chore: Updating how default embedding model is set in stack (#3818)

# What does this PR do?

Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).

New config is simply (default for Starter distro):

```yaml
vector_stores:
  default_provider_id: faiss
  default_embedding_model:
    provider_id: sentence-transformers
    model_id: nomic-ai/nomic-embed-text-v1.5
```

## Test Plan
CI and Unit tests.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
Francisco Arceo 2025-10-20 17:22:45 -04:00 committed by GitHub
parent 2c43285e22
commit 48581bf651
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
48 changed files with 973 additions and 818 deletions

View file

@ -13,12 +13,6 @@ async def get_adapter_impl(config: MilvusVectorIOConfig, deps: dict[Api, Provide
from .milvus import MilvusVectorIOAdapter
assert isinstance(config, MilvusVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = MilvusVectorIOAdapter(
config,
deps[Api.inference],
deps[Api.models],
deps.get(Api.files),
)
impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -14,13 +14,8 @@ from pymilvus import AnnSearchRequest, DataType, Function, FunctionType, MilvusC
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.models import Models
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
@ -74,46 +69,23 @@ class MilvusIndex(EmbeddingIndex):
logger.info(f"Creating new collection {self.collection_name} with nullable sparse field")
# Create schema for vector search
schema = self.client.create_schema()
schema.add_field(
field_name="chunk_id",
datatype=DataType.VARCHAR,
is_primary=True,
max_length=100,
)
schema.add_field(field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=100)
schema.add_field(
field_name="content",
datatype=DataType.VARCHAR,
max_length=65535,
enable_analyzer=True, # Enable text analysis for BM25
)
schema.add_field(
field_name="vector",
datatype=DataType.FLOAT_VECTOR,
dim=len(embeddings[0]),
)
schema.add_field(
field_name="chunk_content",
datatype=DataType.JSON,
)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=len(embeddings[0]))
schema.add_field(field_name="chunk_content", datatype=DataType.JSON)
# Add sparse vector field for BM25 (required by the function)
schema.add_field(
field_name="sparse",
datatype=DataType.SPARSE_FLOAT_VECTOR,
)
schema.add_field(field_name="sparse", datatype=DataType.SPARSE_FLOAT_VECTOR)
# Create indexes
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="vector",
index_type="FLAT",
metric_type="COSINE",
)
index_params.add_index(field_name="vector", index_type="FLAT", metric_type="COSINE")
# Add index for sparse field (required by BM25 function)
index_params.add_index(
field_name="sparse",
index_type="SPARSE_INVERTED_INDEX",
metric_type="BM25",
)
index_params.add_index(field_name="sparse", index_type="SPARSE_INVERTED_INDEX", metric_type="BM25")
# Add BM25 function for full-text search
bm25_function = Function(
@ -144,11 +116,7 @@ class MilvusIndex(EmbeddingIndex):
}
)
try:
await asyncio.to_thread(
self.client.insert,
self.collection_name,
data=data,
)
await asyncio.to_thread(self.client.insert, self.collection_name, data=data)
except Exception as e:
logger.error(f"Error inserting chunks into Milvus collection {self.collection_name}: {e}")
raise e
@ -167,12 +135,7 @@ class MilvusIndex(EmbeddingIndex):
scores = [res["distance"] for res in search_res[0]]
return QueryChunksResponse(chunks=chunks, scores=scores)
async def query_keyword(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Perform BM25-based keyword search using Milvus's built-in full-text search.
"""
@ -210,12 +173,7 @@ class MilvusIndex(EmbeddingIndex):
# Fallback to simple text search
return await self._fallback_keyword_search(query_string, k, score_threshold)
async def _fallback_keyword_search(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def _fallback_keyword_search(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Fallback to simple text search when BM25 search is not available.
"""
@ -308,7 +266,6 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self,
config: RemoteMilvusVectorIOConfig | InlineMilvusVectorIOConfig,
inference_api: Inference,
models_api: Models,
files_api: Files | None,
) -> None:
super().__init__(files_api=files_api, kvstore=None)
@ -316,7 +273,6 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.cache = {}
self.client = None
self.inference_api = inference_api
self.models_api = models_api
self.vector_db_store = None
self.metadata_collection_name = "openai_vector_stores_metadata"
@ -355,10 +311,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
# Clean up mixin resources (file batch tasks)
await super().shutdown()
async def register_vector_db(
self,
vector_db: VectorDB,
) -> None:
async def register_vector_db(self, vector_db: VectorDB) -> None:
if isinstance(self.config, RemoteMilvusVectorIOConfig):
consistency_level = self.config.consistency_level
else:
@ -395,12 +348,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
await self.cache[vector_db_id].index.delete()
del self.cache[vector_db_id]
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
@ -408,10 +356,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
await index.insert_chunks(chunks)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: