This commit is contained in:
Rohan Awhad 2025-06-27 10:47:41 +02:00 committed by GitHub
commit 48fce810e0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 22 additions and 8 deletions

13
llama_stack/exceptions.py Normal file
View file

@ -0,0 +1,13 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
class UnsupportedModelError(ValueError):
"""raised when model is not present in the list of supported models"""
def __init__(self, model_name: str, supported_models_list: list[str]):
message = f"'{model_name}' model is not supported. Supported models are: {', '.join(supported_models_list)}"
super().__init__(message)

View file

@ -48,6 +48,7 @@ from llama_stack.apis.inference import (
ToolPromptFormat, ToolPromptFormat,
) )
from llama_stack.apis.models import Model, ModelType from llama_stack.apis.models import Model, ModelType
from llama_stack.exceptions import UnsupportedModelError
from llama_stack.log import get_logger from llama_stack.log import get_logger
from llama_stack.providers.datatypes import ( from llama_stack.providers.datatypes import (
HealthResponse, HealthResponse,
@ -376,9 +377,7 @@ class OllamaInferenceAdapter(
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'" f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
) )
return model return model
raise ValueError( raise UnsupportedModelError(model.provider_resource_id, available_models)
f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
)
model.provider_resource_id = provider_resource_id model.provider_resource_id = provider_resource_id
return model return model

View file

@ -40,6 +40,7 @@ from llama_stack.apis.inference import (
) )
from llama_stack.apis.models import Model from llama_stack.apis.models import Model
from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.exceptions import UnsupportedModelError
from llama_stack.log import get_logger from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import ( from llama_stack.providers.utils.inference.openai_compat import (
@ -92,7 +93,7 @@ class LiteLLMOpenAIMixin(
async def register_model(self, model: Model) -> Model: async def register_model(self, model: Model) -> Model:
model_id = self.get_provider_model_id(model.provider_resource_id) model_id = self.get_provider_model_id(model.provider_resource_id)
if model_id is None: if model_id is None:
raise ValueError(f"Unsupported model: {model.provider_resource_id}") raise UnsupportedModelError(model.provider_resource_id, self.alias_to_provider_id_map.keys())
return model return model
def get_litellm_model_name(self, model_id: str) -> str: def get_litellm_model_name(self, model_id: str) -> str:

View file

@ -9,6 +9,7 @@ from typing import Any
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from llama_stack.apis.models import ModelType from llama_stack.apis.models import ModelType
from llama_stack.exceptions import UnsupportedModelError
from llama_stack.models.llama.sku_list import all_registered_models from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference import ( from llama_stack.providers.utils.inference import (
@ -34,7 +35,9 @@ def get_huggingface_repo(model_descriptor: str) -> str | None:
def build_hf_repo_model_entry( def build_hf_repo_model_entry(
provider_model_id: str, model_descriptor: str, additional_aliases: list[str] | None = None provider_model_id: str,
model_descriptor: str,
additional_aliases: list[str] | None = None,
) -> ProviderModelEntry: ) -> ProviderModelEntry:
aliases = [ aliases = [
get_huggingface_repo(model_descriptor), get_huggingface_repo(model_descriptor),
@ -81,9 +84,7 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
async def register_model(self, model: Model) -> Model: async def register_model(self, model: Model) -> Model:
if not (supported_model_id := self.get_provider_model_id(model.provider_resource_id)): if not (supported_model_id := self.get_provider_model_id(model.provider_resource_id)):
raise ValueError( raise UnsupportedModelError(model.provider_resource_id, self.alias_to_provider_id_map.keys())
f"Model '{model.provider_resource_id}' is not supported. Supported models are: {', '.join(self.alias_to_provider_id_map.keys())}"
)
provider_resource_id = self.get_provider_model_id(model.model_id) provider_resource_id = self.get_provider_model_id(model.model_id)
if model.model_type == ModelType.embedding: if model.model_type == ModelType.embedding:
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model # embedding models are always registered by their provider model id and does not need to be mapped to a llama model