mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-23 00:27:26 +00:00
chore: Updating how default embedding model is set in stack (#3818)
# What does this PR do? Refactor setting default vector store provider and embedding model to use an optional `vector_stores` config in the `StackRunConfig` and clean up code to do so (had to add back in some pieces of VectorDB). Also added remote Qdrant and Weaviate to starter distro (based on other PR where inference providers were added for UX). New config is simply (default for Starter distro): ```yaml vector_stores: default_provider_id: faiss default_embedding_model: provider_id: sentence-transformers model_id: nomic-ai/nomic-embed-text-v1.5 ``` ## Test Plan CI and Unit tests. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
2c43285e22
commit
48581bf651
48 changed files with 973 additions and 818 deletions
|
@ -4,90 +4,64 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Unit tests for Stack validation functions.
|
||||
"""
|
||||
"""Unit tests for Stack validation functions."""
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.core.stack import validate_default_embedding_model
|
||||
from llama_stack.apis.models import ListModelsResponse, Model, ModelType
|
||||
from llama_stack.core.datatypes import QualifiedModel, StackRunConfig, StorageConfig, VectorStoresConfig
|
||||
from llama_stack.core.stack import validate_vector_stores_config
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
|
||||
class TestStackValidation:
|
||||
"""Test Stack validation functions."""
|
||||
class TestVectorStoresValidation:
|
||||
async def test_validate_missing_model(self):
|
||||
"""Test validation fails when model not found."""
|
||||
run_config = StackRunConfig(
|
||||
image_name="test",
|
||||
providers={},
|
||||
storage=StorageConfig(backends={}, stores={}),
|
||||
vector_stores=VectorStoresConfig(
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=QualifiedModel(
|
||||
provider_id="p",
|
||||
model_id="missing",
|
||||
),
|
||||
),
|
||||
)
|
||||
mock_models = AsyncMock()
|
||||
mock_models.list_models.return_value = ListModelsResponse(data=[])
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"models,should_raise",
|
||||
[
|
||||
([], False), # No models
|
||||
(
|
||||
[
|
||||
Model(
|
||||
identifier="emb1",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"default_configured": True},
|
||||
provider_id="p",
|
||||
provider_resource_id="emb1",
|
||||
)
|
||||
],
|
||||
False,
|
||||
), # Single default
|
||||
(
|
||||
[
|
||||
Model(
|
||||
identifier="emb1",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"default_configured": True},
|
||||
provider_id="p",
|
||||
provider_resource_id="emb1",
|
||||
),
|
||||
Model(
|
||||
identifier="emb2",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"default_configured": True},
|
||||
provider_id="p",
|
||||
provider_resource_id="emb2",
|
||||
),
|
||||
],
|
||||
True,
|
||||
), # Multiple defaults
|
||||
(
|
||||
[
|
||||
Model(
|
||||
identifier="emb1",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"default_configured": True},
|
||||
provider_id="p",
|
||||
provider_resource_id="emb1",
|
||||
),
|
||||
Model(
|
||||
identifier="llm1",
|
||||
model_type=ModelType.llm,
|
||||
metadata={"default_configured": True},
|
||||
provider_id="p",
|
||||
provider_resource_id="llm1",
|
||||
),
|
||||
],
|
||||
False,
|
||||
), # Ignores non-embedding
|
||||
],
|
||||
)
|
||||
async def test_validate_default_embedding_model(self, models, should_raise):
|
||||
"""Test validation with various model configurations."""
|
||||
mock_models_impl = AsyncMock()
|
||||
mock_models_impl.list_models.return_value = models
|
||||
impls = {Api.models: mock_models_impl}
|
||||
with pytest.raises(ValueError, match="not found"):
|
||||
await validate_vector_stores_config(run_config.vector_stores, {Api.models: mock_models})
|
||||
|
||||
if should_raise:
|
||||
with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"):
|
||||
await validate_default_embedding_model(impls)
|
||||
else:
|
||||
await validate_default_embedding_model(impls)
|
||||
async def test_validate_success(self):
|
||||
"""Test validation passes with valid model."""
|
||||
run_config = StackRunConfig(
|
||||
image_name="test",
|
||||
providers={},
|
||||
storage=StorageConfig(backends={}, stores={}),
|
||||
vector_stores=VectorStoresConfig(
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=QualifiedModel(
|
||||
provider_id="p",
|
||||
model_id="valid",
|
||||
),
|
||||
),
|
||||
)
|
||||
mock_models = AsyncMock()
|
||||
mock_models.list_models.return_value = ListModelsResponse(
|
||||
data=[
|
||||
Model(
|
||||
identifier="p/valid", # Must match provider_id/model_id format
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 768},
|
||||
provider_id="p",
|
||||
provider_resource_id="valid",
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
async def test_validate_default_embedding_model_no_models_api(self):
|
||||
"""Test validation when models API is not available."""
|
||||
await validate_default_embedding_model({})
|
||||
await validate_vector_stores_config(run_config.vector_stores, {Api.models: mock_models})
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue