Merge branch 'main' into watsonx-infer-fix

This commit is contained in:
Sajikumar JS 2025-04-26 18:31:59 +05:30
commit 4884c62190
15 changed files with 192 additions and 256 deletions

View file

@ -67,13 +67,18 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
self.timeout = aiohttp.ClientTimeout(total=config.timeout)
# TODO: filter by available models based on /config endpoint
ModelRegistryHelper.__init__(self, model_entries=_MODEL_ENTRIES)
self.session = aiohttp.ClientSession(headers=self.headers, timeout=self.timeout)
self.customizer_url = config.customizer_url
self.session = None
self.customizer_url = config.customizer_url
if not self.customizer_url:
warnings.warn("Customizer URL is not set, using default value: http://nemo.test", stacklevel=2)
self.customizer_url = "http://nemo.test"
async def _get_session(self) -> aiohttp.ClientSession:
if self.session is None or self.session.closed:
self.session = aiohttp.ClientSession(headers=self.headers, timeout=self.timeout)
return self.session
async def _make_request(
self,
method: str,
@ -94,8 +99,9 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
if json and "Content-Type" not in request_headers:
request_headers["Content-Type"] = "application/json"
session = await self._get_session()
for _ in range(self.config.max_retries):
async with self.session.request(method, url, params=params, json=json, **kwargs) as response:
async with session.request(method, url, params=params, json=json, **kwargs) as response:
if response.status >= 400:
error_data = await response.json()
raise Exception(f"API request failed: {error_data}")
@ -122,8 +128,8 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
jobs = []
for job in response.get("data", []):
job_id = job.pop("id")
job_status = job.pop("status", "unknown").lower()
mapped_status = STATUS_MAPPING.get(job_status, "unknown")
job_status = job.pop("status", "scheduled").lower()
mapped_status = STATUS_MAPPING.get(job_status, "scheduled")
# Convert string timestamps to datetime objects
created_at = (
@ -177,7 +183,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
)
api_status = response.pop("status").lower()
mapped_status = STATUS_MAPPING.get(api_status, "unknown")
mapped_status = STATUS_MAPPING.get(api_status, "scheduled")
return NvidiaPostTrainingJobStatusResponse(
status=JobStatus(mapped_status),
@ -239,6 +245,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
Supported models:
- meta/llama-3.1-8b-instruct
- meta/llama-3.2-1b-instruct
Supported algorithm configs:
- LoRA, SFT
@ -284,10 +291,6 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
- LoRA config:
## NeMo customizer specific LoRA parameters
- adapter_dim: int - Adapter dimension
Default: 8 (supports powers of 2)
- adapter_dropout: float - Adapter dropout
Default: None (0.0-1.0)
- alpha: int - Scaling factor for the LoRA update
Default: 16
Note:
@ -297,7 +300,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
User is informed about unsupported parameters via warnings.
"""
# Map model to nvidia model name
# ToDo: only supports llama-3.1-8b-instruct now, need to update this to support other models
# See `_MODEL_ENTRIES` for supported models
nvidia_model = self.get_provider_model_id(model)
# Check for unsupported method parameters
@ -330,7 +333,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
},
"data_config": {"dataset_id", "batch_size"},
"optimizer_config": {"lr", "weight_decay"},
"lora_config": {"type", "adapter_dim", "adapter_dropout", "alpha"},
"lora_config": {"type", "alpha"},
}
# Validate all parameters at once
@ -389,16 +392,10 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
# Handle LoRA-specific configuration
if algorithm_config:
if isinstance(algorithm_config, dict) and algorithm_config.get("type") == "LoRA":
if algorithm_config.type == "LoRA":
warn_unsupported_params(algorithm_config, supported_params["lora_config"], "LoRA config")
job_config["hyperparameters"]["lora"] = {
k: v
for k, v in {
"adapter_dim": algorithm_config.get("adapter_dim"),
"alpha": algorithm_config.get("alpha"),
"adapter_dropout": algorithm_config.get("adapter_dropout"),
}.items()
if v is not None
k: v for k, v in {"alpha": algorithm_config.alpha}.items() if v is not None
}
else:
raise NotImplementedError(f"Unsupported algorithm config: {algorithm_config}")