ..llama3.tool_utils import ToolUtils
from .args import VisionArgs
from .datatypes import LLMInput
from .preprocess import ResizeNormalizeImageTransform, VariableSizeImageTransform
from .tokenizer import Tokenizer
def role_str(role: Role) -> str:
role_strs = {
Role.user: "user",
Role.system: "system",
Role.tool: "ipython", # special
Role.assistant: "assistant",
}
return role_strs[role]
@dataclass
class TransformedImage:
image_tiles: torch.Tensor
# is the aspect ratio needed anywhere?
aspect_ratio: tuple[int, int]
def convert_image_to_rgb(image: PIL_Image.Image, bg: tuple[int, int, int] = (255, 255, 255)) -> PIL_Image.Image:
if image.mode == "RGBA":
image.load() # for png.split()
new_img = PIL_Image.new("RGB", image.size, bg)
new_img.paste(image, mask=image.split()[3]) # 3 is the alpha channel
return new_img
return image.convert("RGB")
class ChatFormat:
possible_headers: dict[Role, str]
def __init__(
self,
tokenizer: Tokenizer,
vision_args: VisionArgs | None = None,
max_num_chunks: int = 16,
):
self.tokenizer = tokenizer
self.vision_args = vision_args
self.max_num_chunks = max_num_chunks
self.possible_headers = {role: f"<|header_start|>{role_str(role)}<|header_end|>\n\n" for role in Role}
self.image_transform = None
self.dynamic_image_transform = None
if vision_args:
self.dynamic_image_transform = VariableSizeImageTransform(vision_args.image_size.width)
self.image_transform = ResizeNormalizeImageTransform(
vision_args.image_size.width, vision_args.image_size.height
)
def _encode_header(self, role: str) -> list[int]:
tokens = []
tokens.append(self.tokenizer.special_tokens["<|header_start|>"])
# TODO: need to check if this is correct
tokens.extend(self.tokenizer.encode("ipython" if role == "tool" else role, bos=False, eos=False))
tokens.append(self.tokenizer.special_tokens["<|header_end|>"])
tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
return tokens
def encode_content(self, content: RawContent) -> LLMInput:
tokens, images = self._encode_content(content, bos=True)
return self._model_input_from_tokens_images(tokens, images)
def _encode_image(
self,
transformed_image: TransformedImage,
) -> list[int]:
assert self.vision_args is not None, "The model is not vision-enabled"
image_tensor = transformed_image.image_tiles
image_channels = image_tensor.shape[-3]
image_height = image_tensor.shape[-2]
image_width = image_tensor.shape[-1]
image_chunks = image_tensor.view(-1, image_channels, image_height, image_width).shape[0]
patch_height = self.vision_args.patch_size.height
patch_width = self.vision_args.patch_size.width
if image_height % patch_height != 0:
raise ValueError(f"{image_height=} not divisible by {patch_height=}")
if image_width % patch_width != 0:
raise ValueError(f"{image_width=} not divisible by {patch_width=}")
ds_ratio = int(round(1.0 / (self.vision_args.pixel_shuffle_ratio**2)))
n_patches_per_chunk = int((image_height // patch_height) * (image_width // patch_width) // ds_ratio)
image_ar = transformed_image.aspect_ratio
tokens = [self.tokenizer.special_tokens["<|image_start|>"]]
if image_chunks == 1:
tokens += [self.tokenizer.special_tokens["<|image|>"]]
tokens += [self.tokenizer.special_tokens["<|patch|>"]] * n_patches_per_chunk
tokens += [self.tokenizer.special_tokens["<|image_end|>"]]
else:
ratio_h, ratio_w = image_ar
for _ in range(ratio_h):
for xx in range(ratio_w):
tokens += [self.tokenizer.special_tokens["<|patch|>"]] * n_patches_per_chunk
if xx < ratio_w - 1:
tokens.append(self.tokenizer.special_tokens["<|tile_x_separator|>"])
tokens.append(self.tokenizer.special_tokens["<|tile_y_separator|>"])
tokens += [self.tokenizer.special_tokens["<|image|>"]]
tokens += [self.tokenizer.special_tokens["<|patch|>"]] * n_patches_per_chunk
tokens += [self.tokenizer.special_tokens["<|image_end|>"]]
return tokens
def _encode_content(self, content: RawContent, bos: bool = False) -> tuple[list[int], list[TransformedImage]]:
tokens = []
tranformed_images = []
added_bos = False
def _process(c):
nonlocal added_bos, bos
if isinstance(c, str) or isinstance(c, RawTextItem):
if isinstance(c, RawTextItem):
c = c.text
tokens.extend(self.tokenizer.encode(c, bos=False if added_bos else bos, eos=False))
added_bos = True
elif isinstance(c, RawMediaItem):
if not self.vision_args:
raise ValueError("The model is not vision-enabled, but a media item was found")
bos = False if added_bos else bos
if bos:
tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"])
added_bos = True
bytes_io = io.BytesIO(c.data) if isinstance(c.data, bytes) else c.data
image = PIL_Image.open(bytes_io)
image = convert_image_to_rgb(image)
image_tiles, ar = self.dynamic_image_transform(image, max_num_chunks=self.max_num_chunks)
if image_tiles.shape[0] > 1:
image_global = self.image_transform(image)
image_global = image_global.unsqueeze(0)
image_combine = torch.cat((image_tiles, image_global), dim=0)
image_tiles = image_combine
transformed_image = TransformedImage(image_tiles=image_tiles, aspect_ratio=ar)
tokens.extend(self._encode_image(transformed_image))
tranformed_images.append(transformed_image)
if isinstance(content, list):
for c in content:
_process(c)
else:
_process(content)
return tokens, tranformed_images
def encode_message(
self, message: RawMessage, tool_prompt_format: ToolPromptFormat
) -> tuple[list[int], list[TransformedImage]]:
tokens = self._encode_header(message.role)
images = []
def _process_content(c):
toks, imgs = self._encode_content(c)
tokens.extend(toks)
images.extend(imgs)
_process_content(message.content)
if message.role == "user" and message.context is not None:
# This is RAG context; why is it here in the chat format? I don't think
# this is needed and can be moved upwards
_process_content("\n\n")
_process_content(message.context)
if message.role == "assistant":
for t in message.tool_calls:
content = ToolUtils.encode_tool_call(t, tool_prompt_format)
_process_content(content)
# Tool calls and Tool Response messages should be eom
eom = False
if message.role == "assistant":
eom = message.stop_reason == StopReason.end_of_message or message.tool_calls
elif message.role == "tool":
eom = True
tokens.append(self.tokenizer.special_tokens["<|eom|>" if eom else "<|eot|>"])
return tokens, images
def encode_dialog_prompt(
self,
messages: list[RawMessage],
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
) -> LLMInput:
tokens = []
images = []
tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"])
for message in messages:
toks, imgs = self.encode_message(message, tool_prompt_format)
tokens.extend(toks)
images.extend(imgs)
# Add the start of an assistant message for the model to complete.
tokens.extend(self._encode_header("assistant"))
return self._model_input_from_tokens_images(tokens, images)
# TODO(this should be generic, not only for assistant messages)
def decode_assistant_message(self, tokens: list[int], stop_reason: StopReason) -> RawMessage:
content = self.tokenizer.decode(tokens)
return self.decode_assistant_message_from_content(content, stop_reason)
def decode_assistant_message_from_content(self, content: str, stop_reason: StopReason) -> RawMessage:
content = content.strip(" ")
header_str = self.possible_headers[Role.assistant]
if content.startswith(header_str):
content = content[len(header_str) :]
ipython = content.startswith("<|python_start|>")
if ipython:
content = content[len("<|python_start|>") :]
content = content.replace("<|python_end|>", "")
if content.endswith("<|eot|>"):
content = content[: -len("<|eot|>")]
stop_reason = StopReason.end_of_turn
elif content.endswith("<|eom|>"):
content = content[: -len("<|eom|>")]
stop_reason = StopReason.end_of_message
tool_name = None
tool_arguments = {}
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
if custom_tool_info is not None:
tool_name, tool_arguments = custom_tool_info
# Sometimes when agent has custom tools alongside builin tools
# Agent responds for builtin tool calls in the format of the custom tools
# This code tries to handle that case
if tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
tool_arguments = {
"query": list(tool_arguments.values())[0],
}
else:
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
if builtin_tool_info is not None:
tool_name, query = builtin_tool_info
tool_arguments = {
"query": query,
}
if tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
elif ipython:
tool_name = BuiltinTool.code_interpreter
tool_arguments = {
"code": content,
}
tool_calls = []
if tool_name is not None and tool_arguments is not None:
call_id = str(uuid.uuid4())
tool_calls.append(
ToolCall(
call_id=call_id,
tool_name=tool_name,
arguments=json.dumps(tool_arguments),
)
)
content = ""
return RawMessage(
role="assistant",
content=content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
def _model_input_from_tokens_images(self, tokens: list[int], images: list[TransformedImage]) -> LLMInput:
return LLMInput(
tokens=tokens,
images=[x.image_tiles for x in images] if len(images) > 0 else None,
)

View file

@ -0,0 +1,56 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from dataclasses import dataclass
import torch
@dataclass
class MaskedEmbedding:
embedding: torch.Tensor
mask: torch.Tensor
@dataclass
class LLMInput:
"""
This is the input to the LLM from the "user" -- the user in this case views the
Llama4 model holistically and does not care or know about its inner workings (e.g.,
whether it has an encoder or if it is early fusion or not.)
This is distinct from the "TransformerInput" class which is really the Llama4
backbone operating on early fused modalities and producing text output
"""
tokens: torch.Tensor
# images are already pre-processed (resized, tiled, etc.)
images: list[torch.Tensor] | None = None
@dataclass
class TransformerInput:
"""
This is the "core" backbone transformer of the Llama4 model. Inputs for other modalities
are expected to be "embedded" via encoders sitting before this layer in the model.
"""
tokens: torch.Tensor
# tokens_position defines the position of the tokens in each batch,
# - when it is a tensor ([batch_size,]), it is the start position of the tokens in each batch
# - when it is an int, the start position are the same for all batches
tokens_position: torch.Tensor | int
image_embedding: MaskedEmbedding | None = None
@dataclass
class LLMOutput:
logits: torch.Tensor
TransformerOutput = LLMOutput

View file

@ -0,0 +1,58 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from typing import Any
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
from torch import nn
from torch.nn import functional as F
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
do_reduce: bool = True,
):
super().__init__()
self.do_reduce = do_reduce
self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "mlp.fc1_weight" in state_dict:
w1, w3 = state_dict.pop(prefix + "mlp.fc1_weight").chunk(2, dim=0)
state_dict[prefix + "w1.weight"] = w1
state_dict[prefix + "w3.weight"] = w3
state_dict[prefix + "w2.weight"] = state_dict.pop(prefix + "mlp.fc2_weight")
def forward(self, x):
x = F.silu(F.linear(x, self.w1.weight)) * F.linear(x, self.w3.weight)
out = F.linear(x, self.w2.weight)
if self.do_reduce:
return reduce_from_model_parallel_region(out)
return out

View file

@ -0,0 +1,313 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import codecs
import io
import json
import os
import sys
import time
from collections.abc import Callable, Generator
from pathlib import Path
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
initialize_model_parallel,
model_parallel_is_initialized,
)
from termcolor import cprint
from ..checkpoint import maybe_reshard_state_dict
from ..datatypes import GenerationResult, QuantizationMode
from .args import ModelArgs
from .chat_format import ChatFormat, RawContent, RawMessage
from .datatypes import LLMInput, MaskedEmbedding, TransformerInput
from .model import Transformer
from .tokenizer import Tokenizer
torch.serialization.add_safe_globals([io.BytesIO, codecs.encode])
class Llama4:
@staticmethod
def build(
ckpt_dir: str,
max_seq_len: int,
max_batch_size: int,
world_size: int | None = None,
quantization_mode: QuantizationMode | None = None,
seed: int = 1,
):
if not torch.distributed.is_initialized():
torch.distributed.init_process_group("nccl")
if not model_parallel_is_initialized():
if world_size is None:
world_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(world_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
torch.cuda.set_device(local_rank)
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}"
print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})")
with open(Path(ckpt_dir) / "params.json") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
**params,
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
)
tokenizer = Tokenizer.get_instance()
# TODO: params.json should always have correct vocab_size
if model_args.vocab_size == -1:
model_args.vocab_size = tokenizer.n_words
assert model_args.vocab_size == tokenizer.n_words, f"{model_args.vocab_size=} vs. {tokenizer.n_words=} mismatch"
print("Model args:\n", model_args.model_dump_json(indent=2))
state_dict = maybe_reshard_state_dict(
ckpt_paths,
n_kv_heads=model_args.n_kv_heads if model_args.n_kv_heads else model_args.n_heads,
moe_num_experts=model_args.moe_args.num_experts,
)
print("Loaded checkpoint")
if quantization_mode == QuantizationMode.fp8_mixed or quantization_mode == QuantizationMode.int4_mixed:
from .quantization.loader import convert_to_quantized_model
torch.set_default_tensor_type(torch.BFloat16Tensor)
model = Transformer(model_args)
print("Loading state dict...")
model.load_state_dict(state_dict, strict=False)
print("Done...")
model = convert_to_quantized_model(model, ckpt_dir, quantization_mode)
else:
if torch.cuda.is_bf16_supported():
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
print("Loading state dict...")
model.load_state_dict(state_dict, strict=False)
print("Done...")
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama4(model, tokenizer, model_args)
def __init__(self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs):
self.args = args
self.model = model
self.tokenizer = tokenizer
self.formatter = ChatFormat(tokenizer, vision_args=args.vision_args)
@torch.inference_mode()
def generate(
self,
llm_inputs: list[LLMInput],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
print_model_input: bool = False,
logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None,
) -> Generator[list[GenerationResult], None, None]:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.args.max_seq_len:
max_gen_len = self.model.args.max_seq_len - 1
params = self.model.args
print_model_input = print_model_input or os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1"
if print_model_input:
cprint("Input to model:\n", color="yellow", file=sys.stderr)
for inp in llm_inputs:
cprint(self.tokenizer.decode(inp.tokens), color="grey", file=sys.stderr)
prompt_tokens = [inp.tokens for inp in llm_inputs]
bsz = len(llm_inputs)
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
if max_prompt_len >= params.max_seq_len:
cprint(f"Out of token budget {max_prompt_len} vs {params.max_seq_len}", color="red", file=sys.stderr)
return
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
pad_id = self.tokenizer.pad_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
for k, t in enumerate(prompt_tokens):
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
if logprobs:
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
eos_reached = torch.tensor([False] * bsz, device="cuda")
input_text_mask = tokens != pad_id
if echo:
for i in range(max_prompt_len):
results = []
for j, t in enumerate(tokens[:, i]):
results.append(
GenerationResult(
token=t.item(),
text=self.tokenizer.decode([t.item()]),
source="input",
logprobs=(token_logprobs[j, i : i + 1].tolist() if logprobs else None),
batch_idx=j,
finished=False,
ignore_token=t.item() == pad_id,
)
)
yield results
stop_tokens = torch.tensor(self.tokenizer.stop_tokens, device="cuda")
prev_pos = 0
for cur_pos in range(min_prompt_len, total_len):
image_embedding = None
if prev_pos == 0 and any(inp.images is not None and len(inp.images) > 0 for inp in llm_inputs):
image_mask = tokens[:, prev_pos:cur_pos] == self.tokenizer.special_tokens["<|patch|>"]
image_mask = image_mask.unsqueeze(-1)
h = self.model.tok_embeddings(tokens[:, prev_pos:cur_pos])
image_batch = [inp.images if inp.images is not None else [] for inp in llm_inputs]
image_embedding = MaskedEmbedding(
embedding=self.model.vision_embeddings(image_batch, image_mask, h),
mask=image_mask,
)
xformer_input = TransformerInput(
tokens=tokens[:, prev_pos:cur_pos],
tokens_position=prev_pos,
image_embedding=image_embedding,
)
xformer_output = self.model.forward(xformer_input)
logits = xformer_output.logits
if logits_processor is not None:
logits = logits_processor(tokens[:, :cur_pos], logits)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
# only replace token if prompt has already been generated
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
target = tokens[:, prev_pos + 1 : cur_pos + 1]
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
target=target,
reduction="none",
ignore_index=pad_id,
)
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
results = []
for idx, t in enumerate(next_token):
results.append(
GenerationResult(
token=t.item(),
text=self.tokenizer.decode([t.item()]),
source="output",
logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None),
batch_idx=idx,
finished=eos_reached[idx].item(),
ignore_token=cur_pos < len(prompt_tokens[idx]),
)
)
yield results
prev_pos = cur_pos
if all(eos_reached):
break
def completion(
self,
contents: list[RawContent],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[list[GenerationResult], None, None]:
llm_inputs = [self.formatter.encode_content(c) for c in contents]
for result in self.generate(
llm_inputs=llm_inputs,
temperature=temperature,
top_p=top_p,
max_gen_len=max_gen_len,
logprobs=logprobs,
echo=echo,
):
yield result
if all(r.finished for r in result):
break
def chat_completion(
self,
messages_batch: list[list[RawMessage]],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[list[GenerationResult], None, None]:
llm_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch]
for result in self.generate(
llm_inputs=llm_inputs,
temperature=temperature,
top_p=top_p,
max_gen_len=max_gen_len,
logprobs=logprobs,
echo=echo,
):
yield result
if all(r.finished for r in result):
break
def sample_top_p(probs, p):
"""
Perform top-p (nucleus) sampling on a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
p (float): Probability threshold for top-p sampling.
Returns:
torch.Tensor: Sampled token indices.
Note:
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token

View file

@ -0,0 +1,437 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import math
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.layers import (
ColumnParallelLinear,
RowParallelLinear,
VocabParallelEmbedding,
)
from torch import nn
from .args import ModelArgs
from .datatypes import TransformerInput, TransformerOutput
from .ffn import FeedForward
from .moe import MoE
def rmsnorm(x, eps):
def _norm(y):
return y * torch.rsqrt(y.pow(2).mean(-1, keepdim=True) + eps)
return _norm(x.float()).type_as(x)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
return rmsnorm(x, self.eps) * self.weight
def apply_scaling(freqs: torch.Tensor, scale_factor: float, high_freq_factor: float):
low_freq_factor = 1
old_context_len = 8192 # original llama3 length
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
new_freqs = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
new_freqs.append(freq)
elif wavelen > low_freq_wavelen:
new_freqs.append(freq / scale_factor)
else:
assert low_freq_wavelen != high_freq_wavelen
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
new_freqs.append((1 - smooth) * freq / scale_factor + smooth * freq)
return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device)
def precompute_freqs_cis(
dim: int,
end: int,
theta: float,
use_scaled: bool,
scale_factor: float,
high_freq_factor: float,
):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
if use_scaled:
freqs = apply_scaling(freqs, scale_factor, high_freq_factor)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class Attention(nn.Module):
# TODO: this module needs to be moved into a separate file since it can be used by
# the vision encoder as well.
def __init__(
self,
args: ModelArgs,
use_qk_norm: bool,
use_rope: bool,
add_bias: bool = False,
):
super().__init__()
self.use_rope = use_rope
self.use_qk_norm = use_qk_norm
# For attention temperature tuning
self.attn_temperature_tuning = args.attn_temperature_tuning
self.floor_scale = args.floor_scale
self.attn_scale = args.attn_scale
self.n_heads = args.n_heads
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
world_size = fs_init.get_model_parallel_world_size()
self.n_local_heads = args.n_heads // world_size
self.n_local_kv_heads = self.n_kv_heads // world_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=add_bias,
gather_output=False,
init_method=lambda x: x,
)
self.wk = ColumnParallelLinear(
args.dim,
self.n_kv_heads * self.head_dim,
bias=add_bias,
gather_output=False,
init_method=lambda x: x,
)
self.wv = ColumnParallelLinear(
args.dim,
self.n_kv_heads * self.head_dim,
bias=add_bias,
gather_output=False,
init_method=lambda x: x,
)
self.wo = RowParallelLinear(
args.n_heads * self.head_dim,
args.dim,
bias=add_bias,
input_is_parallel=True,
init_method=lambda x: x,
)
self.cache_k = torch.zeros(
(
args.max_batch_size,
args.max_seq_len,
self.n_local_kv_heads,
self.head_dim,
)
).cuda()
self.cache_v = torch.zeros(
(
args.max_batch_size,
args.max_seq_len,
self.n_local_kv_heads,
self.head_dim,
)
).cuda()
self.norm_eps = args.norm_eps
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "wqkv.weight" in state_dict:
wqkv = state_dict.pop(prefix + "wqkv.weight")
d, r = divmod(wqkv.shape[0], self.n_heads + 2 * self.n_kv_heads)
if r != 0:
raise ValueError(
f"shape={tuple(wqkv.shape)} is not divisible by "
f"n_heads ({self.n_heads}) + 2 * n_kv_heads ({self.n_kv_heads})"
)
wq, wk, wv = wqkv.split([d * self.n_heads, d * self.n_kv_heads, d * self.n_kv_heads], dim=0)
state_dict[prefix + "wq.weight"] = wq
state_dict[prefix + "wk.weight"] = wk
state_dict[prefix + "wv.weight"] = wv
def forward(
self,
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: torch.Tensor | None = None,
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
if self.use_rope:
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
if self.use_qk_norm:
xq = rmsnorm(xq, self.norm_eps)
xk = rmsnorm(xk, self.norm_eps)
# We are applying temperature tuning (https://arxiv.org/abs/2501.19399) to NoPE layers, where
# the inference-time temperature tuning function is customized to not affect short context
# while working at very long context
if self.attn_temperature_tuning and not self.use_rope:
seq_positions = torch.arange(start_pos, start_pos + seqlen, device=xq.device, dtype=torch.float32)
attn_scales = torch.log(torch.floor((seq_positions + 1.0) / self.floor_scale) + 1.0) * self.attn_scale + 1.0
# reshape for broadcasting [seqlen] -> [1, seqlen, 1, 1]
attn_scales = attn_scales.view(1, seqlen, 1, 1)
xq = xq * attn_scales
self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
xk = self.cache_k[:bsz, : start_pos + seqlen]
xv = self.cache_v[:bsz, : start_pos + seqlen]
xq, xk, xv = [t.transpose(1, 2) for t in (xq, xk, xv)]
xk = xk.repeat_interleave(self.n_rep, dim=1)
xv = xv.repeat_interleave(self.n_rep, dim=1)
attn_output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=0.0)
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
output = self.wo(attn_output)
return output
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads if args.head_dim is None else args.head_dim
self.is_nope_layer = args.nope_layer_interval is not None and (layer_id + 1) % args.nope_layer_interval == 0
use_rope = not self.is_nope_layer
use_qk_norm = args.use_qk_norm and not self.is_nope_layer
self.attention = Attention(args, use_rope=use_rope, use_qk_norm=use_qk_norm)
if args.moe_args and (layer_id + 1) % args.moe_args.interleave_moe_layer_step == 0:
self.feed_forward = MoE(
dim=args.dim,
hidden_dim=int(args.ffn_exp * args.dim),
ffn_dim_multiplier=args.ffn_dim_multiplier,
multiple_of=args.multiple_of,
moe_args=args.moe_args,
)
else:
hidden_dim = int(4 * args.dim)
hidden_dim = int(2 * hidden_dim / 3)
if args.ffn_dim_multiplier is not None:
hidden_dim = int(args.ffn_dim_multiplier * hidden_dim)
hidden_dim = args.multiple_of * ((hidden_dim + args.multiple_of - 1) // args.multiple_of)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=hidden_dim,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "attention.wqkv.layer_norm_weight" in state_dict:
state_dict[prefix + "attention_norm.weight"] = state_dict.pop(prefix + "attention.wqkv.layer_norm_weight")
if prefix + "feed_forward.mlp.layer_norm_weight" in state_dict:
state_dict[prefix + "ffn_norm.weight"] = state_dict.pop(prefix + "feed_forward.mlp.layer_norm_weight")
elif prefix + "feed_forward.norm.weight" in state_dict:
state_dict[prefix + "ffn_norm.weight"] = state_dict.pop(prefix + "feed_forward.norm.weight")
for k in (
"feed_forward.experts.mlp",
"feed_forward.mlp_shared",
"attention.wo",
"attention.wqkv",
):
if prefix + k + "._extra_state" in state_dict:
state_dict.pop(prefix + k + "._extra_state")
def forward(
self,
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
global_attn_mask: torch.Tensor | None,
local_attn_mask: torch.Tensor | None,
):
# The iRoPE architecture uses global attention mask for NoPE layers or
# if chunked local attention is not used
if self.is_nope_layer or local_attn_mask is None:
mask = global_attn_mask
else:
mask = local_attn_mask
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, args: ModelArgs, **kwargs) -> None:
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.n_layers = args.n_layers
self.tok_embeddings = VocabParallelEmbedding(args.vocab_size, args.dim, init_method=lambda x: x)
self.layers = torch.nn.ModuleList()
for layer_id in range(args.n_layers):
self.layers.append(TransformerBlock(layer_id, args))
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = ColumnParallelLinear(args.dim, args.vocab_size, bias=False, init_method=lambda x: x)
self.freqs_cis = precompute_freqs_cis(
args.dim // args.n_heads,
args.max_seq_len * 2,
args.rope_theta,
args.use_scaled_rope,
args.rope_scaling_factor,
args.rope_high_freq_factor,
)
vision_args = self.args.vision_args
if vision_args:
# circular import otherwise until we refactor out Attention
from .vision.embedding import VisionEmbeddings
self.vision_embeddings = VisionEmbeddings(vision_args)
self.vision_projection = ColumnParallelLinear(
vision_args.output_dim,
args.dim,
bias=False,
init_method=lambda x: x,
)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "rope.freqs" in state_dict:
state_dict.pop(prefix + "rope.freqs")
@torch.inference_mode()
def forward(self, model_input: TransformerInput) -> TransformerOutput:
tokens = model_input.tokens
start_pos = model_input.tokens_position
assert isinstance(start_pos, int), (
"This implementation does not support different start positions per batch item"
)
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
if image_embedding := model_input.image_embedding:
h_image = self.vision_projection(image_embedding.embedding)
h = h * ~image_embedding.mask + h_image * image_embedding.mask
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
global_attn_mask, local_attn_mask = None, None
if seqlen > 1:
global_attn_mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
global_attn_mask = torch.triu(global_attn_mask, diagonal=1).type_as(h)
# https://github.com/pytorch/pytorch/issues/100005
# torch.triu is buggy when the device is mps: filled values are
# nan instead of 0.
if global_attn_mask.device.type == torch.device("mps").type:
global_attn_mask = torch.nan_to_num(global_attn_mask, nan=0.0)
if chunk_size := self.args.attention_chunk_size:
local_attn_mask = create_chunked_attention_mask(seqlen, chunk_size, tokens.device)
for layer in self.layers:
h = layer(h, start_pos, freqs_cis, global_attn_mask, local_attn_mask)
h = self.norm(h)
output = self.output(h).float()
return TransformerOutput(logits=output)
# tokens (0, K), (K, 2K), (2K, 3K) attend to each other when doing local chunked attention
# in the iRoPE architecture
def create_chunked_attention_mask(seq_len: int, attention_chunk_size: int, device: torch.device) -> torch.Tensor:
block_pos = torch.abs(
(torch.arange(seq_len).unsqueeze(0) // attention_chunk_size)
- (torch.arange(seq_len).unsqueeze(1) // attention_chunk_size)
)
token_pos = torch.arange(seq_len).unsqueeze(0) - torch.arange(seq_len).unsqueeze(1)
mask = (block_pos == 0) & (token_pos <= 0)
return mask.to(device)

View file

@ -0,0 +1,214 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# ruff: noqa: N806
# pyre-strict
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
from torch import Tensor, nn
from torch.nn import functional as F
from .args import MoEArgs
from .ffn import FeedForward
class Experts(nn.Module):
def __init__(
self,
num_local_experts: int,
dim: int,
hidden_dim: int,
) -> None:
super().__init__()
dtype = torch.get_default_dtype()
self.num_local_experts = num_local_experts
self.dim = dim
divide_factor = fs_init.get_model_parallel_world_size()
self.w1: nn.Parameter = nn.Parameter(
torch.empty(
num_local_experts,
dim,
divide_exact(hidden_dim, divide_factor),
dtype=dtype,
)
)
self.w2: nn.Parameter = nn.Parameter(
torch.empty(
num_local_experts,
divide_exact(hidden_dim, divide_factor),
dim,
dtype=dtype,
)
)
self.w3: nn.Parameter = nn.Parameter(
torch.empty(
num_local_experts,
dim,
divide_exact(hidden_dim, divide_factor),
dtype=dtype,
)
)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
self.prefix = prefix
if prefix + "moe_w_in_eD_F" in state_dict:
e = self.num_local_experts
D = self.dim
state_dict[prefix + "w1"] = state_dict.pop(prefix + "moe_w_in_eD_F").view(e, D, -1)
state_dict[prefix + "w2"] = state_dict.pop(prefix + "moe_w_out_eF_D").view(e, -1, D)
state_dict[prefix + "w3"] = state_dict.pop(prefix + "moe_w_swiglu_eD_F").view(e, D, -1)
def forward(
self,
routed_in_egD: torch.Tensor, # noqa: N803
) -> torch.Tensor:
e = self.num_local_experts
D = self.dim
x_egD = routed_in_egD.view(e, -1, D)
out_egD = self.batched_swiglu(x_egD, self.w1, self.w3, self.w2)
out_egD = out_egD.view(-1, D)
return out_egD
def batched_swiglu(self, x: Tensor, w1: Tensor, w3: Tensor, w2: Tensor) -> Tensor:
middle_out_egF = F.silu(torch.bmm(x, w1)) * torch.bmm(x, w3)
return torch.bmm(middle_out_egF, w2)
class MoE(torch.nn.Module):
"""
Tensors used in this module are annotated with the suffixes that indicate the shape of the tensor.
Several commonly used annotations include:
- a: bsz*slen
- E: number of experts
- e: number of local experts per ep (n_experts/ep)
- D: hidden dimension
- d: D/tp
- F: model dimension
- G: number of tokens per expert (a * capacity_factor / E)
- g: number of tokens per expert per TP rank (i.e., G/TP)
Examples:
x_aD [a, D]
routed_in_etG_D [et*G, D]
x_eGD: [e, G, D]
"""
def __init__(
self,
dim: int,
hidden_dim: int,
ffn_dim_multiplier: float,
multiple_of: int,
moe_args: MoEArgs,
) -> None:
super().__init__()
self.moe_args = moe_args
hidden_dim_denom: float = 1
if moe_args.auto_scale_F:
hidden_dim_denom = moe_args.capacity_factor + 1
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
if moe_args.auto_scale_F:
hidden_dim = int(hidden_dim / hidden_dim_denom)
hidden_dim += -hidden_dim % multiple_of
num_local_experts: int = moe_args.num_experts
dtype: torch.dtype = torch.get_default_dtype()
self.experts = Experts(
num_local_experts,
dim,
hidden_dim,
)
self.router_DE: nn.Parameter = nn.Parameter(torch.empty(dim, moe_args.num_experts, dtype=dtype))
self.shared_expert = FeedForward(dim, hidden_dim, do_reduce=False)
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "w_in_shared_FD.weight" in state_dict:
state_dict[prefix + "shared_expert.w1.weight"] = state_dict.pop(prefix + "w_in_shared_FD.weight")
state_dict[prefix + "shared_expert.w3.weight"] = state_dict.pop(prefix + "w_swiglu_FD.weight")
state_dict[prefix + "shared_expert.w2.weight"] = state_dict.pop(prefix + "w_out_shared_DF.weight")
def forward(self, x_bsD: Tensor) -> Tensor: # noqa: N803
_, slen, D = x_bsD.shape
x_aD = x_bsD.view(-1, D)
a = x_aD.shape[0]
router_scores: Tensor = torch.matmul(x_aD, self.router_DE).transpose(0, 1)
router_scores_aK, router_indices_aK = torch.topk(router_scores.transpose(0, 1), self.moe_args.top_k, dim=1)
router_scores = (
torch.full_like(router_scores.transpose(0, 1), float("-inf"))
.scatter_(1, router_indices_aK, router_scores_aK)
.transpose(0, 1)
)
router_indices = torch.arange(a, device=x_aD.device).view(1, -1).expand(router_scores.size(0), -1)
router_scores = torch.sigmoid(router_scores)
routed_in_EG_D: Tensor = torch.gather(
x_aD,
dim=0,
index=router_indices.reshape(-1, 1).expand(-1, D),
)
routed_in_EG_D = routed_in_EG_D * router_scores.reshape(-1, 1)
out_aD = self.shared_expert(x_aD)
routed_out_eg_D = self.experts(routed_in_EG_D.detach())
router_indices_EG_D = router_indices.reshape(-1, 1).expand(-1, D)
out_aD.scatter_add_(
dim=0,
index=router_indices_EG_D,
src=routed_out_eg_D.view(-1, D),
)
out_aD = reduce_from_model_parallel_region(out_aD)
return out_aD.view(-1, slen, D)
def divide_exact(numerator: int, denominator: int) -> int:
assert numerator % denominator == 0, f"{numerator} is not divisible by {denominator}"
return numerator // denominator

View file

@ -0,0 +1,435 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import math
from collections import defaultdict
import torch
import torchvision.transforms as tv
from PIL import Image, ImageFile
from torchvision.transforms import functional as F
ImageFile.LOAD_TRUNCATED_IMAGES = True
IMAGE_RES = 448
class ResizeNormalizeImageTransform:
def __init__(
self,
size_width=None,
size_height=None,
) -> None:
self._size_width = size_width or IMAGE_RES
self._size_height = size_height or IMAGE_RES
self._mean = (0.5, 0.5, 0.5)
self._std = (0.5, 0.5, 0.5)
self.tv_transform = tv.Compose(
[
tv.Resize((self._size_height, self._size_width)),
tv.ToTensor(),
tv.Normalize(
mean=self._mean,
std=self._std,
inplace=True,
),
]
)
def __call__(self, image: Image.Image) -> torch.Tensor:
return self.tv_transform(image)
class VariableSizeImageTransform:
"""
This class accepts images of any size and dynamically resize, pads and chunks it
based on the image aspect ratio and the number of image chunks we allow.
The algorithm will NOT distort the image fit a certain aspect ratio, because
that leads to a significant degradation in image quality.
It can be summarized in 6 steps:
1. Find all possible canvas combinations of max_num_chunks;
2. Find the best canvas to fit the image;
3. Resize without distortion
4. Pad
5. Normalize
6. Chunk
For example, if an input image is of size 300x800, patch_size of 224,
and max_num_chunks = 8, it will find the closest aspect ratio that
is allowed within 8 image chunks, with some restrictions.
In this case, 2:4 = 2 horizontal patches and 4 vertical patches,
giving a total of 8 chunks.
If resize_to_max_canvas, the image will be resized (without distortion),
to the largest possible resolution. In this case, 388:896, and padded to 448:896,
where we maintain the original aspect ratio and pad with zeros value for the rest.
This approach minimizes the amount of padding required for any arbitrary resolution.
However, if limit_upscaling_to_patch_size is set to True,
the upscaling will be limited to the patch size. In the example above,
the image would remain 300x800 (no upscaling), and then padded to 448:896.
The final output will therefore be of shape (8, 3, 224, 224), where 2x4
patches are coming from the resizing and chunking.
"""
def __init__(self, size: int = IMAGE_RES) -> None:
self.size = size
self.to_tensor = tv.ToTensor()
self._mean = (0.5, 0.5, 0.5)
self._std = (0.5, 0.5, 0.5)
self.normalize = tv.Normalize(
mean=self._mean,
std=self._std,
inplace=True,
)
self.resample = tv.InterpolationMode.BILINEAR
@staticmethod
def get_factors(n: int) -> set[int]:
"""
Calculate all factors of a given number, i.e. a dividor that leaves
no remainder. For example, if n=12, it will return {1, 2, 3, 4, 6, 12}.
Args:
n (int): The number to find factors for.
Returns:
set: A set containing all factors of the number.
"""
factors_set = set()
for i in range(1, int(n**0.5) + 1):
if n % i == 0:
factors_set.add(i)
factors_set.add(n // i)
return factors_set
def find_supported_resolutions(self, max_num_chunks: int, patch_size: int) -> torch.Tensor:
"""
Computes all of the allowed resoltuions for a fixed number of chunks
and patch_size. Useful for when dividing an image into chunks.
Args:
max_num_chunks (int): Maximum number of chunks for processing.
patch_size (int): Size of the side of the patch.
Returns:
torch.Tensor: List of possible resolutions as tuples (height, width).
Example:
>>> max_num_chunks = 5
>>> patch_size = 224
>>> find_supported_resolutions(max_num_chunks, patch_size)
tensor([(224, 896), (448, 448), (224, 224), (896, 224), (224, 672),
(672, 224), (224, 448), (448, 224)])
Given max_num_chunks=4, patch_size=224, it will create a dictionary:
{
0.25: [(1, 4)],
1.0: [(2, 2), (1, 1)],
4.0: [(4, 1)],
0.33: [(1, 3)],
3.0: [(3, 1)],
0.5: [(1, 2)],
2.0: [(2, 1)]
}
and return the resolutions multiplied by the patch_size:
[(1*224, 4*224), (2*224, 2*224), ..., (2*224, 1*224)]
"""
asp_dict = defaultdict(list)
for chunk_size in range(max_num_chunks, 0, -1):
_factors = sorted(self.get_factors(chunk_size))
_asp_ratios = [(factor, chunk_size // factor) for factor in _factors]
for height, width in _asp_ratios:
ratio_float = height / width
asp_dict[ratio_float].append((height, width))
# get the resolutions multiplied by the patch_size
possible_resolutions = []
for value in asp_dict.values():
for height, width in value:
possible_resolutions.append((height * patch_size, width * patch_size))
return possible_resolutions
@staticmethod
def get_max_res_without_distortion(
image_size: tuple[int, int],
target_size: tuple[int, int],
) -> tuple[int, int]:
"""
Determines the maximum resolution to which an image can be resized to without distorting its
aspect ratio, based on the target resolution.
Args:
image_size (Tuple[int, int]): The original resolution of the image (height, width).
target_resolution (Tuple[int, int]): The desired resolution to fit the image into (height, width).
Returns:
Tuple[int, int]: The optimal dimensions (height, width) to which the image should be resized.
Example:
>>> _get_max_res_without_distortion([200, 300], target_size = [450, 200])
(134, 200)
>>> _get_max_res_without_distortion([800, 600], target_size = [450, 1300])
(450, 338)
"""
original_width, original_height = image_size
target_width, target_height = target_size
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.floor(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.floor(original_width * scale_h), target_width)
return new_width, new_height
def _pad(self, image: Image.Image, target_size) -> Image.Image:
new_width, new_height = target_size
new_im = Image.new(mode="RGB", size=(new_width, new_height), color=(0, 0, 0)) # type: ignore
new_im.paste(image)
return new_im
def _split(self, image: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
# Split image into number of required tiles (width x height)
num_channels, height, width = image.size()
image = image.view(num_channels, nch, height // nch, ncw, width // ncw)
# Permute dimensions to reorder the axes
image = image.permute(1, 3, 0, 2, 4).contiguous()
# Reshape into the desired output shape (batch_size * 4, num_channels, width/2, height/2)
image = image.view(ncw * nch, num_channels, height // nch, width // ncw)
return image
def resize_without_distortion(
self,
image: torch.Tensor,
target_size: tuple[int, int],
max_upscaling_size: int | None,
) -> torch.Tensor:
"""
Used to resize an image to target_resolution, without distortion.
If target_size requires upscaling the image, the user can set max_upscaling_size to
limit the upscaling to a maximum size. In this case, since we rescale without distortion,
modifying target_size works as a boundary for the image's largest side.
Args:
resample (str): Resampling method used when resizing images.
Supports "nearest", "nearest_exact", "bilinear", "bicubic".
max_upscaling_size (int): The maximum size to upscale the image to.
If None, there is no limit.
Examples:
>>> target_size = (1000, 1200)
>>> max_upscaling_size = 600
>>> image_size = (400, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(600, 300) # new_size_without_distortion
>>> target_size = (1000, 1200)
>>> max_upscaling_size = 600
>>> image_size = (2000, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(1000, 100) # new_size_without_distortion
>>> target_size = (1000, 1200)
>>> max_upscaling_size = 2000
>>> image_size = (400, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(1000, 500) # new_size_without_distortion
>>> target_size = (1000, 1200)
>>> max_upscaling_size = None
>>> image_size = (400, 200)
>>> resize_without_distortion(image_size, target_size, max_upscaling_size)
(1000, 500) # new_size_without_distortion
"""
image_width, image_height = image.size
image_size = (image_width, image_height)
# If target_size requires upscaling, we might want to limit the upscaling to max_upscaling_size
if max_upscaling_size is not None:
new_target_width = min(max(image_width, max_upscaling_size), target_size[0])
new_target_height = min(max(image_height, max_upscaling_size), target_size[1])
target_size = (new_target_width, new_target_height)
# resize to target_size while preserving aspect ratio
new_size_without_distortion = self.get_max_res_without_distortion(image_size, target_size)
image = F.resize(
image,
(
max(new_size_without_distortion[1], 1),
max(new_size_without_distortion[0], 1),
),
interpolation=self.resample,
)
return image
def get_best_fit(
self,
image_size: tuple[int, int],
possible_resolutions: torch.Tensor,
resize_to_max_canvas: bool = False,
) -> tuple[int, int]:
"""
Determines the best canvas possible from a list of possible resolutions to, without distortion,
resize an image to.
For each possible resolution, calculates the scaling factors for
width and height, and selects the smallest one, which is the limiting side.
E.g. to match the canvas you can upscale height by 2x, and width by 1.5x,
therefore, the maximum upscaling you can do is min(2, 1.5) = 1.5.
If upscaling is possible (any of the scaling factors is greater than 1),
then picks the smallest upscaling factor > 1, unless resize_to_max_canvas is True.
If upscaling is not possible, then picks the largest scaling factor <= 1, i.e.
reduce downscaling as much as possible.
If there are multiple resolutions with the same max scale, we pick the one with the lowest area,
to minimize padding. E.g., the same image can be upscaled to 224x224 and 224x448, but the latter
has more padding.
Args:
image_size (Tuple[int, int]): A tuple containing the height and width of the image.
possible_resolutions (torch.Tensor): A tensor of shape (N, 2) where each
row represents a possible resolution (height, width).
use_max_upscaling (bool): If True, will return the largest upscaling resolution.
Returns:
List[int]: The best resolution [height, width] for the given image.
Example:
>>> image_size = (200, 300)
>>> possible_resolutions = torch.tensor([[224, 672],
... [672, 224],
... [224, 448],
... [448, 224],
... [224, 224]])
>>> _get_smallest_upscaling_possibility(image_size, possible_resolutions)
[224, 448]
We have:
scale_w = tensor([2.2400, 0.7467, 1.4933, 0.7467, 0.7467])
scale_h = tensor([1.1200, 3.3600, 1.1200, 2.2400, 1.1200])
scales = tensor([1.1200, 0.7467, 1.1200, 0.7467, 0.7467])
Only one of the scales > 1:
upscaling_possible = tensor([1.1200, 1.1200])
smallest_rescale = tensor(1.1200)
So we pick the resolution with the smallest smallest area:
areas = tensor([150528, 100352]) # [672, 224], [224, 448]
optimal_canvas = tensor([224, 448])
"""
original_width, original_height = image_size
# get all possible resolutions heights/widths
target_widths, target_heights = (
possible_resolutions[:, 0],
possible_resolutions[:, 1],
)
# get scaling factors to resize the image without distortion
scale_w = target_widths / original_width
scale_h = target_heights / original_height
# get the min scale between width and height (limiting side -> no distortion)
scales = torch.where(scale_w > scale_h, scale_h, scale_w)
# filter only scales that allow upscaling
upscaling_options = scales[scales >= 1]
if len(upscaling_options) > 0:
if resize_to_max_canvas:
selected_scale = torch.max(upscaling_options)
else:
selected_scale = torch.min(upscaling_options)
else:
# no upscaling possible,
# get the minimum downscaling (max scale for scales<1)
downscaling_options = scales[scales < 1]
selected_scale = torch.max(downscaling_options)
# get all resolutions that support this scaling factor,
# e.g. you can upscale to 224x224, 224x448, 224x672 without distortion
chosen_canvas = possible_resolutions[scales == selected_scale]
# if there are multiple resolutions,
# get the one with minimum area to reduce padding
if len(chosen_canvas) > 1:
areas = chosen_canvas[:, 0] * chosen_canvas[:, 1]
optimal_idx = torch.argmin(areas)
optimal_canvas = chosen_canvas[optimal_idx]
else:
optimal_canvas = chosen_canvas[0]
return tuple(optimal_canvas.tolist())
def __call__(
self,
image: Image.Image,
max_num_chunks: int,
normalize_img: bool = True,
resize_to_max_canvas: bool = False,
) -> tuple[torch.Tensor, tuple[int, int]]:
"""
Args:
image (PIL.Image): Image to be resized.
max_num_chunks (int): Maximum number of chunks to split the image into.
normalize_img (bool): Whether to normalize the image.
resize_to_max_canvas (bool): Whether to resize the image to the maximum canvas size.
If True, picks the canvas the allows the largest resizing without distortion.
If False, downsample as little as possible, including no resizing at all,
but never upsample, unless the image is smaller than the patch size.
"""
assert max_num_chunks > 0
assert isinstance(image, Image.Image), type(image)
w, h = image.size
possible_resolutions = self.find_supported_resolutions(max_num_chunks=max_num_chunks, patch_size=self.size)
possible_resolutions = torch.tensor(possible_resolutions)
best_resolution = self.get_best_fit(
image_size=(w, h),
possible_resolutions=possible_resolutions,
resize_to_max_canvas=resize_to_max_canvas,
)
max_upscaling_size = None if resize_to_max_canvas else self.size
image = self.resize_without_distortion(image, best_resolution, max_upscaling_size)
image = self._pad(image, best_resolution)
image = self.to_tensor(image)
if normalize_img:
image = self.normalize(image)
ratio_w, ratio_h = (
best_resolution[0] // self.size,
best_resolution[1] // self.size,
)
image = self._split(image, ratio_w, ratio_h) # type: ignore
ar = (ratio_h, ratio_w)
return image, ar

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,136 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import textwrap
from llama_stack.apis.inference import ToolDefinition
from llama_stack.models.llama.llama3.prompt_templates.base import (
PromptTemplate,
PromptTemplateGeneratorBase,
)
class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
DEFAULT_PROMPT = textwrap.dedent(
"""
You are a helpful assistant and an expert in function composition. You can answer general questions using your internal knowledge OR invoke functions when necessary. Follow these strict guidelines:
1. FUNCTION CALLS:
- ONLY use functions that are EXPLICITLY listed in the function list below
- If NO functions are listed (empty function list []), respond ONLY with internal knowledge or "I don't have access to [Unavailable service] information"
- If a function is not in the list, respond ONLY with internal knowledge or "I don't have access to [Unavailable service] information"
- If ALL required parameters are present AND the query EXACTLY matches a listed function's purpose: output ONLY the function call(s)
- Use exact format: [func_name1(param1=value1, param2=value2), func_name2(...)]
Examples:
CORRECT: [get_weather(location="Vancouver"), calculate_route(start="Boston", end="New York")] <- Only if get_weather and calculate_route are in function list
INCORRECT: get_weather(location="New York")
INCORRECT: Let me check the weather: [get_weather(location="New York")]
INCORRECT: [get_events(location="Singapore")] <- If function not in list
2. RESPONSE RULES:
- For pure function requests matching a listed function: ONLY output the function call(s)
- For knowledge questions: ONLY output text
- For missing parameters: ONLY request the specific missing parameters
- For unavailable services (not in function list): output ONLY with internal knowledge or "I don't have access to [Unavailable service] information". Do NOT execute a function call.
- If the query asks for information beyond what a listed function provides: output ONLY with internal knowledge about your limitations
- NEVER combine text and function calls in the same response
- NEVER suggest alternative functions when the requested service is unavailable
- NEVER create or invent new functions not listed below
3. STRICT BOUNDARIES:
- ONLY use functions from the list below - no exceptions
- NEVER use a function as an alternative to unavailable information
- NEVER call functions not present in the function list
- NEVER add explanatory text to function calls
- NEVER respond with empty brackets
- Use proper Python/JSON syntax for function calls
- Check the function list carefully before responding
4. TOOL RESPONSE HANDLING:
- When receiving tool responses: provide concise, natural language responses
- Don't repeat tool response verbatim
- Don't add supplementary information
{{ function_description }}
""".strip("\n")
)
def gen(self, custom_tools: list[ToolDefinition], system_prompt: str | None = None) -> PromptTemplate:
system_prompt = system_prompt or self.DEFAULT_PROMPT
return PromptTemplate(
system_prompt,
{"function_description": self._gen_function_description(custom_tools)},
)
def _gen_function_description(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Here is a list of functions in JSON format that you can invoke:
[
{% for t in tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set tprops = t.input_schema.get('properties', {}) -%}
{%- set required_params = t.input_schema.get('required', []) -%}
{
"name": "{{tname}}",
"description": "{{tdesc}}",
"parameters": {
"type": "dict",
"required": {{ required_params | tojson }},
"properties": {
{%- for name, param in tprops.items() %}
"{{name}}": {
"type": "{{param.get('type', 'string')}}",
"description": "{{param.get('description', '')}}"{% if param.get('default') %},
"default": "{{param.get('default')}}"{% endif %}
}{% if not loop.last %},{% endif %}
{%- endfor %}
}
}
}{% if not loop.last %},
{% endif -%}
{%- endfor %}
]
"""
)
return PromptTemplate(
template_str.strip("\n"),
{"tools": [t.model_dump() for t in custom_tools]},
).render()
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="get_weather",
description="Get weather info for places",
input_schema={
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The name of the city to get the weather for",
},
"metric": {
"type": "string",
"description": "The metric for weather. Options are: celsius, fahrenheit",
"default": "celsius",
},
},
"required": ["city"],
},
),
]
]

View file

@ -0,0 +1,279 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import textwrap
from io import BytesIO
from pathlib import Path
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
PythonListCustomToolGenerator,
)
from ..datatypes import RawMediaItem, RawMessage, RawTextItem
from ..prompt_format import (
Llama4UseCase,
TextCompletionContent,
UseCase,
)
THIS_DIR = Path(__file__).parent
def usecases(base_model: bool = False) -> list[UseCase | str]:
with open(THIS_DIR.parent / "resources/small_dog.jpg", "rb") as f:
img_small_dog = f.read()
with open(THIS_DIR.parent / "resources/dog.jpg", "rb") as f:
img_dog = f.read()
with open(THIS_DIR.parent / "resources/pasta.jpeg", "rb") as f:
img_pasta = f.read()
out = []
out.extend(
[
textwrap.dedent(
"""
# Llama 4 - Prompt Formats
## Tokens
Here is a list of special tokens that are supported by Llama 4:
- `<|begin_of_text|>`: Specifies the start of the prompt
- `<|end_of_text|>`: Model will cease to generate more tokens. This token is generated only by the base models.
- `<|header_start|>` and `<|header_end|>`: These tokens enclose the role for a particular message. The possible roles are: [system, user and assistant].
- `<|eot|>`: End of turn. Represents when the model has determined that it has finished interacting with the user message that initiated its response. This is used in two scenarios:
- at the end of a direct interaction between the model and the user
- at the end of multiple interactions between the model and any available tools
This token signals to the executor that the model has finished generating a response.
- `<|image_start|>` and `<|image_end|>`: These tokens enclose the image data in the prompt.
- `<|patch|>`: This token represents a piece of the tile/
- `<|tile_y_separator|>` and `<|tile_x_separator|>`: These tokens are used to separate the y and x tiles of an image
- `<|image|>`: In the new architecture, this token now separates the regular sized image information from a downsized version of it that fits in a single tile. The longer side is used for calculating the scale factor and the rest is padded to fit the tile.
"""
),
textwrap.dedent(
"""
There are 3 different roles that are supported by Llama 4
- `system`: Sets the context in which to interact with the AI model. It typically includes rules, guidelines, or necessary information that helps the model respond effectively.
- `user`: Represents the human interacting with the model. It includes the inputs, commands, and questions to the model.
- `assistant`: Represents the response generated by the AI model based on the context provided in the `system`, `tool` and `user` prompts.
"""
),
]
)
if base_model:
out.extend(
[
"# Llama 4 Base Model",
Llama4UseCase(
title="Text completion - Paris information",
description="Text completion for Llama 4 base model uses this format.",
dialogs=[TextCompletionContent(content="The capital of France is Paris")],
),
Llama4UseCase(
title="Text completion - The color of the sky",
description="Text completion for Llama 4 base model uses this format.",
dialogs=[
TextCompletionContent(content="The color of the sky is blue but sometimes it can also be")
],
notes="",
),
Llama4UseCase(
title="Text completion - Translation example",
description="Text completion for Llama 4 base model uses this format.",
dialogs=[
TextCompletionContent(
content="""apple is pomme,
bannana is banane,
cherry is"""
)
],
notes="",
),
]
)
out.extend(
[
"# Llama 4 Instruct Model",
Llama4UseCase(
title="Simple User and assistant conversation",
description="Here is a regular multi-turn user assistant conversation and how its formatted.",
dialogs=[
[
RawMessage(role="system", content="You are a helpful assistant"),
RawMessage(
role="user",
content="Answer who are you in the form of jeopardy?",
),
]
],
notes="",
max_gen_len=512,
),
"# Image prompt format",
Llama4UseCase(
title="Single image prompt format - small image",
description="This example passes an image that is smaller than the tile size, to show the tile separator tokens are not needed",
dialogs=[
[
RawMessage(
role="user",
content=[
RawMediaItem(data=BytesIO(img_small_dog)),
RawTextItem(text="Describe this image in two sentences"),
],
)
]
],
notes="""Notice the structure of the image section:
```
<|image_start|><|image|><|patch|>...<|patch|><|image_end|>
```
This is due to the image being smaller than the tile size.
""",
max_gen_len=512,
),
Llama4UseCase(
title="Single image prompt format",
description="Here is an example of how to pass an image to the model",
dialogs=[
[
RawMessage(
role="user",
content=[
RawMediaItem(data=BytesIO(img_dog)),
RawTextItem(text="Describe this image in two sentences"),
],
)
]
],
notes="""With a bigger image, the image will include the tile separator tokens. Additionally, the image tag now separates a scaled down version of the image from the regular sized image.
```
<|image_start|><|patch|>...<|patch|><|tile_x_separator|><|patch|>...<|patch|><|tile_y_separator|><|patch|>...<|patch|><|image|><|patch|>...<|patch|><|image_end|>
```
""",
max_gen_len=1024,
),
Llama4UseCase(
title="Multiple images prompt format",
description="Here is an example of how to pass an image to the model",
dialogs=[
[
RawMessage(
role="user",
content=[
RawMediaItem(data=BytesIO(img_dog)),
RawMediaItem(data=BytesIO(img_pasta)),
RawTextItem(text="Describe these images in two sentences"),
],
)
]
],
notes="With multiple images, each one is encapsulated in their corresponding image tags.",
max_gen_len=4096,
),
"# Tool calling\nWe are continuing the format for zero shot function calling used in previous versions of Llama. All available functions can be provided either in the system message or in the user message.",
Llama4UseCase(
title="Zero shot function calling - system message",
dialogs=[
[
RawMessage(
role="system",
content=PythonListCustomToolGenerator()
.gen(PythonListCustomToolGenerator().data_examples()[0])
.render(),
),
RawMessage(
role="user",
content="What is the weather in SF and Seattle?",
),
]
],
notes=textwrap.dedent(
"""
- The output supports multiple, and parallel tool calls natively
- JSON format for defining the functions in the system prompt is similar to Llama3.1
"""
),
),
Llama4UseCase(
title="Zero shot function calling - user message",
description=textwrap.dedent(
"""
Similar to the above example, you can also provide information for all the available tools in the user message.
"""
),
dialogs=[
[
RawMessage(
role="user",
content="""Questions: Can you retrieve the details for the user with the ID 7890, who has black as their special request?
Here is a list of functions in JSON format that you can invoke:
[
{
"name": "get_user_info",
"description": "Retrieve details for a specific user by their unique identifier. Note that the provided function is in Python 3 syntax.",
"parameters": {
"type": "dict",
"required": [
"user_id"
],
"properties": {
"user_id": {
"type": "integer",
"description": "The unique identifier of the user. It is used to fetch the specific user details from the database."
},
"special": {
"type": "string",
"description": "Any special information or parameters that need to be considered while fetching user details.",
"default": "none"
}
}
}
}
]
Should you decide to return the function call(s), put them in the format of [func1(params_name=params_value, params_name2=params_value2...), func2(params)]
You SHOULD NOT include any other text in the response.""",
),
]
],
notes=textwrap.dedent(
"""
- The tool call format for the model is the same whether your function calls are provided in the system or user message.
"""
),
),
Llama4UseCase(
title="Tool calling with custom formats",
description=textwrap.dedent(
"""
Here is an example of how you could also write custom instructions for model to do zero shot tool calling.
In this example, we define a custom tool calling format using the `<function>` tag.
"""
),
dialogs=[
[
RawMessage(
role="user",
content="""You have access to the following functions:\nUse the function 'trending_songs' to 'Returns the trending songs on a Music site':\n{"name": "trending_songs", "description": "Returns the trending songs on a Music site", "parameters": {"genre": {"description": "The genre of the songs to return", "param_type": "str", "required": false}, "n": {"description": "The number of songs to return", "param_type": "int", "required": true}}}\n\nThink very carefully before calling functions.\nIf you choose to call a function ONLY reply in the following format with no prefix or suffix:\n\n<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line<|eot_id|>""",
),
RawMessage(
role="user",
content="Use tools to get latest trending songs",
),
]
],
),
]
)
return out

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,226 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from collections.abc import Callable
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
from torch import Tensor, nn
from torch.nn import functional as F
from llama_stack.log import get_logger
from ...datatypes import QuantizationMode
from ..model import Transformer, TransformerBlock
from ..moe import MoE
log = get_logger(name=__name__, category="models::llama")
def swiglu_wrapper_no_reduce(
self,
x: Tensor,
):
from ...quantize_impls import ffn_swiglu
return ffn_swiglu(x, self.w1.weight, self.w3.weight, self.w2.weight)
def experts_batched_swiglu_wrapper(
self,
x: Tensor, # (e, g, D)
w1: Tensor, # (e, D, F)
w3: Tensor, # (e, D, F)
w2: Tensor, # (e, F, D)
) -> torch.Tensor:
from ...quantize_impls import bmm_nt
middle_out_egF = F.silu(bmm_nt(x, w1)) * bmm_nt(x, w3) # noqa: N806
return bmm_nt(middle_out_egF, w2)
def convert_to_quantized_model(
model: Transformer,
checkpoint_dir: str,
quantization_mode: str | None = None,
fp8_activation_scale_ub: float | None = 1200.0,
use_rich_progress: bool = True,
) -> Transformer:
from ...quantize_impls import (
Fp8ScaledWeights,
Int4ScaledWeights,
load_fp8,
load_int4,
quantize_fp8,
quantize_int4,
)
rank = get_model_parallel_rank()
def should_quantize_block(block: nn.Module) -> bool:
if not isinstance(block, TransformerBlock):
return False
is_moe = isinstance(block.feed_forward, MoE)
if quantization_mode == QuantizationMode.fp8_mixed:
# skip quantization on first and last layers
return is_moe and not (block.layer_id == 0 or block.layer_id == (model.n_layers - 1))
return is_moe
use_rich_progress = use_rich_progress and rank == 0
progress, log_status, update_status = logging_callbacks(use_rich_progress, rank, model, should_quantize_block)
if quantization_mode == QuantizationMode.int4_mixed:
int4_scales_path = os.path.join(checkpoint_dir, f"int4_scales_{rank}.pt")
if os.path.isfile(int4_scales_path):
log_status(f"Rank {rank}: Loading int4 scales")
int4_scales = torch.load(int4_scales_path, weights_only=True)
def apply_quantization(key, weight):
scale = int4_scales[key]
return load_int4(
weight,
scale,
output_device=torch.device("cuda"),
)
else:
log_status(f"Rank {rank}: Quantizing int4 weights from bf16")
def apply_quantization(_, weight):
return quantize_int4(weight, output_device=torch.device("cuda"))
else:
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{rank}.pt")
if os.path.isfile(fp8_scales_path):
log_status(f"Rank {rank}: Loading fp8 scales")
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
def apply_quantization(key, weight):
scale = fp8_scales[key]
return load_fp8(
weight,
scale,
fp8_activation_scale_ub,
output_device=torch.device("cuda"),
)
else:
log_status(f"Rank {rank}: Quantizing fp8 weights from bf16")
def apply_quantization(_, weight):
return quantize_fp8(weight, fp8_activation_scale_ub, output_device=torch.device("cuda"))
processed_blocks = 0
try:
if use_rich_progress:
progress.start()
for _, block in model.named_modules():
if not should_quantize_block(block):
continue
update_status(f"Rank {rank} - Layer {block.layer_id}")
# Quantize only routed experts, not shared
prefix = f"layers.{block.layer_id}.feed_forward"
moe = block.feed_forward
moe.experts.batched_swiglu = experts_batched_swiglu_wrapper.__get__(moe.experts)
for key in ("w1", "w3", "w2"):
param = getattr(moe.experts, key)
update_status(f"Rank {rank} - Layer {block.layer_id} - MoE {key}")
setattr(
moe.experts,
key,
apply_quantization(
f"{prefix}.experts.{key}",
param.transpose(1, 2).contiguous(),
),
)
if quantization_mode == QuantizationMode.int4_mixed:
# Quantize shared experts
moe.shared_expert.forward = swiglu_wrapper_no_reduce.__get__(moe.shared_expert)
for key in ("w1", "w3", "w2"):
param = getattr(moe.shared_expert, key)
update_status(f"Rank {rank} - Layer {block.layer_id} - MoE shared expert {key}")
param.weight = apply_quantization(f"{prefix}.shared_expert.{key}", param.weight)
processed_blocks += 1
update_status(message=None, completed=processed_blocks)
update_status(f"Rank {rank} - Moving parameters to CUDA")
param_count = 0
for _, parameter in model.named_parameters():
if not isinstance(parameter, Fp8ScaledWeights) and not isinstance(parameter, Int4ScaledWeights):
parameter.data = parameter.to(device="cuda")
param_count += 1
update_status(f"Rank {rank} - Completed - moved {param_count} parameters to CUDA")
finally:
if use_rich_progress:
progress.stop()
return model
# fp8/int4 loading can be very slow so we add progress bars to make life slightly better
def logging_callbacks(
use_rich_progress: bool,
rank: int,
model: Transformer,
should_quantize_block: Callable[[nn.Module], bool],
):
console = None
if use_rich_progress:
from rich.console import Console
console = Console(highlight=False)
def log_status(message: str) -> None:
if use_rich_progress:
console.print(message)
elif rank == 0: # Only log from rank 0 for non-rich logging
log.info(message)
total_blocks = sum(1 for _, block in model.named_modules() if should_quantize_block(block))
progress = None
if use_rich_progress:
from rich.progress import (
BarColumn,
Progress,
SpinnerColumn,
TextColumn,
TimeElapsedColumn,
TimeRemainingColumn,
)
progress = Progress(
SpinnerColumn(),
BarColumn(complete_style="green", finished_style="bright_green"),
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
TimeElapsedColumn(),
TextColumn("ETA:"),
TimeRemainingColumn(),
TextColumn("[bold]{task.fields[status]}"),
console=console,
expand=True,
)
task_id = progress.add_task("[blue]Converting layers...", total=total_blocks, status="Starting")
def update_status(message: str | None, completed: int | None = None) -> None:
if use_rich_progress:
if message is not None:
progress.update(task_id, status=message)
if completed is not None:
progress.update(task_id, completed=completed)
elif rank == 0 and completed and completed % 10 == 0:
log.info(f"Rank {rank}: {completed}/{total_blocks} blocks completed")
return progress, log_status, update_status

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,263 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Collection, Iterator, Sequence, Set
from pathlib import Path
from typing import (
Literal,
cast,
)
import tiktoken
from llama_stack.log import get_logger
from llama_stack.models.llama.tokenizer_utils import load_bpe_file
# The tiktoken tokenizer can handle <=400k chars without
# pyo3_runtime.PanicException.
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
# https://github.com/openai/tiktoken/issues/195
# Here we iterate over subsequences and split if we exceed the limit
# of max consecutive non-whitespace or whitespace characters.
MAX_NO_WHITESPACES_CHARS = 25_000
_INSTANCE = None
def get_reserved_special_tokens(name, count, start_index=0):
return [f"<|{name}_reserved_special_token_{i}|>" for i in range(start_index, start_index + count)]
# 200005, ..., 200079
LLAMA4_TEXT_POST_TRAIN_SPECIAL_TOKENS = [
"<|header_start|>",
"<|header_end|>",
"<|eom|>",
"<|eot|>",
"<|step|>",
"<|text_post_train_reserved_special_token_0|>",
"<|text_post_train_reserved_special_token_1|>",
"<|text_post_train_reserved_special_token_2|>",
"<|text_post_train_reserved_special_token_3|>",
"<|text_post_train_reserved_special_token_4|>",
"<|text_post_train_reserved_special_token_5|>",
"<|python_start|>",
"<|python_end|>",
"<|finetune_right_pad|>",
] + get_reserved_special_tokens(
"text_post_train", 61, 8
) # <|text_post_train_reserved_special_token_6|>, ..., <|text_post_train_reserved_special_token_66|>
# 200080, ..., 201133
LLAMA4_VISION_SPECIAL_TOKENS = [
"<|image_start|>",
"<|image_end|>",
"<|vision_reserved_special_token_0|>",
"<|vision_reserved_special_token_1|>",
"<|tile_x_separator|>",
"<|tile_y_separator|>",
"<|vision_reserved_special_token_2|>",
"<|vision_reserved_special_token_3|>",
"<|vision_reserved_special_token_4|>",
"<|vision_reserved_special_token_5|>",
"<|image|>",
"<|vision_reserved_special_token_6|>",
"<|patch|>",
] + get_reserved_special_tokens(
"vision", 1041, 7
) # <|vision_reserved_special_token_7|>, ..., <|vision_reserved_special_token_1047|>
# 201134, ..., 201143
LLAMA4_REASONING_SPECIAL_TOKENS = [
"<|reasoning_reserved_special_token_0|>",
"<|reasoning_reserved_special_token_1|>",
"<|reasoning_reserved_special_token_2|>",
"<|reasoning_reserved_special_token_3|>",
"<|reasoning_reserved_special_token_4|>",
"<|reasoning_reserved_special_token_5|>",
"<|reasoning_reserved_special_token_6|>",
"<|reasoning_reserved_special_token_7|>",
"<|reasoning_thinking_start|>",
"<|reasoning_thinking_end|>",
]
LLAMA4_SPECIAL_TOKENS = (
LLAMA4_TEXT_POST_TRAIN_SPECIAL_TOKENS + LLAMA4_VISION_SPECIAL_TOKENS + LLAMA4_REASONING_SPECIAL_TOKENS
)
BASIC_SPECIAL_TOKENS = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|fim_prefix|>",
"<|fim_middle|>",
"<|fim_suffix|>",
]
logger = get_logger(name=__name__, category="models::llama")
class Tokenizer:
"""
Tokenizing and encoding/decoding text using the Tiktoken tokenizer.
"""
special_tokens: dict[str, int]
num_reserved_special_tokens = 2048
O200K_PATTERN = r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+""" # noqa: E501
@classmethod
def get_instance(cls):
global _INSTANCE
if _INSTANCE is None:
_INSTANCE = Tokenizer(Path(__file__).parent / "tokenizer.model")
return _INSTANCE
def __init__(self, model_path: Path):
"""
Initializes the Tokenizer with a Tiktoken model.
Args:
model_path (Path): The path to the Tiktoken model file.
"""
if not model_path.exists():
raise FileNotFoundError(f"Tokenizer model file not found: {model_path}")
mergeable_ranks = load_bpe_file(model_path)
num_base_tokens = len(mergeable_ranks)
special_tokens = BASIC_SPECIAL_TOKENS + LLAMA4_SPECIAL_TOKENS
assert len(set(special_tokens)) == len(special_tokens)
assert len(special_tokens) <= self.num_reserved_special_tokens
reserved_tokens = [
f"<|reserved_special_token_{i}|>" for i in range(self.num_reserved_special_tokens - len(special_tokens))
]
special_tokens = special_tokens + reserved_tokens
self.special_tokens = {token: num_base_tokens + i for i, token in enumerate(special_tokens)}
self.model = tiktoken.Encoding(
name=model_path.name,
pat_str=self.O200K_PATTERN,
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens,
)
self.n_words: int = num_base_tokens + len(special_tokens)
# BOS / EOS token IDs
self.bos_id: int = self.special_tokens["<|begin_of_text|>"]
self.eos_id: int = self.special_tokens["<|end_of_text|>"]
self.pad_id: int = self.special_tokens["<|finetune_right_pad|>"]
self.eot_id: int = self.special_tokens["<|eot|>"]
self.eom_id: int = self.special_tokens["<|eom|>"]
self.thinking_start_id: int = self.special_tokens["<|reasoning_thinking_start|>"]
self.thinking_end_id: int = self.special_tokens["<|reasoning_thinking_end|>"]
self.stop_tokens = [
self.eos_id,
self.special_tokens["<|eom|>"],
self.special_tokens["<|eot|>"],
]
def encode(
self,
s: str,
*,
bos: bool,
eos: bool,
allowed_special: Literal["all"] | Set[str] | None = None,
disallowed_special: Literal["all"] | Collection[str] = (),
) -> list[int]:
"""
Encodes a string into a list of token IDs.
Args:
s (str): The input string to be encoded.
bos (bool): Whether to prepend the beginning-of-sequence token.
eos (bool): Whether to append the end-of-sequence token.
allowed_special ("all"|set[str]): allowed special tokens in string
disallowed_special ("all"|set[str]): special tokens that raise an error when in string
Returns:
list[int]: A list of token IDs.
By default, setting disallowed_special=() encodes a string by ignoring
special tokens. Specifically:
- Setting `disallowed_special` to () will cause all text corresponding
to special tokens to be encoded as natural text (insteading of raising
an error).
- Setting `allowed_special` to "all" will treat all text corresponding
to special tokens to be encoded as special tokens.
"""
if allowed_special is None:
allowed_special = set()
assert type(s) is str
substrs = (
substr
for i in range(0, len(s), TIKTOKEN_MAX_ENCODE_CHARS)
for substr in self._split_whitespaces_or_nonwhitespaces(
s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
)
)
t: list[int] = []
for substr in substrs:
t.extend(
self.model.encode(
substr,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
)
if bos:
t.insert(0, self.bos_id)
if eos:
t.append(self.eos_id)
return t
def decode(self, t: Sequence[int]) -> str:
"""
Decodes a list of token IDs into a string.
Args:
t (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
# Typecast is safe here. Tiktoken doesn't do anything list-related with the sequence.
return self.model.decode(cast(list[int], t))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(s: str, max_consecutive_slice_len: int) -> Iterator[str]:
"""
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
consecutive whitespaces or consecutive non-whitespaces.
"""
current_slice_len = 0
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
slice_start = 0
for i in range(len(s)):
is_now_space = s[i].isspace()
if current_slice_is_space ^ is_now_space:
current_slice_len = 1
current_slice_is_space = is_now_space
else:
current_slice_len += 1
if current_slice_len > max_consecutive_slice_len:
yield s[slice_start:i]
slice_start = i
current_slice_len = 1
yield s[slice_start:]

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,210 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import math
from collections.abc import Callable
from typing import Any
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
from ..args import VisionArgs
from .encoder import VisionEncoder
class PixelShuffle(nn.Module):
def __init__(self, ps_ratio):
super().__init__()
self.ps_ratio = ps_ratio
def forward(self, x):
# x: [B, N, C], N = number of patches
assert self.ps_ratio is not None, "ps_ratio is required for pixel shuffle"
assert x.dim() == 3, "pixel shuffle requires encoded patches [B, N, C]"
hh = ww = int(math.sqrt(x.shape[1]))
x = x.reshape(x.shape[0], hh, ww, -1)
x = pixel_shuffle_op(x, ps_ratio=self.ps_ratio)
pixel_shuffle_patches = x.reshape(x.shape[0], -1, x.shape[-1])
return pixel_shuffle_patches
def pixel_shuffle_op(input_x, ps_ratio):
n, w, h, c = input_x.size()
input_x = input_x.view(n, w, int(h * ps_ratio), int(c / ps_ratio))
input_x = input_x.permute(0, 2, 1, 3).contiguous()
input_x = input_x.view(
n,
int(h * ps_ratio),
int(w * ps_ratio),
int(c / (ps_ratio * ps_ratio)),
)
input_x = input_x.permute(0, 2, 1, 3).contiguous()
return input_x
class SimpleMLP(torch.nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
bias: bool = True,
dropout: float = 0.0,
act_layer: Callable = nn.GELU,
):
super().__init__()
# layers
self.c_fc = ColumnParallelLinear(
dim,
hidden_dim,
bias=bias,
gather_output=False,
)
self.c_proj = RowParallelLinear(
hidden_dim,
hidden_dim,
bias=bias,
input_is_parallel=True,
)
self.non_linearity = act_layer()
self.dropout = dropout
def forward(self, x):
hidden = self.c_fc(x)
hidden = self.non_linearity(hidden)
hidden = F.dropout(hidden, p=self.dropout, training=self.training)
return self.non_linearity(self.c_proj(hidden))
class PixelShuffleMLP(torch.nn.Module):
def __init__(
self,
ps_ratio: float,
input_dim: int,
output_dim: int = 4096,
add_fc: bool = False,
):
super().__init__()
self.pixel_shuffle = PixelShuffle(ps_ratio)
self.mlp = SimpleMLP(
int(input_dim // (ps_ratio**2)),
output_dim,
bias=False,
dropout=0.0,
act_layer=nn.GELU,
)
self.fc = nn.Identity()
if add_fc:
self.fc = ColumnParallelLinear(
output_dim,
output_dim,
bias=False,
)
def forward(self, encoded_patches: torch.Tensor) -> torch.Tensor:
encoded_patches = self.pixel_shuffle(encoded_patches)
return self.fc(self.mlp(encoded_patches))
class VisionEmbeddings(torch.nn.Module):
def __init__(self, args: VisionArgs):
super().__init__()
self.args = args
image_size = args.image_size
patch_size = args.patch_size
self.vision_encoder = VisionEncoder(
image_size=(image_size.height, image_size.width),
patch_size=(patch_size.height, patch_size.width),
dim=args.dim,
layers=args.n_layers,
heads=args.n_heads,
mlp_ratio=args.mlp_ratio,
)
self.vision_encoder = self.vision_encoder.to(torch.bfloat16)
self.vision_adapter = PixelShuffleMLP(
ps_ratio=args.pixel_shuffle_ratio,
input_dim=args.dim,
output_dim=args.output_dim,
)
self.output_dim = args.output_dim
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool = True,
missing_keys: list[str] = None,
unexpected_keys: list[str] = None,
error_msgs: list[str] = None,
return_state_dict: bool = False,
) -> None:
original_sd = self.state_dict()
for k in state_dict:
if k.startswith(prefix) and len(state_dict[k].shape) == 1 and state_dict[k].shape[0] == 0:
state_dict[k] = state_dict[k].reshape(original_sd[k[len(prefix) :]].shape)
def _get_empty_sequence(self, h):
return torch.zeros(
h.shape[0],
h.shape[1],
self.output_dim,
device=h.device,
dtype=h.dtype,
)
# x_images is batched; each batch sample contains a list of images. so this is List[List[torch.Tensor]]
# each image is a tensor of shape [num_tiles, C, H, W]
def forward(
self,
image_batch: list[list[torch.Tensor]],
image_mask: torch.Tensor,
h_ref: torch.Tensor,
) -> torch.Tensor:
images_flattened = [image for sample in image_batch for image in sample]
images_flattened = torch.vstack(images_flattened).unsqueeze(1).to(h_ref.dtype).to(h_ref.device)
embedding = self.vision_encoder(images_flattened)
projected_embedding = self.vision_adapter(embedding)
h_image = self._get_empty_sequence(h_ref)
return scatter_embeddings(image_batch, image_mask, h_image, projected_embedding)
def scatter_embeddings(image_batch, image_mask, h_image, encoded_patches_proj):
# If dynamic transform is used and the batch contains 2 images (where image_1 has 2 chunks and image_2 has 3 chunks),
# `num_images_per_sequence` now records the number of chunks per image as `[2, 3]`.
# `encoded_patches_proj.split` will then split the image chunks into 2 groups: `[image_1_chunks, image_2_chunks]`.
num_images_per_sequence = [sum(image.size(0) for image in sample_images) for sample_images in image_batch]
assert not torch.isnan(encoded_patches_proj).any()
assert sum(num_images_per_sequence) == encoded_patches_proj.size(0), (
f"{sum(num_images_per_sequence)=} != {encoded_patches_proj.shape=}"
)
encoded_patches_list = encoded_patches_proj.split(num_images_per_sequence, dim=0)
for index in range(h_image.size(0)):
encoded_patches_per_sample = encoded_patches_list[index]
sample_image_mask = image_mask[index]
if encoded_patches_per_sample.numel() == 0:
continue
encoded_patches_per_sample = encoded_patches_per_sample.contiguous().view(
-1, encoded_patches_per_sample.size(-1)
)
n_tokens_to_fill = sample_image_mask.sum()
assert n_tokens_to_fill <= encoded_patches_per_sample.size(0)
h_image[index].masked_scatter_(
sample_image_mask.expand(-1, h_image.size(-1)),
encoded_patches_per_sample[:n_tokens_to_fill],
)
return h_image

View file

@ -0,0 +1,412 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Callable
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
from torch import einsum
from ..args import ModelArgs
from ..model import Attention
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x
class ColumnParallelConv2dPatch(torch.nn.Module):
"""Conv2D Patching layer with model parallelism.
Column parallel over unfolded input.
Arguments:
in_channels: Input channels.
out_channels: Output channels.
kernel_size: Size of convolution kernel.
stride (default 1): Stride for convolution.
bias (default False): Use bias in Conv2d.
Input: (bsz, in_channels, height, width)
Output: (bsz, num_tokens, out_channels)
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int],
bias: bool | None = False,
) -> None:
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
self._linear = ColumnParallelLinear(
in_channels * kernel_size[0] * kernel_size[1],
out_channels,
bias=bias,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self._unfold(x)
x = x.permute(0, 2, 1)
x = self._linear(x)
return x
class _FeedForward(torch.nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
dropout: float,
act_layer: Callable = nn.GELU,
):
super().__init__()
# layers
self.c_fc = ColumnParallelLinear(
dim,
hidden_dim,
bias=True,
gather_output=False,
init_method=lambda x: x,
)
self.c_proj = RowParallelLinear(
hidden_dim,
dim,
bias=True,
input_is_parallel=True,
init_method=lambda x: x,
)
self.non_linearity = act_layer()
self.dropout = dropout
def forward(self, x):
hidden = self.c_fc(x)
hidden = self.non_linearity(hidden)
hidden = F.dropout(hidden, p=self.dropout, training=self.training)
return self.c_proj(hidden)
class _TransformerBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
act_layer: Callable = nn.GELU,
gated: bool = False,
):
super().__init__()
assert d_model % n_head == 0
self.n_heads = n_head
self.head_dim = d_model // self.n_heads
attn_args = ModelArgs(
dim=d_model,
head_dim=self.head_dim,
n_heads=self.n_heads,
n_kv_heads=self.n_heads,
)
self.attn = Attention(attn_args, use_rope=True, use_qk_norm=False, add_bias=True)
self.ln_1 = LayerNorm(d_model)
self.mlp = _FeedForward(
dim=d_model,
hidden_dim=int(mlp_ratio * d_model),
dropout=0.0,
act_layer=act_layer,
)
self.ln_2 = LayerNorm(d_model)
self.gated = gated
if gated:
self.gate_attn = nn.Parameter(torch.zeros(1))
self.gate_ffn = nn.Parameter(torch.zeros(1))
def attention(
self,
x: torch.Tensor,
freq_cis: torch.Tensor | None = None,
):
return self.attn(x=x, start_pos=0, freqs_cis=freq_cis)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor | None = None,
freq_cis: torch.Tensor | None = None,
):
_gate_attn = 1 if not self.gated else self.gate_attn.tanh()
_gate_ffn = 1 if not self.gated else self.gate_ffn.tanh()
x = x + _gate_attn * self.attention(self.ln_1(x), freq_cis=freq_cis)
x = x + _gate_ffn * self.mlp(self.ln_2(x))
return x
class _Transformer(nn.Module):
def __init__(
self,
dim: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
act_layer: Callable = nn.GELU,
gated: bool = False,
):
super().__init__()
self.resblocks = nn.ModuleList(
[
_TransformerBlock(
d_model=dim,
n_head=heads,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
gated=gated,
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor, return_intermediate=None, mask=None, freq_cis=None):
out = []
for idx, r in enumerate(self.resblocks):
if return_intermediate is not None and idx in return_intermediate:
out.append(x)
x = r(x, mask=mask, freq_cis=freq_cis)
if return_intermediate is not None:
return x, torch.stack(out, dim=-1)
return x
class PackingIndex:
Z = 0 # Z (time) coordinate of the token in the original sample
Y = 1 # Y (height) coordinate of the token in the original sample
X = 2 # X (width) coordinate of the token in the original sample
TIME = 3 # Total number of time units (frames) in the original sample
HEIGHT = 4 # Height of the original sample
WIDTH = 5 # Width of the original sample
# USE INDEX TO CHECK THE TYPE OF THE TOKEN (see ID fields below)
IDX = 6 # Full index of the token in the original sample (x + y * w + z * w * h)
BATCH_IDX = 7 # Which batch element this token belongs to. Note the batch idx of padding tokens is BATCH_SIZE
# Total size of the enum, remember to update this!
NUM_METADATA = 8
# Note: For padding tokens IDX = -1
# For cls tokens, IDX = -2
ID_CLS_TOKEN = -2
ID_PAD_TOKEN = -1
class VisionEncoder(nn.Module):
def __init__(
self,
image_size: tuple[int, int],
patch_size: tuple[int, int],
dim: int,
layers: int,
heads: int,
mlp_ratio: float,
in_channels: int = 3,
):
super().__init__()
self.image_size = image_size
self.patch_size = patch_size
self.grid_size = (
self.image_size[0] // self.patch_size[0],
self.image_size[1] // self.patch_size[1],
)
self.conv1 = ColumnParallelConv2dPatch(
in_channels=in_channels,
out_channels=dim,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
scale = dim**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(dim))
self.positional_embedding_vlm = nn.Parameter(
scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, dim)
)
self.ln_pre = LayerNorm(dim)
self.ln_post = LayerNorm(dim)
self.transformer = _Transformer(
dim,
layers,
heads,
mlp_ratio,
act_layer=nn.GELU,
)
# NOTE: hack for the fixed res
image_h, image_w = self.image_size
patch_h, patch_w = self.patch_size
idx_h, idx_w = image_h // patch_h, image_w // patch_w
img_idx = torch.arange(image_h * image_w // (patch_h * patch_w), dtype=torch.int32)
img_idx = img_idx.reshape(idx_h * idx_w, 1)
img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
img_idx[-1, -1] = PackingIndex.ID_CLS_TOKEN
packed_img_idx = torch.empty(
img_idx.shape[0],
img_idx.shape[1],
PackingIndex.NUM_METADATA - 1,
dtype=torch.int32,
)
packed_img_idx[:, :, PackingIndex.Y] = img_idx // idx_w
packed_img_idx[:, :, PackingIndex.X] = img_idx % idx_w
packed_img_idx[:, :, PackingIndex.HEIGHT].fill_(idx_h)
packed_img_idx[:, :, PackingIndex.WIDTH].fill_(idx_w)
packed_img_idx[:, :, PackingIndex.IDX] = img_idx
packed_img_idx = packed_img_idx.reshape(1, -1, PackingIndex.NUM_METADATA - 1)
self.packed_img_idx = packed_img_idx # for positional embedding load hook
# compute rope freqs
rope_freq = self.get_rope_freqs(dim // heads // 2)
freqs_x = self.compute_rope_freqs(rope_freq, packed_img_idx[:, :, PackingIndex.X] + 1)
freqs_y = self.compute_rope_freqs(rope_freq, packed_img_idx[:, :, PackingIndex.Y] + 1)
freqs = torch.cat([freqs_x, freqs_y], dim=-1).float().contiguous()[..., ::2]
# disable RoPE for padding and cls tokens
freqs = freqs.masked_fill(packed_img_idx[:, :, PackingIndex.IDX, None] < 0, 0)
# compute complex freqs
self.freq_cis = torch.view_as_complex(torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1))
# xlf automatically broadcasts
self.freq_cis = self.freq_cis.squeeze(0)
self.n_heads = heads // fs_init.get_model_parallel_world_size()
self._register_load_state_dict_pre_hook(self.load_hook)
def get_rope_freqs(self, dim, theta=10000):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
return freqs
@torch.amp.autocast("cuda", enabled=False)
def compute_rope_freqs(self, freqs, t):
freqs = einsum("..., f -> ... f", t.type(freqs.dtype), freqs)
freqs = freqs.repeat_interleave(2, dim=-1)
return freqs
def load_hook(
self,
state_dict: dict[str, Any],
prefix: str,
local_metadata: dict[str, Any],
strict: bool = True,
missing_keys: list[str] = None,
unexpected_keys: list[str] = None,
error_msgs: list[str] = None,
return_state_dict: bool = False,
) -> None:
orig_pos_embed = state_dict.get(prefix + "positional_embedding")
if orig_pos_embed is not None and orig_pos_embed.shape[-2:] != self.positional_embedding_vlm.shape[-2:]:
raise ValueError(
f"Positional embedding shape {orig_pos_embed.shape} does not match expected shape {self.positional_embedding_vlm.shape}"
)
batch_size, token_per_image, _ = self.packed_img_idx.shape
# Input points for idx are [x, y, w, h]
idx = self.packed_img_idx.reshape(batch_size * token_per_image, 1, -1)
total_windows, window_size, _ = idx.shape
# Grid values are [-1, 1] and coords are w, h
grid = (
(idx[:, :, [PackingIndex.X, PackingIndex.Y]] / idx[:, :, [PackingIndex.WIDTH, PackingIndex.HEIGHT]]) * 2 - 1
)[None, ...]
# In this mode, cls token has no position embedding
if orig_pos_embed is not None:
posemb = (
orig_pos_embed[1:].view(1, self.grid_size[0], self.grid_size[1], -1).permute(0, 3, 1, 2).contiguous()
)
posemb = posemb.to(device=grid.device, dtype=grid.dtype)
sample = F.grid_sample(
posemb, grid, padding_mode="zeros"
) # padding tokens / class token will get zero for posemb
sample = sample.view(-1, total_windows, window_size).permute(1, 2, 0).contiguous()
sample = torch.where(
idx[:, :, PackingIndex.IDX, None] == PackingIndex.ID_CLS_TOKEN,
orig_pos_embed[0].view(1, 1, -1).to(device=sample.device, dtype=sample.dtype),
sample,
)
new_pos_embed = sample.reshape(batch_size, token_per_image, -1)
state_dict[prefix + "positional_embedding_vlm"] = new_pos_embed.squeeze(0)
if return_state_dict:
return state_dict
def apply_class_embedding(self, x):
x = torch.cat(
[
x,
self.class_embedding.to(x.dtype)
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
return x
def forward(self, images: torch.Tensor) -> torch.Tensor:
# NOTE: in Llama4 bsz=bsz*num_tiles, num_chunks=1
if images.ndim == 5:
num_concurrent_media = 1
bsz, num_chunks, nch, h, w = images.shape
else:
bsz, num_concurrent_media, num_chunks, nch, h, w = images.shape
images = images.reshape(bsz * num_concurrent_media * num_chunks, nch, h, w)
# patch embedding
x = images.reshape(bsz * num_concurrent_media * num_chunks, nch, h, w)
x = self.conv1(x) # shape = [*, width, grid ** 2]
_, ntok, dim = x.shape
x = x.reshape(bsz * num_concurrent_media * num_chunks, ntok, dim)
# apply cls token
x = self.apply_class_embedding(x)
ntok += 1
# apply position embeddings
if self.positional_embedding_vlm is not None:
x = x + self.positional_embedding_vlm.to(x.dtype)
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok, dim)
x = self.ln_pre(x)
x = x.view(bsz * num_concurrent_media, -1, dim)
freq_cis = self.freq_cis.to(images.device)
tf_output = self.transformer(
x,
freq_cis=freq_cis,
)
int_x = None
if isinstance(tf_output, tuple):
x, int_x = tf_output
else:
x = tf_output
x = self.ln_post(x)
# remove cls token output
x = x[:, :-1, :]
# add and output x + int_x features
if int_x is not None:
int_x = int_x[:, :-1, :, :]
int_x = int_x.reshape(bsz * num_concurrent_media, ntok - 1, -1)
x = torch.cat([x, int_x], dim=-1)
return x

View file

@ -0,0 +1,191 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import textwrap
from pydantic import BaseModel, Field
from llama_stack.models.llama.datatypes import (
RawContent,
RawMessage,
ToolPromptFormat,
)
from llama_stack.models.llama.llama4.tokenizer import Tokenizer
from .llama3.interface import LLama31Interface
from .llama3.template_data import (
system_message_builtin_code_only,
system_message_builtin_tools_only,
system_message_custom_tools_only,
)
class TextCompletionContent(BaseModel):
content: RawContent = ""
class UseCase(BaseModel):
title: str = ""
description: str = ""
dialogs: list[list[RawMessage] | TextCompletionContent | str] = Field(default_factory=list)
notes: str = ""
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json
max_gen_len: int = 512
def md_format(self):
section = textwrap.dedent(
"""
## {title}
{description}
{dialogs_text}
{notes}
"""
)
return section.lstrip()
def dialogs_to_text(self, generator) -> str:
def _code_block(text):
return f"```\n{text}\n```"
text = ""
for dialog in self.dialogs:
if isinstance(dialog, str):
text += dialog
text += "\n\n"
continue
else:
batch = [dialog]
method = (
generator.completion if isinstance(dialog, TextCompletionContent) else generator.chat_completion
)
input_tokens = []
output_tokens = []
for token_results in method(batch, echo=True, temperature=0.1, top_p=0.95):
result = token_results[0]
if result.source == "input":
input_tokens.append(result.token)
else:
output_tokens.append(result.token)
if result.finished:
break
text += "##### Input Prompt Format\n"
# FIXME: This is added to undo the hack in chat_formatter where
# vision tokens are replaced with 128256.
input_tokens = [generator.formatter.vision_token if t == 128256 else t for t in input_tokens]
text += _code_block(generator.tokenizer.decode(input_tokens))
# TODO: Figure out if "↵" needs to be added for newlines or end or some indication
text += "\n\n"
text += "##### Model Response Format\n"
text += _code_block(generator.tokenizer.decode(output_tokens))
text += "\n\n"
return text
def to_text(self, generator):
section = self.md_format()
dialogs_text = self.dialogs_to_text(generator)
notes = f"##### Notes\n{self.notes}" if self.notes else ""
section = section.format(
title=self.title,
description=self.description,
dialogs_text=dialogs_text,
notes=notes,
)
return section
class Llama4UseCase(UseCase):
def dialogs_to_text(self, generator) -> str:
def _code_block(text):
return f"```\n{text}\n```"
text = ""
tokenizer = Tokenizer.get_instance()
for dialog in self.dialogs:
if isinstance(dialog, str):
text += dialog
text += "\n\n"
continue
else:
batch = [dialog]
method = (
generator.completion if isinstance(dialog, TextCompletionContent) else generator.chat_completion
)
input_tokens = []
output_tokens = []
for token_results in method(batch, echo=True, temperature=0.0):
result = token_results[0]
if result.source == "input":
input_tokens.append(result.token)
else:
output_tokens.append(result.token)
if result.finished:
break
text += "##### Input Prompt Format\n"
text += _code_block(tokenizer.decode(input_tokens))
text += "\n\n"
text += "##### Model Response Format\n"
text += _code_block(tokenizer.decode(output_tokens))
text += "\n\n"
return text
def llama3_1_builtin_tool_call_dialog(tool_prompt_format=ToolPromptFormat.json):
interface = LLama31Interface(tool_prompt_format)
messages = interface.system_messages(**system_message_builtin_tools_only())
messages += interface.user_message(content="Search the web for the latest price of 1oz gold?")
return messages
def llama3_1_builtin_code_interpreter_dialog(tool_prompt_format=ToolPromptFormat.json):
interface = LLama31Interface(tool_prompt_format)
messages = interface.system_messages(**system_message_builtin_code_only())
messages += interface.user_message(
content="Write code to check if number is prime. Use it to verify if number 7 is prime"
)
return messages
def llama3_1_custom_tool_call_dialog(tool_prompt_format=ToolPromptFormat.json):
interface = LLama31Interface(tool_prompt_format)
messages = interface.system_messages(**system_message_custom_tools_only())
messages += interface.user_message(content="Use tools to get latest trending songs")
return messages
def llama3_2_user_assistant_conversation():
return UseCase(
title="User and assistant conversation",
description="Here is a regular multi-turn user assistant conversation and how its formatted.",
dialogs=[
[
RawMessage(role="system", content="You are a helpful assistant"),
RawMessage(role="user", content="Who are you?"),
]
],
notes="This format is unchanged from Llama3.1",
)

View file

@ -0,0 +1,316 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# type: ignore
import collections
from llama_stack.log import get_logger
log = get_logger(name=__name__, category="models::llama")
try:
import fbgemm_gpu.experimental.gen_ai # noqa: F401
log.info("Using efficient FP8 or INT4 operators in FBGEMM.")
except ImportError:
log.error("No efficient FP8 or INT4 operators. Please install FBGEMM.")
raise
import torch
from torch import Tensor, nn
class Fp8ScaledWeights:
# TODO: Ugly trick so torch allows us to replace parameters
# with our custom Fp8Weights instance. Do this properly.
@property
def __class__(self) -> type[nn.parameter.Parameter]:
return nn.Parameter
@property
def grad_fn(self) -> None:
return None
# pyre-fixme[4]: Attribute annotation cannot be `Any`.
# pyre-fixme[2]: Parameter annotation cannot be `Any`.
class Fp8RowwiseWeights(
Fp8ScaledWeights,
collections.namedtuple(
"Fp8RowwiseWeights",
["weight", "scale", "shape", "activation_scale_ub"],
),
):
pass
class Int4ScaledWeights:
# TODO: Ugly trick so torch allows us to replace parameters
# with our custom Int4Weights instance. Do this properly.
@property
def __class__(self) -> type[nn.parameter.Parameter]:
return nn.Parameter
@property
def grad_fn(self) -> None:
return None
# pyre-fixme[4]: Attribute annotation cannot be `Any`.
# pyre-fixme[2]: Parameter annotation cannot be `Any`.
class Int4Weights(
Int4ScaledWeights,
collections.namedtuple(
"Int4Weights",
["weight", "scale", "zero_point", "shape"],
),
):
pass
def int4_row_quantize(
x: torch.Tensor,
group_size: int = 128,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
n_bit = 4 # Number of target bits.
to_quant = x.reshape(-1, group_size).to(torch.float)
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
min_int = 0
scales = (max_val - min_val).clamp(min=1e-6) / max_int
zeros = min_val + scales * (2 ** (n_bit - 1))
out = to_quant.sub(min_val).div(scales).round().clamp_(min_int, max_int)
# Recenter output and move to int8.
out = (out - 2 ** (n_bit - 1)).to(dtype=torch.int8).reshape(x.shape)
# Cutlass expects column major layout for scale and zero point,
# so we transpose here and make them contiguous.
scales = scales.view(x.shape[0], -1).t().contiguous()
zeros = zeros.view(x.shape[0], -1).t().contiguous()
return out, scales, zeros
def pack_int4(x: torch.Tensor) -> torch.Tensor:
# Given int8 x, pack adjacent int4 values into a single int8.
low_x = x[:, ::2]
high_x = x[:, 1::2]
# High bits need to left shift, this also masks off extra bits.
high_x = torch.bitwise_left_shift(high_x, 4)
# Low bits need to have sign bits removed.
low_x = torch.bitwise_and(low_x, 0xF)
# Recombine into a single value with bitwise or.
return torch.bitwise_or(low_x, high_x).contiguous()
def bmm_nt(
x: Tensor,
w: Fp8RowwiseWeights | Int4Weights,
num_tokens: Tensor | None = None,
) -> Tensor:
if isinstance(w, Fp8ScaledWeights):
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(x, num_tokens, w.activation_scale_ub)
return torch.ops.fbgemm.f8f8bf16_rowwise_batched(xq, w.weight, x_scale, w.scale)
elif isinstance(w, Int4ScaledWeights):
return torch.ops.fbgemm.bf16i4bf16_rowwise_batched(x, w.weight, w.scale, w.zero_point)
else:
raise ValueError("Unsupported quantization type")
def ffn_swiglu(
x: Tensor,
w1: Fp8RowwiseWeights | Int4Weights,
w3: Fp8RowwiseWeights | Int4Weights,
w2: Fp8RowwiseWeights | Int4Weights,
num_tokens: Tensor | None = None,
is_memory_bounded: bool = False,
) -> Tensor:
if (isinstance(w1, Fp8ScaledWeights) and isinstance(w3, Fp8ScaledWeights) and isinstance(w2, Fp8ScaledWeights)) or (
isinstance(w1, Int4ScaledWeights) and isinstance(w3, Int4ScaledWeights) and isinstance(w2, Int4ScaledWeights)
):
return ffn_swiglu_dynamic(x, w1, w3, w2, w1.activation_scale_ub, num_tokens, is_memory_bounded)
(B, T, D) = x.shape # noqa: N806
(HD_L, D_) = w1.shape # noqa: N806
assert D_ == D
assert isinstance(w1, Tensor)
assert isinstance(w3, Tensor)
x1 = x.view(B * T, D) @ w1.T
x2 = x.view(B * T, D) @ w3.T
z = torch.nn.functional.silu(x1) * x2
del x1, x2
assert isinstance(w2, Tensor)
return (z @ w2.T).view(B, T, D)
@torch.inference_mode()
def quantize_fp8(
w: Tensor,
fp8_activation_scale_ub: float,
output_device: torch.device | None = None,
) -> Fp8RowwiseWeights:
"""Quantize [n, k] weight tensor.
Args:
w (Tensor): [n, k] input high precision tensor to quantize.
fp8_activation_scale_ub (float): Upper bound for activation max.
"""
activation_scale_ub = torch.tensor(
[fp8_activation_scale_ub],
dtype=torch.float,
device=output_device,
)
wq, w_scale = torch.ops.fbgemm.quantize_fp8_per_row(w)
del w
return Fp8RowwiseWeights(
weight=wq,
scale=w_scale,
shape=wq.shape,
activation_scale_ub=activation_scale_ub,
)
@torch.inference_mode()
def quantize_int4(
w: Tensor,
output_device: torch.device | None = None,
) -> Int4Weights:
"""Quantize [n, k/2] weight tensor.
Args:
w (Tensor): [n, k/2] input high precision tensor to quantize.
"""
if w.ndim >= 3:
wq, scale, zero_point = zip(*[int4_row_quantize(i) for i in w], strict=False)
wq = torch.stack([pack_int4(i) for i in wq], dim=0)
scale = torch.stack(scale, dim=0)
zero_point = torch.stack(zero_point, dim=0)
else:
wq, scale, zero_point = int4_row_quantize(w)
wq = pack_int4(wq)
del w
return Int4Weights(
weight=wq.to(output_device),
scale=scale.to(output_device),
zero_point=zero_point.to(output_device),
shape=wq.shape,
)
@torch.inference_mode()
def load_fp8(
w: Tensor,
w_scale: Tensor,
fp8_activation_scale_ub: float,
output_device: torch.device | None = None,
) -> Fp8RowwiseWeights:
"""Load FP8 [n, k] weight tensor.
Args:
w (Tensor): [n, k] input FP8.
fp8_activation_scale_ub (float): Upper bound for activation max.
"""
activation_scale_ub = torch.tensor(
[fp8_activation_scale_ub],
dtype=torch.float,
device=output_device,
)
return Fp8RowwiseWeights(
weight=w.to(torch.float8_e4m3fn).to(device=output_device),
scale=w_scale.to(device=output_device),
shape=w.shape,
activation_scale_ub=activation_scale_ub,
)
@torch.inference_mode()
def load_int4(
w: Tensor,
scale: Tensor,
zero_point: Tensor,
output_device: torch.device | None = None,
) -> Int4Weights:
"""Load INT4 [n, k/2] weight tensor.
Args:
w (Tensor): [n, k/2] input INT4.
"""
return Int4Weights(
weight=w.to(torch.int8).to(device=output_device),
scale=scale.to(device=output_device),
zero_point=zero_point.to(device=output_device),
shape=w.shape,
)
def fc_dynamic(
x: Tensor,
w: Fp8RowwiseWeights | Int4Weights,
activation_scale_ub: Tensor | None = None,
num_tokens: Tensor | None = None,
is_memory_bounded: bool = False,
) -> Tensor:
"""
Single w8a8 fc layer with dynamic row-wise scaling, or w4a16 fc layer with dyanmic row-wise scaling
"""
if isinstance(w, Int4Weights):
y = torch.ops.fbgemm.bf16i4bf16_rowwise(x, w.weight, w.scale, w.zero_point)
else:
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(x, num_tokens, activation_scale_ub)
y = torch.ops.fbgemm.f8f8bf16_rowwise(xq, w.weight, x_scale, w.scale, use_fast_accum=True)
del xq
return y
def ffn_swiglu_dynamic(
x: Tensor,
w1: Fp8RowwiseWeights | Int4Weights,
w3: Fp8RowwiseWeights | Int4Weights,
w2: Fp8RowwiseWeights | Int4Weights,
activation_scale_ub: Tensor | None = None,
num_tokens: Tensor | None = None,
is_memory_bounded: bool = False,
) -> Tensor:
assert x.dim() == 3 or x.dim() == 2
if x.dim() == 3:
(B, T, D) = x.shape # noqa: N806
else:
(T, D) = x.shape # noqa: N806
B = 1 # noqa: N806
HD_L = w1.shape[0] # noqa: N806
assert HD_L == w3.shape[0]
x1 = fc_dynamic(
x.view(B * T, D),
w1,
activation_scale_ub,
num_tokens,
is_memory_bounded,
)
x2 = fc_dynamic(
x.view(B * T, D),
w3,
activation_scale_ub,
num_tokens,
is_memory_bounded,
)
z = torch.nn.functional.silu(x1) * x2
del x1, x2
z_ = fc_dynamic(z, w2, activation_scale_ub, num_tokens, is_memory_bounded)
if x.dim() == 3:
return z_.view(B, T, D)
else:
return z_

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 438 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,233 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any
from pydantic import BaseModel, ConfigDict, Field
class CheckpointQuantizationFormat(Enum):
# default format
bf16 = "bf16"
# used for enabling fp8_rowwise inference, some weights are bf16
fp8_mixed = "fp8-mixed"
int8 = "int8"
int4 = "int4"
class ModelFamily(Enum):
llama2 = "llama2"
llama3 = "llama3"
llama3_1 = "llama3_1"
llama3_2 = "llama3_2"
llama3_3 = "llama3_3"
llama4 = "llama4"
safety = "safety"
class CoreModelId(Enum):
"""Each of these models is a unique "SKU". These root models can be served in various garbs (especially by quantizing them)"""
# Llama 2 family
llama2_7b = "Llama-2-7b"
llama2_13b = "Llama-2-13b"
llama2_70b = "Llama-2-70b"
llama2_7b_chat = "Llama-2-7b-chat"
llama2_13b_chat = "Llama-2-13b-chat"
llama2_70b_chat = "Llama-2-70b-chat"
# Llama 3 family
llama3_8b = "Llama-3-8B"
llama3_70b = "Llama-3-70B"
llama3_8b_instruct = "Llama-3-8B-Instruct"
llama3_70b_instruct = "Llama-3-70B-Instruct"
# Llama 3.1 family
llama3_1_8b = "Llama3.1-8B"
llama3_1_70b = "Llama3.1-70B"
llama3_1_405b = "Llama3.1-405B"
llama3_1_8b_instruct = "Llama3.1-8B-Instruct"
llama3_1_70b_instruct = "Llama3.1-70B-Instruct"
llama3_1_405b_instruct = "Llama3.1-405B-Instruct"
# Llama 3.2 family
llama3_2_1b = "Llama3.2-1B"
llama3_2_3b = "Llama3.2-3B"
llama3_2_1b_instruct = "Llama3.2-1B-Instruct"
llama3_2_3b_instruct = "Llama3.2-3B-Instruct"
llama3_2_11b_vision = "Llama3.2-11B-Vision"
llama3_2_90b_vision = "Llama3.2-90B-Vision"
llama3_2_11b_vision_instruct = "Llama3.2-11B-Vision-Instruct"
llama3_2_90b_vision_instruct = "Llama3.2-90B-Vision-Instruct"
# Llama 3.3 family
llama3_3_70b_instruct = "Llama3.3-70B-Instruct"
# Llama 4 family
llama4_scout_17b_16e = "Llama-4-Scout-17B-16E"
llama4_scout_17b_16e_instruct = "Llama-4-Scout-17B-16E-Instruct"
llama4_maverick_17b_128e = "Llama-4-Maverick-17B-128E"
llama4_maverick_17b_128e_instruct = "Llama-4-Maverick-17B-128E-Instruct"
# Safety models
llama_guard_3_8b = "Llama-Guard-3-8B"
llama_guard_2_8b = "Llama-Guard-2-8B"
llama_guard_3_11b_vision = "Llama-Guard-3-11B-Vision"
llama_guard_3_1b = "Llama-Guard-3-1B"
llama_guard_4_12b = "Llama-Guard-4-12B"
def is_multimodal(model_id) -> bool:
if model_id in [
CoreModelId.llama3_2_11b_vision,
CoreModelId.llama3_2_90b_vision,
CoreModelId.llama3_2_11b_vision_instruct,
CoreModelId.llama3_2_90b_vision_instruct,
]:
return True
else:
return False
def model_family(model_id) -> ModelFamily:
if model_id in [
CoreModelId.llama2_7b,
CoreModelId.llama2_13b,
CoreModelId.llama2_70b,
CoreModelId.llama2_7b_chat,
CoreModelId.llama2_13b_chat,
CoreModelId.llama2_70b_chat,
]:
return ModelFamily.llama2
elif model_id in [
CoreModelId.llama3_8b,
CoreModelId.llama3_70b,
CoreModelId.llama3_8b_instruct,
CoreModelId.llama3_70b_instruct,
]:
return ModelFamily.llama3
elif model_id in [
CoreModelId.llama3_1_8b,
CoreModelId.llama3_1_70b,
CoreModelId.llama3_1_405b,
CoreModelId.llama3_1_8b_instruct,
CoreModelId.llama3_1_70b_instruct,
CoreModelId.llama3_1_405b_instruct,
]:
return ModelFamily.llama3_1
elif model_id in [
CoreModelId.llama3_2_1b,
CoreModelId.llama3_2_3b,
CoreModelId.llama3_2_1b_instruct,
CoreModelId.llama3_2_3b_instruct,
CoreModelId.llama3_2_11b_vision,
CoreModelId.llama3_2_90b_vision,
CoreModelId.llama3_2_11b_vision_instruct,
CoreModelId.llama3_2_90b_vision_instruct,
]:
return ModelFamily.llama3_2
elif model_id in [
CoreModelId.llama3_3_70b_instruct,
]:
return ModelFamily.llama3_3
elif model_id in [
CoreModelId.llama4_scout_17b_16e,
CoreModelId.llama4_scout_17b_16e_instruct,
CoreModelId.llama4_maverick_17b_128e,
CoreModelId.llama4_maverick_17b_128e_instruct,
]:
return ModelFamily.llama4
elif model_id in [
CoreModelId.llama_guard_3_8b,
CoreModelId.llama_guard_2_8b,
CoreModelId.llama_guard_3_11b_vision,
CoreModelId.llama_guard_3_1b,
CoreModelId.llama_guard_4_12b,
]:
return ModelFamily.safety
else:
raise ValueError(f"Unknown model family for {model_id}")
class Model(BaseModel):
core_model_id: CoreModelId
description: str
huggingface_repo: str | None = None
arch_args: dict[str, Any]
variant: str = ""
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
pth_file_count: int
metadata: dict[str, Any] = Field(default_factory=dict)
# silence pydantic until we remove the `model_` fields
model_config = ConfigDict(protected_namespaces=())
@property
def model_family(self) -> ModelFamily:
return model_family(self.core_model_id)
# The SKU is uniquely identified by (model_id, variant) combo
def descriptor(self, shorten_default_variant: bool = True) -> str:
if not self.variant:
return self.core_model_id.value
return f"{self.core_model_id.value}:{self.variant}"
@property
def is_instruct_model(self) -> bool:
return "instruct" in self.core_model_id.value
# Featured models are shown in the non-exhaustive model list
@property
def is_featured(self) -> bool:
return self.model_family in [
ModelFamily.llama3_1,
ModelFamily.llama3_2,
ModelFamily.llama3_3,
ModelFamily.llama4,
ModelFamily.safety,
]
@property
def max_seq_length(self) -> int:
if self.model_family == ModelFamily.llama2:
return 4096
elif self.core_model_id == CoreModelId.llama_guard_2_8b:
return 4096
elif self.model_family == ModelFamily.llama3:
return 8192
elif self.model_family in [ModelFamily.llama3_1, ModelFamily.llama3_3]:
return 131072
elif self.model_family == ModelFamily.llama3_2:
if self.quantization_format == CheckpointQuantizationFormat.int4:
return 8192
return 131072
elif self.model_family == ModelFamily.llama4:
if self.core_model_id in {
CoreModelId.llama4_scout_17b_16e,
CoreModelId.llama4_maverick_17b_128e,
}:
return 262144
if self.core_model_id == CoreModelId.llama4_scout_17b_16e_instruct:
return 10485760
if self.core_model_id == CoreModelId.llama4_maverick_17b_128e_instruct:
return 1048576
raise AssertionError(f"Unexpected core model id: {self.core_model_id}")
elif self.core_model_id in [
CoreModelId.llama_guard_3_8b,
CoreModelId.llama_guard_3_11b_vision,
CoreModelId.llama_guard_3_1b,
]:
return 131072
elif self.core_model_id == CoreModelId.llama_guard_4_12b:
return 8192
else:
raise ValueError(f"Unknown max_seq_len for {self.core_model_id}")

View file

@ -0,0 +1,40 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
from pathlib import Path
from llama_stack.log import get_logger
logger = get_logger(__name__, "models")
def load_bpe_file(model_path: Path) -> dict[bytes, int]:
"""
Load BPE file directly and return mergeable ranks.
Args:
model_path (Path): Path to the BPE model file.
Returns:
dict[bytes, int]: Dictionary mapping byte sequences to their ranks.
"""
mergeable_ranks = {}
with open(model_path, encoding="utf-8") as f:
content = f.read()
for line in content.splitlines():
if not line.strip(): # Skip empty lines
continue
try:
token, rank = line.split()
mergeable_ranks[base64.b64decode(token)] = int(rank)
except Exception as e:
logger.warning(f"Failed to parse line '{line}': {e}")
continue
return mergeable_ranks