mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-22 16:23:08 +00:00
chore: Updating how default embedding model is set in stack (#3818)
# What does this PR do? Refactor setting default vector store provider and embedding model to use an optional `vector_stores` config in the `StackRunConfig` and clean up code to do so (had to add back in some pieces of VectorDB). Also added remote Qdrant and Weaviate to starter distro (based on other PR where inference providers were added for UX). New config is simply (default for Starter distro): ```yaml vector_stores: default_provider_id: faiss default_embedding_model: provider_id: sentence-transformers model_id: nomic-ai/nomic-embed-text-v1.5 ``` ## Test Plan CI and Unit tests. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
2c43285e22
commit
48581bf651
48 changed files with 973 additions and 818 deletions
|
@ -35,7 +35,7 @@ from llama_stack.apis.telemetry import Telemetry
|
|||
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
|
||||
from llama_stack.core.datatypes import Provider, StackRunConfig
|
||||
from llama_stack.core.datatypes import Provider, StackRunConfig, VectorStoresConfig
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.inspect import DistributionInspectConfig, DistributionInspectImpl
|
||||
from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceImpl
|
||||
|
@ -108,30 +108,6 @@ REGISTRY_REFRESH_TASK = None
|
|||
TEST_RECORDING_CONTEXT = None
|
||||
|
||||
|
||||
async def validate_default_embedding_model(impls: dict[Api, Any]):
|
||||
"""Validate that at most one embedding model is marked as default."""
|
||||
if Api.models not in impls:
|
||||
return
|
||||
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
models_list = response.data if hasattr(response, "data") else response
|
||||
|
||||
default_embedding_models = []
|
||||
for model in models_list:
|
||||
if model.model_type == "embedding" and model.metadata.get("default_configured") is True:
|
||||
default_embedding_models.append(model.identifier)
|
||||
|
||||
if len(default_embedding_models) > 1:
|
||||
raise ValueError(
|
||||
f"Multiple embedding models marked as default_configured=True: {default_embedding_models}. "
|
||||
"Only one embedding model can be marked as default."
|
||||
)
|
||||
|
||||
if default_embedding_models:
|
||||
logger.info(f"Default embedding model configured: {default_embedding_models[0]}")
|
||||
|
||||
|
||||
async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
|
||||
for rsrc, api, register_method, list_method in RESOURCES:
|
||||
objects = getattr(run_config, rsrc)
|
||||
|
@ -162,7 +138,41 @@ async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
|
|||
f"{rsrc.capitalize()}: {obj.identifier} served by {obj.provider_id}",
|
||||
)
|
||||
|
||||
await validate_default_embedding_model(impls)
|
||||
|
||||
async def validate_vector_stores_config(vector_stores_config: VectorStoresConfig | None, impls: dict[Api, Any]):
|
||||
"""Validate vector stores configuration."""
|
||||
if vector_stores_config is None:
|
||||
return
|
||||
|
||||
default_embedding_model = vector_stores_config.default_embedding_model
|
||||
if default_embedding_model is None:
|
||||
return
|
||||
|
||||
provider_id = default_embedding_model.provider_id
|
||||
model_id = default_embedding_model.model_id
|
||||
default_model_id = f"{provider_id}/{model_id}"
|
||||
|
||||
if Api.models not in impls:
|
||||
raise ValueError(f"Models API is not available but vector_stores config requires model '{default_model_id}'")
|
||||
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
models_list = {m.identifier: m for m in response.data if m.model_type == "embedding"}
|
||||
|
||||
default_model = models_list.get(default_model_id)
|
||||
if default_model is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' not found. Available embedding models: {models_list}")
|
||||
|
||||
embedding_dimension = default_model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' is missing 'embedding_dimension' in metadata")
|
||||
|
||||
try:
|
||||
int(embedding_dimension)
|
||||
except ValueError as err:
|
||||
raise ValueError(f"Embedding dimension '{embedding_dimension}' cannot be converted to an integer") from err
|
||||
|
||||
logger.debug(f"Validated default embedding model: {default_model_id} (dimension: {embedding_dimension})")
|
||||
|
||||
|
||||
class EnvVarError(Exception):
|
||||
|
@ -400,8 +410,8 @@ class Stack:
|
|||
await impls[Api.conversations].initialize()
|
||||
|
||||
await register_resources(self.run_config, impls)
|
||||
|
||||
await refresh_registry_once(impls)
|
||||
await validate_vector_stores_config(self.run_config.vector_stores, impls)
|
||||
self.impls = impls
|
||||
|
||||
def create_registry_refresh_task(self):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue