mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 01:48:05 +00:00
fix: harden storage semantics (#4118)
Fixes issues in the storage system by guaranteeing immediate durability for responses and ensuring background writers stay alive. Three related fixes: * Responses to the OpenAI-compatible API now write directly to Postgres/SQLite inside the request instead of detouring through an async queue that might never drain; this restores the expected read-after-write behavior and removes the "response not found" races reported by users. * The access-control shim was stamping owner_principal/access_attributes as SQL NULL, which Postgres interprets as non-public rows; fixing it to use the empty-string/JSON-null pattern means conversations and responses stored without an authenticated user stay queryable (matching SQLite). * The inference-store queue remains for batching, but its worker tasks now start lazily on the live event loop so server startup doesn't cancel them—writes keep flowing even when the stack is launched via llama stack run. Closes #4115 ### Test Plan Added a matrix entry to test our "base" suite against Postgres as the store.
This commit is contained in:
parent
356f37b1ba
commit
492f79ca9b
13 changed files with 516 additions and 211 deletions
|
|
@ -39,6 +39,32 @@ runs:
|
|||
if: ${{ inputs.setup == 'vllm' && inputs.inference-mode == 'record' }}
|
||||
uses: ./.github/actions/setup-vllm
|
||||
|
||||
- name: Start Postgres service
|
||||
if: ${{ contains(inputs.setup, 'postgres') }}
|
||||
shell: bash
|
||||
run: |
|
||||
sudo docker rm -f postgres-ci || true
|
||||
sudo docker run -d --name postgres-ci \
|
||||
-e POSTGRES_USER=llamastack \
|
||||
-e POSTGRES_PASSWORD=llamastack \
|
||||
-e POSTGRES_DB=llamastack \
|
||||
-p 5432:5432 \
|
||||
postgres:16
|
||||
|
||||
echo "Waiting for Postgres to become ready..."
|
||||
for i in {1..30}; do
|
||||
if sudo docker exec postgres-ci pg_isready -U llamastack -d llamastack >/dev/null 2>&1; then
|
||||
echo "Postgres is ready"
|
||||
break
|
||||
fi
|
||||
if [ "$i" -eq 30 ]; then
|
||||
echo "Postgres failed to start in time"
|
||||
sudo docker logs postgres-ci || true
|
||||
exit 1
|
||||
fi
|
||||
sleep 2
|
||||
done
|
||||
|
||||
- name: Build Llama Stack
|
||||
shell: bash
|
||||
run: |
|
||||
|
|
|
|||
12
.github/workflows/integration-tests.yml
vendored
12
.github/workflows/integration-tests.yml
vendored
|
|
@ -66,12 +66,12 @@ jobs:
|
|||
run-replay-mode-tests:
|
||||
needs: generate-matrix
|
||||
runs-on: ubuntu-latest
|
||||
name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client-type, matrix.config.setup, matrix.python-version, matrix.client-version, matrix.config.suite) }}
|
||||
name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client, matrix.config.setup, matrix.python-version, matrix.client-version, matrix.config.suite) }}
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
client-type: [library, docker, server]
|
||||
client: [library, docker, server]
|
||||
# Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12
|
||||
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
|
||||
client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }}
|
||||
|
|
@ -84,6 +84,7 @@ jobs:
|
|||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
|
||||
- name: Setup test environment
|
||||
if: ${{ matrix.config.allowed_clients == null || contains(matrix.config.allowed_clients, matrix.client) }}
|
||||
uses: ./.github/actions/setup-test-environment
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
|
@ -93,11 +94,16 @@ jobs:
|
|||
inference-mode: 'replay'
|
||||
|
||||
- name: Run tests
|
||||
if: ${{ matrix.config.allowed_clients == null || contains(matrix.config.allowed_clients, matrix.client) }}
|
||||
uses: ./.github/actions/run-and-record-tests
|
||||
env:
|
||||
OPENAI_API_KEY: dummy
|
||||
with:
|
||||
stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || matrix.client-type == 'server' && 'server:ci-tests' || 'docker:ci-tests' }}
|
||||
stack-config: >-
|
||||
${{ matrix.config.stack_config
|
||||
|| (matrix.client == 'library' && 'ci-tests')
|
||||
|| (matrix.client == 'server' && 'server:ci-tests')
|
||||
|| 'docker:ci-tests' }}
|
||||
setup: ${{ matrix.config.setup }}
|
||||
inference-mode: 'replay'
|
||||
suite: ${{ matrix.config.suite }}
|
||||
|
|
|
|||
|
|
@ -13,6 +13,5 @@ from ..starter.starter import get_distribution_template as get_starter_distribut
|
|||
def get_distribution_template() -> DistributionTemplate:
|
||||
template = get_starter_distribution_template(name="ci-tests")
|
||||
template.description = "CI tests for Llama Stack"
|
||||
template.run_configs.pop("run-with-postgres-store.yaml", None)
|
||||
|
||||
return template
|
||||
|
|
|
|||
|
|
@ -0,0 +1,293 @@
|
|||
version: 2
|
||||
image_name: ci-tests
|
||||
apis:
|
||||
- agents
|
||||
- batches
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
|
||||
provider_type: remote::cerebras
|
||||
config:
|
||||
base_url: https://api.cerebras.ai
|
||||
api_key: ${env.CEREBRAS_API_KEY:=}
|
||||
- provider_id: ${env.OLLAMA_URL:+ollama}
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
||||
- provider_id: ${env.VLLM_URL:+vllm}
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:=}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
- provider_id: ${env.TGI_URL:+tgi}
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL:=}
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference/v1
|
||||
api_key: ${env.FIREWORKS_API_KEY:=}
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: ${env.TOGETHER_API_KEY:=}
|
||||
- provider_id: bedrock
|
||||
provider_type: remote::bedrock
|
||||
config:
|
||||
api_key: ${env.AWS_BEDROCK_API_KEY:=}
|
||||
region_name: ${env.AWS_DEFAULT_REGION:=us-east-2}
|
||||
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
||||
- provider_id: openai
|
||||
provider_type: remote::openai
|
||||
config:
|
||||
api_key: ${env.OPENAI_API_KEY:=}
|
||||
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
|
||||
- provider_id: anthropic
|
||||
provider_type: remote::anthropic
|
||||
config:
|
||||
api_key: ${env.ANTHROPIC_API_KEY:=}
|
||||
- provider_id: gemini
|
||||
provider_type: remote::gemini
|
||||
config:
|
||||
api_key: ${env.GEMINI_API_KEY:=}
|
||||
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
|
||||
provider_type: remote::vertexai
|
||||
config:
|
||||
project: ${env.VERTEX_AI_PROJECT:=}
|
||||
location: ${env.VERTEX_AI_LOCATION:=us-central1}
|
||||
- provider_id: groq
|
||||
provider_type: remote::groq
|
||||
config:
|
||||
url: https://api.groq.com
|
||||
api_key: ${env.GROQ_API_KEY:=}
|
||||
- provider_id: sambanova
|
||||
provider_type: remote::sambanova
|
||||
config:
|
||||
url: https://api.sambanova.ai/v1
|
||||
api_key: ${env.SAMBANOVA_API_KEY:=}
|
||||
- provider_id: ${env.AZURE_API_KEY:+azure}
|
||||
provider_type: remote::azure
|
||||
config:
|
||||
api_key: ${env.AZURE_API_KEY:=}
|
||||
api_base: ${env.AZURE_API_BASE:=}
|
||||
api_version: ${env.AZURE_API_VERSION:=}
|
||||
api_type: ${env.AZURE_API_TYPE:=}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
- provider_id: sqlite-vec
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.MILVUS_URL:+milvus}
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/ci-tests}/milvus.db
|
||||
persistence:
|
||||
namespace: vector_io::milvus
|
||||
backend: kv_default
|
||||
- provider_id: ${env.CHROMADB_URL:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.PGVECTOR_DB:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: ${env.PGVECTOR_HOST:=localhost}
|
||||
port: ${env.PGVECTOR_PORT:=5432}
|
||||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
- provider_id: ${env.QDRANT_URL:+qdrant}
|
||||
provider_type: remote::qdrant
|
||||
config:
|
||||
api_key: ${env.QDRANT_API_KEY:=}
|
||||
persistence:
|
||||
namespace: vector_io::qdrant_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: null
|
||||
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
|
||||
persistence:
|
||||
namespace: vector_io::weaviate
|
||||
backend: kv_default
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/ci-tests/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
- provider_id: code-scanner
|
||||
provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: torchtune-cpu
|
||||
provider_type: inline::torchtune-cpu
|
||||
config:
|
||||
checkpoint_format: meta
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_id: reference
|
||||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: batches
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
|
||||
sql_default:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
@ -165,20 +165,15 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
responses_store:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: huggingface-gpu
|
||||
provider_type: inline::huggingface-gpu
|
||||
|
|
@ -237,10 +232,10 @@ providers:
|
|||
config:
|
||||
kvstore:
|
||||
namespace: batches
|
||||
backend: kv_postgres
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_postgres:
|
||||
kv_default:
|
||||
type: kv_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
|
|
@ -248,7 +243,7 @@ storage:
|
|||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
|
||||
sql_postgres:
|
||||
sql_default:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
|
|
@ -258,27 +253,44 @@ storage:
|
|||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_postgres
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_postgres
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_postgres
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_postgres
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
|
|||
|
|
@ -165,20 +165,15 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
responses_store:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: torchtune-cpu
|
||||
provider_type: inline::torchtune-cpu
|
||||
|
|
@ -234,10 +229,10 @@ providers:
|
|||
config:
|
||||
kvstore:
|
||||
namespace: batches
|
||||
backend: kv_postgres
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_postgres:
|
||||
kv_default:
|
||||
type: kv_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
|
|
@ -245,7 +240,7 @@ storage:
|
|||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
|
||||
sql_postgres:
|
||||
sql_default:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
|
|
@ -255,27 +250,44 @@ storage:
|
|||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_postgres
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_postgres
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_postgres
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_postgres
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
|
|||
|
|
@ -17,11 +17,6 @@ from llama_stack.core.datatypes import (
|
|||
ToolGroupInput,
|
||||
VectorStoresConfig,
|
||||
)
|
||||
from llama_stack.core.storage.datatypes import (
|
||||
InferenceStoreReference,
|
||||
KVStoreReference,
|
||||
SqlStoreReference,
|
||||
)
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings
|
||||
from llama_stack.providers.datatypes import RemoteProviderSpec
|
||||
|
|
@ -154,10 +149,11 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
|||
BuildProvider(provider_type="inline::reference"),
|
||||
],
|
||||
}
|
||||
files_config = LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}")
|
||||
files_provider = Provider(
|
||||
provider_id="meta-reference-files",
|
||||
provider_type="inline::localfs",
|
||||
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
config=files_config,
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
provider_id="sentence-transformers",
|
||||
|
|
@ -187,7 +183,8 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
|||
provider_shield_id="${env.CODE_SCANNER_MODEL:=}",
|
||||
),
|
||||
]
|
||||
postgres_config = PostgresSqlStoreConfig.sample_run_config()
|
||||
postgres_sql_config = PostgresSqlStoreConfig.sample_run_config()
|
||||
postgres_kv_config = PostgresKVStoreConfig.sample_run_config()
|
||||
default_overrides = {
|
||||
"inference": remote_inference_providers + [embedding_provider],
|
||||
"vector_io": [
|
||||
|
|
@ -244,6 +241,33 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
|||
"files": [files_provider],
|
||||
}
|
||||
|
||||
base_run_settings = RunConfigSettings(
|
||||
provider_overrides=default_overrides,
|
||||
default_models=[],
|
||||
default_tool_groups=default_tool_groups,
|
||||
default_shields=default_shields,
|
||||
vector_stores_config=VectorStoresConfig(
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=QualifiedModel(
|
||||
provider_id="sentence-transformers",
|
||||
model_id="nomic-ai/nomic-embed-text-v1.5",
|
||||
),
|
||||
),
|
||||
safety_config=SafetyConfig(
|
||||
default_shield_id="llama-guard",
|
||||
),
|
||||
)
|
||||
|
||||
postgres_run_settings = base_run_settings.model_copy(
|
||||
update={
|
||||
"storage_backends": {
|
||||
"kv_default": postgres_kv_config,
|
||||
"sql_default": postgres_sql_config,
|
||||
}
|
||||
},
|
||||
deep=True,
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="self_hosted",
|
||||
|
|
@ -253,71 +277,8 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
|||
providers=providers,
|
||||
additional_pip_packages=list(set(PostgresSqlStoreConfig.pip_packages() + PostgresKVStoreConfig.pip_packages())),
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides=default_overrides,
|
||||
default_models=[],
|
||||
default_tool_groups=default_tool_groups,
|
||||
default_shields=default_shields,
|
||||
vector_stores_config=VectorStoresConfig(
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=QualifiedModel(
|
||||
provider_id="sentence-transformers",
|
||||
model_id="nomic-ai/nomic-embed-text-v1.5",
|
||||
),
|
||||
),
|
||||
safety_config=SafetyConfig(
|
||||
default_shield_id="llama-guard",
|
||||
),
|
||||
),
|
||||
"run-with-postgres-store.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
**default_overrides,
|
||||
"agents": [
|
||||
Provider(
|
||||
provider_id="meta-reference",
|
||||
provider_type="inline::meta-reference",
|
||||
config=dict(
|
||||
persistence_store=postgres_config,
|
||||
responses_store=postgres_config,
|
||||
),
|
||||
)
|
||||
],
|
||||
"batches": [
|
||||
Provider(
|
||||
provider_id="reference",
|
||||
provider_type="inline::reference",
|
||||
config=dict(
|
||||
kvstore=KVStoreReference(
|
||||
backend="kv_postgres",
|
||||
namespace="batches",
|
||||
).model_dump(exclude_none=True),
|
||||
),
|
||||
)
|
||||
],
|
||||
},
|
||||
storage_backends={
|
||||
"kv_postgres": PostgresKVStoreConfig.sample_run_config(),
|
||||
"sql_postgres": postgres_config,
|
||||
},
|
||||
storage_stores={
|
||||
"metadata": KVStoreReference(
|
||||
backend="kv_postgres",
|
||||
namespace="registry",
|
||||
).model_dump(exclude_none=True),
|
||||
"inference": InferenceStoreReference(
|
||||
backend="sql_postgres",
|
||||
table_name="inference_store",
|
||||
).model_dump(exclude_none=True),
|
||||
"conversations": SqlStoreReference(
|
||||
backend="sql_postgres",
|
||||
table_name="openai_conversations",
|
||||
).model_dump(exclude_none=True),
|
||||
"prompts": KVStoreReference(
|
||||
backend="kv_postgres",
|
||||
namespace="prompts",
|
||||
).model_dump(exclude_none=True),
|
||||
},
|
||||
),
|
||||
"run.yaml": base_run_settings,
|
||||
"run-with-postgres-store.yaml": postgres_run_settings,
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
|
|
|
|||
|
|
@ -66,14 +66,6 @@ class InferenceStore:
|
|||
},
|
||||
)
|
||||
|
||||
if self.enable_write_queue:
|
||||
self._queue = asyncio.Queue(maxsize=self._max_write_queue_size)
|
||||
for _ in range(self._num_writers):
|
||||
self._worker_tasks.append(asyncio.create_task(self._worker_loop()))
|
||||
logger.debug(
|
||||
f"Inference store write queue enabled with {self._num_writers} writers, max queue size {self._max_write_queue_size}"
|
||||
)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if not self._worker_tasks:
|
||||
return
|
||||
|
|
@ -94,10 +86,29 @@ class InferenceStore:
|
|||
if self.enable_write_queue and self._queue is not None:
|
||||
await self._queue.join()
|
||||
|
||||
async def _ensure_workers_started(self) -> None:
|
||||
"""Ensure the async write queue workers run on the current loop."""
|
||||
if not self.enable_write_queue:
|
||||
return
|
||||
|
||||
if self._queue is None:
|
||||
self._queue = asyncio.Queue(maxsize=self._max_write_queue_size)
|
||||
logger.debug(
|
||||
f"Inference store write queue created with max size {self._max_write_queue_size} "
|
||||
f"and {self._num_writers} writers"
|
||||
)
|
||||
|
||||
if not self._worker_tasks:
|
||||
loop = asyncio.get_running_loop()
|
||||
for _ in range(self._num_writers):
|
||||
task = loop.create_task(self._worker_loop())
|
||||
self._worker_tasks.append(task)
|
||||
|
||||
async def store_chat_completion(
|
||||
self, chat_completion: OpenAIChatCompletion, input_messages: list[OpenAIMessageParam]
|
||||
) -> None:
|
||||
if self.enable_write_queue:
|
||||
await self._ensure_workers_started()
|
||||
if self._queue is None:
|
||||
raise ValueError("Inference store is not initialized")
|
||||
try:
|
||||
|
|
|
|||
|
|
@ -3,8 +3,6 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import asyncio
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.agents import (
|
||||
Order,
|
||||
|
|
@ -19,12 +17,12 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
)
|
||||
from llama_stack.apis.inference import OpenAIMessageParam
|
||||
from llama_stack.core.datatypes import AccessRule
|
||||
from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqlStoreReference, StorageBackendType
|
||||
from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqlStoreReference
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from ..sqlstore.api import ColumnDefinition, ColumnType
|
||||
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from ..sqlstore.sqlstore import _SQLSTORE_BACKENDS, sqlstore_impl
|
||||
from ..sqlstore.sqlstore import sqlstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="openai_responses")
|
||||
|
||||
|
|
@ -55,28 +53,12 @@ class ResponsesStore:
|
|||
|
||||
self.policy = policy
|
||||
self.sql_store = None
|
||||
self.enable_write_queue = True
|
||||
|
||||
# Async write queue and worker control
|
||||
self._queue: (
|
||||
asyncio.Queue[tuple[OpenAIResponseObject, list[OpenAIResponseInput], list[OpenAIMessageParam]]] | None
|
||||
) = None
|
||||
self._worker_tasks: list[asyncio.Task[Any]] = []
|
||||
self._max_write_queue_size: int = self.reference.max_write_queue_size
|
||||
self._num_writers: int = max(1, self.reference.num_writers)
|
||||
|
||||
async def initialize(self):
|
||||
"""Create the necessary tables if they don't exist."""
|
||||
base_store = sqlstore_impl(self.reference)
|
||||
self.sql_store = AuthorizedSqlStore(base_store, self.policy)
|
||||
|
||||
# Disable write queue for SQLite since WAL mode handles concurrency
|
||||
# Keep it enabled for other backends (like Postgres) for performance
|
||||
backend_config = _SQLSTORE_BACKENDS.get(self.reference.backend)
|
||||
if backend_config and backend_config.type == StorageBackendType.SQL_SQLITE:
|
||||
self.enable_write_queue = False
|
||||
logger.debug("Write queue disabled for SQLite (WAL mode handles concurrency)")
|
||||
|
||||
await self.sql_store.create_table(
|
||||
"openai_responses",
|
||||
{
|
||||
|
|
@ -95,33 +77,12 @@ class ResponsesStore:
|
|||
},
|
||||
)
|
||||
|
||||
if self.enable_write_queue:
|
||||
self._queue = asyncio.Queue(maxsize=self._max_write_queue_size)
|
||||
for _ in range(self._num_writers):
|
||||
self._worker_tasks.append(asyncio.create_task(self._worker_loop()))
|
||||
logger.debug(
|
||||
f"Responses store write queue enabled with {self._num_writers} writers, max queue size {self._max_write_queue_size}"
|
||||
)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if not self._worker_tasks:
|
||||
return
|
||||
if self._queue is not None:
|
||||
await self._queue.join()
|
||||
for t in self._worker_tasks:
|
||||
if not t.done():
|
||||
t.cancel()
|
||||
for t in self._worker_tasks:
|
||||
try:
|
||||
await t
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
self._worker_tasks.clear()
|
||||
return
|
||||
|
||||
async def flush(self) -> None:
|
||||
"""Wait for all queued writes to complete. Useful for testing."""
|
||||
if self.enable_write_queue and self._queue is not None:
|
||||
await self._queue.join()
|
||||
"""Maintained for compatibility; no-op now that writes are synchronous."""
|
||||
return
|
||||
|
||||
async def store_response_object(
|
||||
self,
|
||||
|
|
@ -129,31 +90,7 @@ class ResponsesStore:
|
|||
input: list[OpenAIResponseInput],
|
||||
messages: list[OpenAIMessageParam],
|
||||
) -> None:
|
||||
if self.enable_write_queue:
|
||||
if self._queue is None:
|
||||
raise ValueError("Responses store is not initialized")
|
||||
try:
|
||||
self._queue.put_nowait((response_object, input, messages))
|
||||
except asyncio.QueueFull:
|
||||
logger.warning(f"Write queue full; adding response id={getattr(response_object, 'id', '<unknown>')}")
|
||||
await self._queue.put((response_object, input, messages))
|
||||
else:
|
||||
await self._write_response_object(response_object, input, messages)
|
||||
|
||||
async def _worker_loop(self) -> None:
|
||||
assert self._queue is not None
|
||||
while True:
|
||||
try:
|
||||
item = await self._queue.get()
|
||||
except asyncio.CancelledError:
|
||||
break
|
||||
response_object, input, messages = item
|
||||
try:
|
||||
await self._write_response_object(response_object, input, messages)
|
||||
except Exception as e: # noqa: BLE001
|
||||
logger.error(f"Error writing response object: {e}")
|
||||
finally:
|
||||
self._queue.task_done()
|
||||
await self._write_response_object(response_object, input, messages)
|
||||
|
||||
async def _write_response_object(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -45,8 +45,13 @@ def _enhance_item_with_access_control(item: Mapping[str, Any], current_user: Use
|
|||
enhanced["owner_principal"] = current_user.principal
|
||||
enhanced["access_attributes"] = current_user.attributes
|
||||
else:
|
||||
enhanced["owner_principal"] = None
|
||||
enhanced["access_attributes"] = None
|
||||
# IMPORTANT: Use empty string and null value (not None) to match public access filter
|
||||
# The public access filter in _get_public_access_conditions() expects:
|
||||
# - owner_principal = '' (empty string)
|
||||
# - access_attributes = null (JSON null, which serializes to the string 'null')
|
||||
# Setting them to None (SQL NULL) will cause rows to be filtered out on read.
|
||||
enhanced["owner_principal"] = ""
|
||||
enhanced["access_attributes"] = None # Pydantic/JSON will serialize this as JSON null
|
||||
return enhanced
|
||||
|
||||
|
||||
|
|
@ -188,8 +193,9 @@ class AuthorizedSqlStore:
|
|||
enhanced_data["owner_principal"] = current_user.principal
|
||||
enhanced_data["access_attributes"] = current_user.attributes
|
||||
else:
|
||||
enhanced_data["owner_principal"] = None
|
||||
enhanced_data["access_attributes"] = None
|
||||
# IMPORTANT: Use empty string for owner_principal to match public access filter
|
||||
enhanced_data["owner_principal"] = ""
|
||||
enhanced_data["access_attributes"] = None # Will serialize as JSON null
|
||||
|
||||
await self.sql_store.update(table, enhanced_data, where)
|
||||
|
||||
|
|
@ -245,14 +251,24 @@ class AuthorizedSqlStore:
|
|||
raise ValueError(f"Unsupported database type: {self.database_type}")
|
||||
|
||||
def _get_public_access_conditions(self) -> list[str]:
|
||||
"""Get the SQL conditions for public access."""
|
||||
# Public records are records that have no owner_principal or access_attributes
|
||||
"""Get the SQL conditions for public access.
|
||||
|
||||
Public records are those with:
|
||||
- owner_principal = '' (empty string)
|
||||
- access_attributes is either SQL NULL or JSON null
|
||||
|
||||
Note: Different databases serialize None differently:
|
||||
- SQLite: None → JSON null (text = 'null')
|
||||
- Postgres: None → SQL NULL (IS NULL)
|
||||
"""
|
||||
conditions = ["owner_principal = ''"]
|
||||
if self.database_type == StorageBackendType.SQL_POSTGRES.value:
|
||||
# Postgres stores JSON null as 'null'
|
||||
conditions.append("access_attributes::text = 'null'")
|
||||
# Accept both SQL NULL and JSON null for Postgres compatibility
|
||||
# This handles both old rows (SQL NULL) and new rows (JSON null)
|
||||
conditions.append("(access_attributes IS NULL OR access_attributes::text = 'null')")
|
||||
elif self.database_type == StorageBackendType.SQL_SQLITE.value:
|
||||
conditions.append("access_attributes = 'null'")
|
||||
# SQLite serializes None as JSON null
|
||||
conditions.append("(access_attributes IS NULL OR access_attributes = 'null')")
|
||||
else:
|
||||
raise ValueError(f"Unsupported database type: {self.database_type}")
|
||||
return conditions
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
{
|
||||
"default": [
|
||||
{"suite": "base", "setup": "ollama"},
|
||||
{"suite": "base", "setup": "ollama-postgres", "allowed_clients": ["server"], "stack_config": "server:ci-tests::run-with-postgres-store.yaml"},
|
||||
{"suite": "vision", "setup": "ollama-vision"},
|
||||
{"suite": "responses", "setup": "gpt"},
|
||||
{"suite": "base-vllm-subset", "setup": "vllm"}
|
||||
|
|
|
|||
|
|
@ -233,10 +233,21 @@ def instantiate_llama_stack_client(session):
|
|||
raise ValueError("You must specify either --stack-config or LLAMA_STACK_CONFIG")
|
||||
|
||||
# Handle server:<config_name> format or server:<config_name>:<port>
|
||||
# Also handles server:<distro>::<run_file.yaml> format
|
||||
if config.startswith("server:"):
|
||||
parts = config.split(":")
|
||||
config_name = parts[1]
|
||||
port = int(parts[2]) if len(parts) > 2 else int(os.environ.get("LLAMA_STACK_PORT", DEFAULT_PORT))
|
||||
# Strip the "server:" prefix first
|
||||
config_part = config[7:] # len("server:") == 7
|
||||
|
||||
# Check for :: (distro::runfile format)
|
||||
if "::" in config_part:
|
||||
config_name = config_part
|
||||
port = int(os.environ.get("LLAMA_STACK_PORT", DEFAULT_PORT))
|
||||
else:
|
||||
# Single colon format: either <name> or <name>:<port>
|
||||
parts = config_part.split(":")
|
||||
config_name = parts[0]
|
||||
port = int(parts[1]) if len(parts) > 1 else int(os.environ.get("LLAMA_STACK_PORT", DEFAULT_PORT))
|
||||
|
||||
base_url = f"http://localhost:{port}"
|
||||
|
||||
force_restart = os.environ.get("LLAMA_STACK_TEST_FORCE_SERVER_RESTART") == "1"
|
||||
|
|
|
|||
|
|
@ -71,6 +71,26 @@ SETUP_DEFINITIONS: dict[str, Setup] = {
|
|||
"embedding_model": "ollama/nomic-embed-text:v1.5",
|
||||
},
|
||||
),
|
||||
"ollama-postgres": Setup(
|
||||
name="ollama-postgres",
|
||||
description="Server-mode tests with Postgres-backed persistence",
|
||||
env={
|
||||
"OLLAMA_URL": "http://0.0.0.0:11434",
|
||||
"SAFETY_MODEL": "ollama/llama-guard3:1b",
|
||||
"POSTGRES_HOST": "127.0.0.1",
|
||||
"POSTGRES_PORT": "5432",
|
||||
"POSTGRES_DB": "llamastack",
|
||||
"POSTGRES_USER": "llamastack",
|
||||
"POSTGRES_PASSWORD": "llamastack",
|
||||
"LLAMA_STACK_LOGGING": "openai_responses=info",
|
||||
},
|
||||
defaults={
|
||||
"text_model": "ollama/llama3.2:3b-instruct-fp16",
|
||||
"embedding_model": "sentence-transformers/nomic-embed-text-v1.5",
|
||||
"safety_model": "ollama/llama-guard3:1b",
|
||||
"safety_shield": "llama-guard",
|
||||
},
|
||||
),
|
||||
"vllm": Setup(
|
||||
name="vllm",
|
||||
description="vLLM provider with a text model",
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue