chore(package): migrate to src/ layout (#3920)

Migrates package structure to src/ layout following Python packaging
best practices.

All code moved from `llama_stack/` to `src/llama_stack/`. Public API
unchanged - imports remain `import llama_stack.*`.

Updated build configs, pre-commit hooks, scripts, and GitHub workflows
accordingly. All hooks pass, package builds cleanly.

**Developer note**: Reinstall after pulling: `pip install -e .`
This commit is contained in:
Ashwin Bharambe 2025-10-27 12:02:21 -07:00 committed by GitHub
parent 98a5047f9d
commit 471b1b248b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
791 changed files with 2983 additions and 456 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import HuggingfaceDatasetIOConfig
async def get_adapter_impl(
config: HuggingfaceDatasetIOConfig,
_deps,
):
from .huggingface import HuggingfaceDatasetIOImpl
impl = HuggingfaceDatasetIOImpl(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel
from llama_stack.core.storage.datatypes import KVStoreReference
class HuggingfaceDatasetIOConfig(BaseModel):
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": KVStoreReference(
backend="kv_default",
namespace="datasetio::huggingface",
).model_dump(exclude_none=True)
}

View file

@ -0,0 +1,99 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from urllib.parse import parse_qs, urlparse
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.pagination import paginate_records
from .config import HuggingfaceDatasetIOConfig
DATASETS_PREFIX = "datasets:"
def parse_hf_params(dataset_def: Dataset):
uri = dataset_def.source.uri
parsed_uri = urlparse(uri)
params = parse_qs(parsed_uri.query)
params = {k: v[0] for k, v in params.items()}
path = parsed_uri.path.lstrip("/")
return path, params
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
self.kvstore = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing datasets from kvstore
start_key = DATASETS_PREFIX
end_key = f"{DATASETS_PREFIX}\xff"
stored_datasets = await self.kvstore.values_in_range(start_key, end_key)
for dataset in stored_datasets:
dataset = Dataset.model_validate_json(dataset)
self.dataset_infos[dataset.identifier] = dataset
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset_def: Dataset,
) -> None:
# Store in kvstore
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
await self.kvstore.set(
key=key,
value=dataset_def.model_dump_json(),
)
self.dataset_infos[dataset_def.identifier] = dataset_def
async def unregister_dataset(self, dataset_id: str) -> None:
key = f"{DATASETS_PREFIX}{dataset_id}"
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def iterrows(
self,
dataset_id: str,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
import datasets as hf_datasets
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
records = [loaded_dataset[i] for i in range(len(loaded_dataset))]
return paginate_records(records, start_index, limit)
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
import datasets as hf_datasets
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
# Convert rows to HF Dataset format
new_dataset = hf_datasets.Dataset.from_list(rows)
# Concatenate the new rows with existing dataset
updated_dataset = hf_datasets.concatenate_datasets([loaded_dataset, new_dataset])
if dataset_def.metadata.get("path", None):
updated_dataset.push_to_hub(dataset_def.metadata["path"])
else:
raise NotImplementedError("Uploading to URL-based datasets is not supported yet")

View file

@ -0,0 +1,73 @@
# NVIDIA DatasetIO Provider for LlamaStack
This provider enables dataset management using NVIDIA's NeMo Customizer service.
## Features
- Register datasets for fine-tuning LLMs
- Unregister datasets
## Getting Started
### Prerequisites
- LlamaStack with NVIDIA configuration
- Access to Hosted NVIDIA NeMo Microservice
- API key for authentication with the NVIDIA service
### Setup
Build the NVIDIA environment:
```bash
uv run llama stack list-deps nvidia | xargs -L1 uv pip install
```
### Basic Usage using the LlamaStack Python Client
#### Initialize the client
```python
import os
os.environ["NVIDIA_API_KEY"] = "your-api-key"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
#### Register a dataset
```python
client.datasets.register(
purpose="post-training/messages",
dataset_id="my-training-dataset",
source={"type": "uri", "uri": "hf://datasets/default/sample-dataset"},
metadata={
"format": "json",
"description": "Dataset for LLM fine-tuning",
"provider": "nvidia",
},
)
```
#### Get a list of all registered datasets
```python
datasets = client.datasets.list()
for dataset in datasets:
print(f"Dataset ID: {dataset.identifier}")
print(f"Description: {dataset.metadata.get('description', '')}")
print(f"Source: {dataset.source.uri}")
print("---")
```
#### Unregister a dataset
```python
client.datasets.unregister(dataset_id="my-training-dataset")
```

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import NvidiaDatasetIOConfig
async def get_adapter_impl(
config: NvidiaDatasetIOConfig,
_deps,
):
from .datasetio import NvidiaDatasetIOAdapter
if not isinstance(config, NvidiaDatasetIOConfig):
raise RuntimeError(f"Unexpected config type: {type(config)}")
impl = NvidiaDatasetIOAdapter(config)
return impl
__all__ = ["get_adapter_impl", "NvidiaDatasetIOAdapter"]

View file

@ -0,0 +1,61 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import warnings
from typing import Any
from pydantic import BaseModel, Field
class NvidiaDatasetIOConfig(BaseModel):
"""Configuration for NVIDIA DatasetIO implementation."""
api_key: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
description="The NVIDIA API key.",
)
dataset_namespace: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
description="The NVIDIA dataset namespace.",
)
project_id: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-project"),
description="The NVIDIA project ID.",
)
datasets_url: str = Field(
default_factory=lambda: os.getenv("NVIDIA_DATASETS_URL", "http://nemo.test"),
description="Base URL for the NeMo Dataset API",
)
# warning for default values
def __post_init__(self):
default_values = []
if os.getenv("NVIDIA_PROJECT_ID") is None:
default_values.append("project_id='test-project'")
if os.getenv("NVIDIA_DATASET_NAMESPACE") is None:
default_values.append("dataset_namespace='default'")
if os.getenv("NVIDIA_DATASETS_URL") is None:
default_values.append("datasets_url='http://nemo.test'")
if default_values:
warnings.warn(
f"Using default values: {', '.join(default_values)}. \
Please set the environment variables to avoid this default behavior.",
stacklevel=2,
)
@classmethod
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
return {
"api_key": "${env.NVIDIA_API_KEY:=}",
"dataset_namespace": "${env.NVIDIA_DATASET_NAMESPACE:=default}",
"project_id": "${env.NVIDIA_PROJECT_ID:=test-project}",
"datasets_url": "${env.NVIDIA_DATASETS_URL:=http://nemo.test}",
}

View file

@ -0,0 +1,116 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
import aiohttp
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.datasets import Dataset
from .config import NvidiaDatasetIOConfig
class NvidiaDatasetIOAdapter:
"""Nvidia NeMo DatasetIO API."""
def __init__(self, config: NvidiaDatasetIOConfig):
self.config = config
self.headers = {}
async def _make_request(
self,
method: str,
path: str,
headers: dict[str, Any] | None = None,
params: dict[str, Any] | None = None,
json: dict[str, Any] | None = None,
**kwargs,
) -> dict[str, Any]:
"""Helper method to make HTTP requests to the Customizer API."""
url = f"{self.config.datasets_url}{path}"
request_headers = self.headers.copy()
# Set default Content-Type for JSON requests
if json is not None:
request_headers["Content-Type"] = "application/json"
if headers:
request_headers.update(headers)
async with aiohttp.ClientSession(headers=request_headers) as session:
async with session.request(method, url, params=params, json=json, **kwargs) as response:
if response.status != 200:
error_data = await response.json()
raise Exception(f"API request failed: {error_data}")
return await response.json()
async def register_dataset(
self,
dataset_def: Dataset,
) -> Dataset:
"""Register a new dataset.
Args:
dataset_def [Dataset]: The dataset definition.
dataset_id [str]: The ID of the dataset.
source [DataSource]: The source of the dataset.
metadata [Dict[str, Any]]: The metadata of the dataset.
format [str]: The format of the dataset.
description [str]: The description of the dataset.
Returns:
Dataset
"""
# add warnings for unsupported params
request_body = {
"name": dataset_def.identifier,
"namespace": self.config.dataset_namespace,
"files_url": dataset_def.source.uri,
"project": self.config.project_id,
}
if dataset_def.metadata:
request_body["format"] = dataset_def.metadata.get("format")
request_body["description"] = dataset_def.metadata.get("description")
await self._make_request(
"POST",
"/v1/datasets",
json=request_body,
)
return dataset_def
async def update_dataset(
self,
dataset_id: str,
dataset_schema: dict[str, ParamType],
url: URL,
provider_dataset_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
) -> None:
raise NotImplementedError("Not implemented")
async def unregister_dataset(
self,
dataset_id: str,
) -> None:
await self._make_request(
"DELETE",
f"/v1/datasets/{self.config.dataset_namespace}/{dataset_id}",
headers={"Accept": "application/json", "Content-Type": "application/json"},
)
async def iterrows(
self,
dataset_id: str,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
raise NotImplementedError("Not implemented")
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
raise NotImplementedError("Not implemented")