chore: Updating how default embedding model is set in stack (#3818)

# What does this PR do?

Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).

New config is simply (default for Starter distro):

```yaml
vector_stores:
  default_provider_id: faiss
  default_embedding_model:
    provider_id: sentence-transformers
    model_id: nomic-ai/nomic-embed-text-v1.5
```

## Test Plan
CI and Unit tests.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
Francisco Arceo 2025-10-20 17:22:45 -04:00 committed by GitHub
parent 2c43285e22
commit 48581bf651
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
48 changed files with 973 additions and 818 deletions

View file

@ -317,3 +317,72 @@ def pytest_ignore_collect(path: str, config: pytest.Config) -> bool:
if p.is_relative_to(rp):
return False
return True
def get_vector_io_provider_ids(client):
"""Get all available vector_io provider IDs."""
providers = [p for p in client.providers.list() if p.api == "vector_io"]
return [p.provider_id for p in providers]
def vector_provider_wrapper(func):
"""Decorator to run a test against all available vector_io providers."""
import functools
import os
@functools.wraps(func)
def wrapper(*args, **kwargs):
# Get the vector_io_provider_id from the test arguments
import inspect
sig = inspect.signature(func)
bound_args = sig.bind(*args, **kwargs)
bound_args.apply_defaults()
vector_io_provider_id = bound_args.arguments.get("vector_io_provider_id")
if not vector_io_provider_id:
pytest.skip("No vector_io_provider_id provided")
# Get client_with_models to check available providers
client_with_models = bound_args.arguments.get("client_with_models")
if client_with_models:
available_providers = get_vector_io_provider_ids(client_with_models)
if vector_io_provider_id not in available_providers:
pytest.skip(f"Provider '{vector_io_provider_id}' not available. Available: {available_providers}")
return func(*args, **kwargs)
# For replay tests, only use providers that are available in ci-tests environment
if os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE") == "replay":
all_providers = ["faiss", "sqlite-vec"]
else:
# For live tests, try all providers (they'll skip if not available)
all_providers = [
"faiss",
"sqlite-vec",
"milvus",
"chromadb",
"pgvector",
"weaviate",
"qdrant",
]
return pytest.mark.parametrize("vector_io_provider_id", all_providers)(wrapper)
@pytest.fixture
def vector_io_provider_id(request, client_with_models):
"""Fixture that provides a specific vector_io provider ID, skipping if not available."""
if hasattr(request, "param"):
requested_provider = request.param
available_providers = get_vector_io_provider_ids(client_with_models)
if requested_provider not in available_providers:
pytest.skip(f"Provider '{requested_provider}' not available. Available: {available_providers}")
return requested_provider
else:
provider_ids = get_vector_io_provider_ids(client_with_models)
if not provider_ids:
pytest.skip("No vector_io providers available")
return provider_ids[0]

View file

@ -21,6 +21,7 @@ from llama_stack_client import LlamaStackClient
from openai import OpenAI
from llama_stack import LlamaStackAsLibraryClient
from llama_stack.core.datatypes import VectorStoresConfig
from llama_stack.core.stack import run_config_from_adhoc_config_spec
from llama_stack.env import get_env_or_fail
@ -236,6 +237,13 @@ def instantiate_llama_stack_client(session):
if "=" in config:
run_config = run_config_from_adhoc_config_spec(config)
# --stack-config bypasses template so need this to set default embedding model
if "vector_io" in config and "inference" in config:
run_config.vector_stores = VectorStoresConfig(
embedding_model_id="inline::sentence-transformers/nomic-ai/nomic-embed-text-v1.5"
)
run_config_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
with open(run_config_file.name, "w") as f:
yaml.dump(run_config.model_dump(mode="json"), f)

View file

@ -8,14 +8,15 @@ import time
from io import BytesIO
import pytest
from llama_stack_client import BadRequestError, NotFoundError
from llama_stack_client import BadRequestError
from openai import BadRequestError as OpenAIBadRequestError
from openai import NotFoundError as OpenAINotFoundError
from llama_stack.apis.vector_io import Chunk
from llama_stack.core.library_client import LlamaStackAsLibraryClient
from llama_stack.log import get_logger
from ..conftest import vector_provider_wrapper
logger = get_logger(name=__name__, category="vector_io")
@ -133,8 +134,9 @@ def compat_client_with_empty_stores(compat_client):
clear_files()
@vector_provider_wrapper
def test_openai_create_vector_store(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test creating a vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -146,6 +148,7 @@ def test_openai_create_vector_store(
metadata={"purpose": "testing", "environment": "integration"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -159,14 +162,18 @@ def test_openai_create_vector_store(
assert hasattr(vector_store, "created_at")
def test_openai_create_vector_store_default(compat_client_with_empty_stores, client_with_models):
@vector_provider_wrapper
def test_openai_create_vector_store_default(compat_client_with_empty_stores, client_with_models, vector_io_provider_id):
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
vector_store = compat_client_with_empty_stores.vector_stores.create()
vector_store = compat_client_with_empty_stores.vector_stores.create(
extra_body={"provider_id": vector_io_provider_id}
)
assert vector_store.id
@vector_provider_wrapper
def test_openai_list_vector_stores(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test listing vector stores using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -179,6 +186,7 @@ def test_openai_list_vector_stores(
metadata={"type": "test"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
store2 = client.vector_stores.create(
@ -186,6 +194,7 @@ def test_openai_list_vector_stores(
metadata={"type": "test"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -206,8 +215,9 @@ def test_openai_list_vector_stores(
assert len(limited_response.data) == 1
@vector_provider_wrapper
def test_openai_retrieve_vector_store(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test retrieving a specific vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -220,6 +230,7 @@ def test_openai_retrieve_vector_store(
metadata={"purpose": "retrieval_test"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -233,8 +244,9 @@ def test_openai_retrieve_vector_store(
assert retrieved_store.object == "vector_store"
@vector_provider_wrapper
def test_openai_update_vector_store(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test modifying a vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -247,6 +259,7 @@ def test_openai_update_vector_store(
metadata={"version": "1.0"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
time.sleep(1)
@ -264,8 +277,9 @@ def test_openai_update_vector_store(
assert modified_store.last_active_at > created_store.last_active_at
@vector_provider_wrapper
def test_openai_delete_vector_store(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test deleting a vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -278,6 +292,7 @@ def test_openai_delete_vector_store(
metadata={"purpose": "deletion_test"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -294,8 +309,9 @@ def test_openai_delete_vector_store(
client.vector_stores.retrieve(vector_store_id=created_store.id)
@vector_provider_wrapper
def test_openai_vector_store_search_empty(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test searching an empty vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -308,6 +324,7 @@ def test_openai_vector_store_search_empty(
metadata={"purpose": "search_testing"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -323,8 +340,14 @@ def test_openai_vector_store_search_empty(
assert search_response.has_more is False
@vector_provider_wrapper
def test_openai_vector_store_with_chunks(
compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension
compat_client_with_empty_stores,
client_with_models,
sample_chunks,
embedding_model_id,
embedding_dimension,
vector_io_provider_id,
):
"""Test vector store functionality with actual chunks using both OpenAI and native APIs."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -338,6 +361,7 @@ def test_openai_vector_store_with_chunks(
metadata={"purpose": "chunks_testing"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -380,6 +404,7 @@ def test_openai_vector_store_with_chunks(
("What inspires neural networks?", "doc4", "ai"),
],
)
@vector_provider_wrapper
def test_openai_vector_store_search_relevance(
compat_client_with_empty_stores,
client_with_models,
@ -387,6 +412,7 @@ def test_openai_vector_store_search_relevance(
test_case,
embedding_model_id,
embedding_dimension,
vector_io_provider_id,
):
"""Test that OpenAI vector store search returns relevant results for different queries."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -402,6 +428,7 @@ def test_openai_vector_store_search_relevance(
metadata={"purpose": "relevance_testing"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -430,8 +457,14 @@ def test_openai_vector_store_search_relevance(
assert top_result.score > 0
@vector_provider_wrapper
def test_openai_vector_store_search_with_ranking_options(
compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension
compat_client_with_empty_stores,
client_with_models,
sample_chunks,
embedding_model_id,
embedding_dimension,
vector_io_provider_id,
):
"""Test OpenAI vector store search with ranking options."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -445,6 +478,7 @@ def test_openai_vector_store_search_with_ranking_options(
metadata={"purpose": "ranking_testing"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -483,8 +517,14 @@ def test_openai_vector_store_search_with_ranking_options(
assert result.score >= threshold
@vector_provider_wrapper
def test_openai_vector_store_search_with_high_score_filter(
compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension
compat_client_with_empty_stores,
client_with_models,
sample_chunks,
embedding_model_id,
embedding_dimension,
vector_io_provider_id,
):
"""Test that searching with text very similar to a document and high score threshold returns only that document."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -498,6 +538,7 @@ def test_openai_vector_store_search_with_high_score_filter(
metadata={"purpose": "high_score_filtering"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -542,8 +583,14 @@ def test_openai_vector_store_search_with_high_score_filter(
assert "python" in top_content.lower() or "programming" in top_content.lower()
@vector_provider_wrapper
def test_openai_vector_store_search_with_max_num_results(
compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension
compat_client_with_empty_stores,
client_with_models,
sample_chunks,
embedding_model_id,
embedding_dimension,
vector_io_provider_id,
):
"""Test OpenAI vector store search with max_num_results."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -557,6 +604,7 @@ def test_openai_vector_store_search_with_max_num_results(
metadata={"purpose": "max_num_results_testing"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -577,8 +625,9 @@ def test_openai_vector_store_search_with_max_num_results(
assert len(search_response.data) == 2
@vector_provider_wrapper
def test_openai_vector_store_attach_file(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store attach file."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -591,6 +640,7 @@ def test_openai_vector_store_attach_file(
name="test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -637,8 +687,9 @@ def test_openai_vector_store_attach_file(
assert "foobazbar" in top_content.lower()
@vector_provider_wrapper
def test_openai_vector_store_attach_files_on_creation(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store attach files on creation."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -668,6 +719,7 @@ def test_openai_vector_store_attach_files_on_creation(
file_ids=file_ids,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -700,8 +752,9 @@ def test_openai_vector_store_attach_files_on_creation(
assert updated_vector_store.file_counts.failed == 0
@vector_provider_wrapper
def test_openai_vector_store_list_files(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store list files."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -714,6 +767,7 @@ def test_openai_vector_store_list_files(
name="test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -773,8 +827,9 @@ def test_openai_vector_store_list_files(
assert updated_vector_store.file_counts.in_progress == 0
@vector_provider_wrapper
def test_openai_vector_store_list_files_invalid_vector_store(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store list files with invalid vector store ID."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -783,14 +838,15 @@ def test_openai_vector_store_list_files_invalid_vector_store(
if isinstance(compat_client, LlamaStackAsLibraryClient):
errors = ValueError
else:
errors = (NotFoundError, OpenAINotFoundError)
errors = (BadRequestError, OpenAIBadRequestError)
with pytest.raises(errors):
compat_client.vector_stores.files.list(vector_store_id="abc123")
@vector_provider_wrapper
def test_openai_vector_store_retrieve_file_contents(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store retrieve file contents."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -803,6 +859,7 @@ def test_openai_vector_store_retrieve_file_contents(
name="test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -848,8 +905,9 @@ def test_openai_vector_store_retrieve_file_contents(
assert file_contents.attributes == attributes
@vector_provider_wrapper
def test_openai_vector_store_delete_file(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store delete file."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -862,6 +920,7 @@ def test_openai_vector_store_delete_file(
name="test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -912,8 +971,9 @@ def test_openai_vector_store_delete_file(
assert updated_vector_store.file_counts.in_progress == 0
@vector_provider_wrapper
def test_openai_vector_store_delete_file_removes_from_vector_store(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store delete file removes from vector store."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -926,6 +986,7 @@ def test_openai_vector_store_delete_file_removes_from_vector_store(
name="test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -962,8 +1023,9 @@ def test_openai_vector_store_delete_file_removes_from_vector_store(
assert not search_response.data
@vector_provider_wrapper
def test_openai_vector_store_update_file(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test OpenAI vector store update file."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -976,6 +1038,7 @@ def test_openai_vector_store_update_file(
name="test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1017,8 +1080,9 @@ def test_openai_vector_store_update_file(
assert retrieved_file.attributes["foo"] == "baz"
@vector_provider_wrapper
def test_create_vector_store_files_duplicate_vector_store_name(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""
This test confirms that client.vector_stores.create() creates a unique ID
@ -1044,6 +1108,7 @@ def test_create_vector_store_files_duplicate_vector_store_name(
name="test_store_with_files",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
assert vector_store.file_counts.completed == 0
@ -1056,6 +1121,7 @@ def test_create_vector_store_files_duplicate_vector_store_name(
name="test_store_with_files",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1086,8 +1152,15 @@ def test_create_vector_store_files_duplicate_vector_store_name(
@pytest.mark.parametrize("search_mode", ["vector", "keyword", "hybrid"])
@vector_provider_wrapper
def test_openai_vector_store_search_modes(
llama_stack_client, client_with_models, sample_chunks, search_mode, embedding_model_id, embedding_dimension
llama_stack_client,
client_with_models,
sample_chunks,
search_mode,
embedding_model_id,
embedding_dimension,
vector_io_provider_id,
):
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
skip_if_provider_doesnt_support_openai_vector_stores_search(client_with_models, search_mode)
@ -1097,6 +1170,7 @@ def test_openai_vector_store_search_modes(
metadata={"purpose": "search_mode_testing"},
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1115,8 +1189,9 @@ def test_openai_vector_store_search_modes(
assert search_response is not None
@vector_provider_wrapper
def test_openai_vector_store_file_batch_create_and_retrieve(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test creating and retrieving a vector store file batch."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -1128,6 +1203,7 @@ def test_openai_vector_store_file_batch_create_and_retrieve(
name="batch_test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1178,8 +1254,9 @@ def test_openai_vector_store_file_batch_create_and_retrieve(
assert retrieved_batch.status == "completed" # Should be completed after processing
@vector_provider_wrapper
def test_openai_vector_store_file_batch_list_files(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test listing files in a vector store file batch."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -1191,6 +1268,7 @@ def test_openai_vector_store_file_batch_list_files(
name="batch_list_test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1271,8 +1349,9 @@ def test_openai_vector_store_file_batch_list_files(
assert first_page_ids.isdisjoint(second_page_ids)
@vector_provider_wrapper
def test_openai_vector_store_file_batch_cancel(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test cancelling a vector store file batch."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -1284,6 +1363,7 @@ def test_openai_vector_store_file_batch_cancel(
name="batch_cancel_test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1326,8 +1406,9 @@ def test_openai_vector_store_file_batch_cancel(
assert final_batch.status in ["completed", "cancelled"]
@vector_provider_wrapper
def test_openai_vector_store_file_batch_retrieve_contents(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test retrieving file contents after file batch processing."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -1339,6 +1420,7 @@ def test_openai_vector_store_file_batch_retrieve_contents(
name="batch_contents_test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1399,8 +1481,9 @@ def test_openai_vector_store_file_batch_retrieve_contents(
assert file_data[i][1].decode("utf-8") in content_text
@vector_provider_wrapper
def test_openai_vector_store_file_batch_error_handling(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test error handling for file batch operations."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -1412,6 +1495,7 @@ def test_openai_vector_store_file_batch_error_handling(
name="batch_error_test_store",
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -1443,11 +1527,11 @@ def test_openai_vector_store_file_batch_error_handling(
batch_id="non_existent_batch_id",
)
# Test operations on non-existent vector store (returns NotFoundError)
# Test operations on non-existent vector store (returns BadRequestError)
if isinstance(compat_client, LlamaStackAsLibraryClient):
vector_store_errors = ValueError
else:
vector_store_errors = (NotFoundError, OpenAINotFoundError)
vector_store_errors = (BadRequestError, OpenAIBadRequestError)
with pytest.raises(vector_store_errors): # Should raise an error for non-existent vector store
compat_client.vector_stores.file_batches.create(
@ -1456,8 +1540,9 @@ def test_openai_vector_store_file_batch_error_handling(
)
@vector_provider_wrapper
def test_openai_vector_store_embedding_config_from_metadata(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id
):
"""Test that embedding configuration works from metadata source."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
@ -1471,6 +1556,9 @@ def test_openai_vector_store_embedding_config_from_metadata(
"embedding_dimension": str(embedding_dimension),
"test_source": "metadata",
},
extra_body={
"provider_id": vector_io_provider_id,
},
)
assert vector_store_metadata is not None
@ -1489,6 +1577,7 @@ def test_openai_vector_store_embedding_config_from_metadata(
extra_body={
"embedding_model": embedding_model_id,
"embedding_dimension": int(embedding_dimension), # Ensure same type/value
"provider_id": vector_io_provider_id,
},
)

View file

@ -8,6 +8,8 @@ import pytest
from llama_stack.apis.vector_io import Chunk
from ..conftest import vector_provider_wrapper
@pytest.fixture(scope="session")
def sample_chunks():
@ -46,12 +48,13 @@ def client_with_empty_registry(client_with_models):
clear_registry()
def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension):
@vector_provider_wrapper
def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id):
vector_db_name = "test_vector_db"
create_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -65,12 +68,13 @@ def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embe
assert response.id.startswith("vs_")
def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension):
@vector_provider_wrapper
def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id):
vector_db_name = "test_vector_db"
response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -100,12 +104,15 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe
("How does machine learning improve over time?", "doc2"),
],
)
def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case):
@vector_provider_wrapper
def test_insert_chunks(
client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case, vector_io_provider_id
):
vector_db_name = "test_vector_db"
create_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -135,7 +142,10 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding
assert top_match.metadata["document_id"] == expected_doc_id, f"Query '{query}' should match {expected_doc_id}"
def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, embedding_model_id, embedding_dimension):
@vector_provider_wrapper
def test_insert_chunks_with_precomputed_embeddings(
client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id
):
vector_io_provider_params_dict = {
"inline::milvus": {"score_threshold": -1.0},
"inline::qdrant": {"score_threshold": -1.0},
@ -145,7 +155,7 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
register_response = client_with_empty_registry.vector_stores.create(
name=vector_db_name,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -181,8 +191,9 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
# expect this test to fail
@vector_provider_wrapper
def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
client_with_empty_registry, embedding_model_id, embedding_dimension
client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id
):
vector_io_provider_params_dict = {
"inline::milvus": {"score_threshold": 0.0},
@ -194,6 +205,7 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
name=vector_db_name,
extra_body={
"embedding_model": embedding_model_id,
"provider_id": vector_io_provider_id,
},
)
@ -226,33 +238,44 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
assert response.chunks[0].metadata["source"] == "precomputed"
def test_auto_extract_embedding_dimension(client_with_empty_registry, embedding_model_id):
@vector_provider_wrapper
def test_auto_extract_embedding_dimension(
client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id
):
# This test specifically tests embedding model override, so we keep embedding_model
vs = client_with_empty_registry.vector_stores.create(
name="test_auto_extract", extra_body={"embedding_model": embedding_model_id}
name="test_auto_extract",
extra_body={"embedding_model": embedding_model_id, "provider_id": vector_io_provider_id},
)
assert vs.id is not None
def test_provider_auto_selection_single_provider(client_with_empty_registry, embedding_model_id):
@vector_provider_wrapper
def test_provider_auto_selection_single_provider(
client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id
):
providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"]
if len(providers) != 1:
pytest.skip(f"Test requires exactly one vector_io provider, found {len(providers)}")
vs = client_with_empty_registry.vector_stores.create(
name="test_auto_provider", extra_body={"embedding_model": embedding_model_id}
)
# Test that when only one provider is available, it's auto-selected (no provider_id needed)
vs = client_with_empty_registry.vector_stores.create(name="test_auto_provider")
assert vs.id is not None
def test_provider_id_override(client_with_empty_registry, embedding_model_id):
@vector_provider_wrapper
def test_provider_id_override(
client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id
):
providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"]
if len(providers) != 1:
pytest.skip(f"Test requires exactly one vector_io provider, found {len(providers)}")
provider_id = providers[0].provider_id
# Test explicit provider_id specification (using default embedding model)
vs = client_with_empty_registry.vector_stores.create(
name="test_provider_override", extra_body={"embedding_model": embedding_model_id, "provider_id": provider_id}
name="test_provider_override", extra_body={"provider_id": provider_id}
)
assert vs.id is not None
assert vs.metadata.get("provider_id") == provider_id